The Effect of the Reaction Conditions on the Properties of Products from Co-Hydrotreating of Rapeseed Oil and Petroleum Middle Distillates
Abstract
:1. Introduction
2. Results
2.1. Influence of the Presence of Rapeseed oil in the Feedstock
2.2. The Influence of WHSV and Hydrogen on the Feedstock Ratio on the Composition and Properties of the Hydrotreating Products
3. Materials and Methods
3.1. Materials
3.2. Hydrotreating
3.3. Processing of the Liquid Products
3.4. Analysis of the Liquid and Gaseous Products
3.5. Calculation of Hydrogen Consumption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neste Corporation. Neste Renewable Diesel Handbook; Neste Oil Proprietary Publication: Espoo, Finland, 2016. [Google Scholar]
- Triantafyllidis, K.; Lappas, A.; Stocker, M. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Triantafzllidis, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0444563309. [Google Scholar]
- Šimáček, P.; Souček, I.; Pospíšil, M.; Vrtiška, D.; Kittel, H. Impact of hydrotreated vegetable oil and biodiesel on properties in blends with mineral diesel fuel. Therm. Sci. 2019, 23, 1769–1777. [Google Scholar] [CrossRef]
- Váchová, V.; Vozka, P. Processing of vegetable oils to diesel fuel. Paliva 2015, 7, 66–73. (In Czech) [Google Scholar] [CrossRef]
- Pattanaik, B.-P.; Misra, R.-D. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review. Renew. Sustain. Energy Rev. 2017, 73, 545–557. [Google Scholar] [CrossRef]
- Hermida, L.; Abdullah, A.-Z.; Mohamed, A.-R. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renew. Sustain. Energy Rev. 2015, 42, 1223–1233. [Google Scholar] [CrossRef]
- Melero, J.-A.; Garcia, A.; Iglesias, J. Biomass catalysis in conventional refineries. In Advances in Clean Hydrocarbon Fuel Processing: Science and Technology; Khan, M.-R., Ed.; Woodhead Publishing Limited: Oxford, UK, 2011; pp. 220–221. ISBN 978-1-84569-727-3. [Google Scholar]
- Horáček, J.; Tišler, Z.; Rubáš, V.; Kubička, D. HDO catalysts for triglycerides conversion into pyrolysis and isomerization feedstock. Fuel 2014, 121, 57–64. [Google Scholar] [CrossRef]
- Kubička, D.; Tukač, V. Hydrotreating of triglyceride-based feedstocks in refineries. In Advances in Chemical Engineering; Murzin, D.-Y., Ed.; Academic Press: London, UK, 2013; Volume 42, pp. 141–194. [Google Scholar]
- Kubička, D.; Kaluža, L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl. Catal. A Gen. 2010, 372, 199–208. [Google Scholar] [CrossRef]
- Neste: Hydrotreated Vegetable Oil (HVO)—Premium Renewable Biofuel for Diesel Engines; Neste Oil Proprietary Publication: Espoo, Finland, 2014.
- Topsoe: Renewables. Available online: https://renewables.topsoe.com/haldor-tops%C3%B8e-renewables-about (accessed on 28 January 2020).
- Vozka, P.; Váchová, V.; Blažek, J. Catalysts for hydrotreating of liquid products from processing of biomass. Paliva 2015, 7, 59–65. (In Czech) [Google Scholar] [CrossRef]
- Boyás, R.-S.; Zárraga, F.-T.; Hernández Loyo, F.-J. Hydroconversion of triglycerides into green liquid fuels. In Hydrogenation; Karamé, I., Ed.; InTech: Rijeka, Croatia, 2012; pp. 187–216. [Google Scholar]
- Kordulis, C.; Bourikas, K.; Gousi, M.; Kordouli, E.; Lycourghiotis, A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B Environ. 2016, 181, 156–196. [Google Scholar] [CrossRef]
- Eijsbouts, S.; Mayo, S.; Fujita, K. Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Appl. Catal. A Gen. 2007, 322, 58–66. [Google Scholar] [CrossRef]
- Théodet, M. New Generation of” Bulk” Catalyst Precursors for Hydrodesulfurization Synthesized in Supercritical Fluids. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, 2010. Available online: https://tel.archives-ouvertes.fr/tel-00559113/ (accessed on 4 June 2020).
- UOP: Honeywell Green Diesel. Available online: https://www.uop.com/processing-solutions/renewables/green-diesel/ (accessed on 28 January 2020).
- Eni: What Is Ecofining? Available online: https://www.eni.com/en_IT/results.page?question=what+is+ecofining%3F (accessed on 3 February 2020).
- Axens: Vegan®—Technology for Premium Quality, Drop-In Biofuels from Renewable Oils & Fats. Available online: https://www.axens.net/product/process-licensing/11008/vegan.html (accessed on 3 February 2020).
- Douvartzides, S.-L.; Charisiou, N.-D.; Kyriakos, N.; Papageridis, K.-N.; Maria, A.; Goula, M.-A. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 2019, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Al-Daous, M.-A.; Ali, S.-A. Deep desulfurization of gas oil over NiMo catalysts supported on alumina-zirconia composites. Fuel 2012, 97, 662–669. [Google Scholar] [CrossRef]
- Donnis, B.; Egeberg, R.-G.; Blom, P.; Knudsen, K.-G. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top. Catal. 2009, 52, 229–240. [Google Scholar] [CrossRef]
- Templis, C.; Vonortas, A.; Sebos, I.; Papayannakos, N. Vegetable oil effect on gasoil HDS in their catalytic co-hydroprocessing. Appl. Catal. B Environ. 2011, 104, 324–329. [Google Scholar] [CrossRef]
- De Paz Carmona, H.; de la Torre Alfaro, O.; Brito Alayón, A.; Romero Vázquez, M.-A.; Macías Hernández, J.-J. Co-processing of straight run gas oil with used cooking oil and animal fats. Fuel 2019, 254, 115583. [Google Scholar] [CrossRef]
- Tóth, C.; Baladincz, P.; Kovács, S.; Hancsók, J. Producing clean diesel fuel by co-hydrogenation of vegetable oil with gas oil. Clean Technol. Environ. Policy. 2011, 13, 581–585. [Google Scholar] [CrossRef]
- Endisch, M.; Kuchling, T.; Roscher, J. Process Balances of Vegetable Oil Hydrogenation and Coprocessing Investigations with Middle-Distillates. Energy Fuels 2013, 27, 2628–2636. [Google Scholar] [CrossRef]
- Ameen, M.; Azizan, M.T.; Yusup, S.; Ramli, A.; Yasir, M. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renew. Sustain. Energy Rev. 2017, 80, 1072. [Google Scholar] [CrossRef]
- Palanisamy, S.; Gevert, B.-S. Hydrodeoxygenation of fatty acid methyl ester in gas oil blend-NiMoS/alumina catalyst. Green Process. Synth. 2018, 7, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Shinozaki, A.; Qian, E.-Q. Role of support in hydrotreating of jatropha oil over sulfided NiMo catalysts. Ind. Eng. Chem. Res. 2012, 51, 13953–13960. [Google Scholar] [CrossRef]
- Vozka, P.; Orazgaliyeva, D.; Šimáček, P.; Blažek, J.; Kilaz, G. Activity comparison of Ni-Mo/Al2O3 and Ni Mo/TiO2 catalysts in hydroprocessing of middle petroleum distillates and their blend with rapeseed oil. Fuel Process. Technol. 2017, 167, 684–694. [Google Scholar] [CrossRef]
- Kochetkova, D.; Blažek, J.; Šimáček, P.; Staš, M.; Beňo, Z. Influence of rapeseed oil hydrotreating on hydrogenation activity of CoMo catalyst. Fuel Process. Technol. 2016, 142, 319–325. [Google Scholar] [CrossRef]
Product | Content (wt %) | n-C17/n-C18 Ratio | |||
---|---|---|---|---|---|
n-C16- | n-C17 | n-C18 | n-C19+ | ||
P0-2-1.0 | 4.7 | 1.5 | 1.3 | 4.8 | 1.2 |
P0-3-1.0 | 5.2 | 1.5 | 1.2 | 4.6 | 1.3 |
P0-4-1.0 | 4.2 | 1.5 | 1.3 | 4.7 | 1.2 |
P0-5-1.0 | 5.9 | 1.4 | 1.3 | 4.7 | 1.1 |
P20-2-1.0 | 8.4 | 10.6 | 7.6 | 3.5 | 1.4 |
P20-3-1.0 | 8.4 | 10.7 | 6.8 | 4.4 | 1.6 |
P20-4-1.0 | 8.5 | 10.8 | 6.2 | 4.1 | 1.7 |
P20-5-1.0 | 8.2 | 10.8 | 6.3 | 4.5 | 1.7 |
Sample | Density at 15 °C (kg∙m−3) | Kinematic Viscosity at 40 °C (mm2∙s−1) | Cetane Index | CFPP (°C) |
---|---|---|---|---|
F0 | 857 | 3.52 | 50 | −1 |
P0-2-1.0 | 853 | 3.80 | 53 | −1 |
P0-3-1.0 | 851 | 3.82 | 53 | −1 |
P0-4-1.0 | 848 | 3.78 | 54 | −2 |
P0-5-1.0 | 842 | 3.81 | 55 | −2 |
F20 | 869 | 5.48 | - | - |
P20-2-1.0 | 836 | 3.83 | 62 | −4 |
P20-3-1.0 | 836 | 3.79 | 62 | −5 |
P20-4-1.0 | 836 | 3.78 | 62 | −5 |
P20-5-1.0 | 836 | 3.75 | 62 | −4 |
Product | Content (vol%) | ||||||
---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | Ethane | Propane | C4+ | |
P0-2-1.0 | 99.6 | <0.1 | <0.1 | 0.1 | <0.1 | 0.1 | 0.1 |
P0-3-1.0 | 99.6 | <0.1 | <0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
P0-4-1.0 | 99.2 | <0.1 | <0.1 | 0.2 | 0.1 | 0.2 | 0.2 |
P0-5-1.0 | 99.1 | <0.1 | <0.1 | 0.3 | 0.2 | 0.2 | 0.2 |
P20-2-1.0 | 91.5 | 1.1 | 3.7 | 0.6 | 0.1 | 2.9 | 0.1 |
P20-3-1.0 | 91.2 | 1.2 | 3.7 | 0.9 | 0.2 | 2.7 | 0.1 |
P20-4-1.0 | 90.5 | 1.2 | 3.4 | 1.0 | 0.2 | 3.1 | 0.2 |
P20-5-1.0 | 89.8 | 1.6 | 3.6 | 1.5 | 0.3 | 2.9 | 0.3 |
Product | |||
---|---|---|---|
P1.0 | - | - | - |
P0-3-1.0 | - | - | - |
P0-4-1.0 | - | - | - |
P0-5-1.0 | - | - | - |
P20-2-1.0 | 0.40 | 0.42 | 0.18 |
P20-3-1.0 | 0.37 | 0.41 | 0.22 |
P20-4-1.0 | 0.34 | 0.42 | 0.24 |
P20-5-1.0 | 0.34 | 0.38 | 0.29 |
Product | DB * | HDO | HDCx | HDCn | Methanation | HDS | HDN | had | Total Hydrogen Consumption (m3·m−3) | ExH |
---|---|---|---|---|---|---|---|---|---|---|
P0-2-1.0 | - | - | - | - | - | 3.5 | 0.5 | 22.6 | 26.6 | 9.0 |
P0-3-1.0 | - | - | - | - | - | 3.5 | 0.5 | 23.4 | 27.5 | 8.7 |
P0-4-1.0 | - | - | - | - | - | 3.6 | 0.5 | 27.8 | 31.9 | 7.5 |
P0-5-1.0 | - | - | - | - | - | 3.6 | 0.5 | 33.6 | 37.8 | 6.4 |
P20-2-1.0 | 18.3 | 22.5 | 6.0 | 5.1 | 2.5 | 2.9 | 0.4 | 26.5 | 84.2 | 2.9 |
P20-3-1.0 | 18.3 | 20.8 | 5.8 | 6.2 | 4.1 | 2.9 | 0.4 | 27.4 | 86.0 | 2.8 |
P20-4-1.0 | 18.3 | 19.0 | 6.0 | 6.8 | 4.0 | 2.9 | 0.4 | 27.1 | 84.7 | 2.9 |
P20-5-1.0 | 18.3 | 19.1 | 5.3 | 8.1 | 6.1 | 2.9 | 0.4 | 25.1 | 85.5 | 2.8 |
Product | Content (wt %) | n-C17/n-C18 Ratio | |||
---|---|---|---|---|---|
n-C16- | n-C17 | n-C18 | n-C19+ | ||
P20-2-0.5 | 8.0 | 8.9 | 8.5 | 4.2 | 1.0 |
P20-3-0.5 | 7.7 | 9.4 | 7.8 | 4.3 | 1.2 |
P20-4-0.5 | 8.6 | 9.8 | 7.2 | 4.0 | 1.4 |
P20-5-0.5 | 8.3 | 10.4 | 6.8 | 4.1 | 1.5 |
P20-2-1.0 | 8.4 | 10.6 | 7.6 | 3.5 | 1.4 |
P20-3-1.0 | 8.4 | 10.7 | 6.8 | 4.4 | 1.6 |
P20-4-1.0 | 8.5 | 10.8 | 6.2 | 4.1 | 1.7 |
P20-5-1.0 | 8.2 | 10.8 | 6.3 | 4.5 | 1.7 |
P20-2-1.5 | 8.0 | 9.4 | 9.2 | 3.9 | 1.0 |
P20-3-1.5 | 7.7 | 9.7 | 8.3 | 4.0 | 1.2 |
P20-4-1.5 | 8.9 | 10.5 | 7.8 | 3.0 | 1.3 |
P20-5-1.5 | 8.2 | 11.5 | 7.1 | 3.6 | 1.6 |
P20-2-2.0 | 9.3 | 10.4 | 8.4 | 3.0 | 1.2 |
P20-3-2.0 | 8.3 | 10.6 | 7.8 | 4.0 | 1.4 |
P20-4-2.0 | 8.3 | 11.2 | 7.0 | 3.7 | 1.6 |
P20-5-2.0 | 8.2 | 11.2 | 6.6 | 4.4 | 1.7 |
Sample | Sulphur content (mg∙kg−1) | Nitrogen Content (mg∙kg−1) | Degree of Desulphurisation (%) |
---|---|---|---|
F20 | 2200 | 144 | - |
P20-2-0.5 | 4 | 2 | 99.8 |
P20-3-0.5 | 3 | 3 | 99.9 |
P20-4-0.5 | 3 | 3 | 99.9 |
P20-5-0.5 | 3 | 3 | 99.9 |
P20-2-1.0 | 45 | 3 | 98.0 |
P20-3-1.0 | 18 | 3 | 99.2 |
P20-4-1.0 | 13 | 3 | 99.4 |
P20-5-1.0 | 6 | 3 | 99.7 |
P20-2-1.5 | 268 | 66 | 87.8 |
P20-3-1.5 | 146 | 36 | 93.4 |
P20-4-1.5 | 71 | 19 | 96.8 |
P20-5-1.5 | 35 | 15 | 98.4 |
P20-2-2.0 | 336 | 84 | 84.7 |
P20-3-2.0 | 255 | 77 | 88.4 |
P20-4-2.0 | 184 | 74 | 91.6 |
P20-5-2.0 | 118 | 66 | 94.6 |
Sample | Density at 15 °C (kg∙m−3) | Kinematic Viscosity at 40 °C (mm2∙s−1) | Cetane Index | CFPP (°C) |
---|---|---|---|---|
F20 | 869 | 5.48 | - | - |
P20-2-0.5 | 833 | 3.81 | 63 | −2 |
P20-3-0.5 | 832 | 3.76 | 63 | −3 |
P20-4-0.5 | 832 | 3.72 | 63 | −4 |
P20-5-0.5 | 832 | 3.62 | 63 | −3 |
P20-2-1.0 | 836 | 3.83 | 62 | −4 |
P20-3-1.0 | 836 | 3.79 | 62 | −5 |
P20-4-1.0 | 836 | 3.78 | 62 | −5 |
P20-5-1.0 | 836 | 3.75 | 62 | −4 |
P20-2-1.5 | 839 | 3.84 | 61 | −4 |
P20-3-1.5 | 838 | 3.86 | 61 | −2 |
P20-4-1.5 | 838 | 3.84 | 61 | −2 |
P20-5-1.5 | 838 | 3.80 | 61 | −3 |
P20-2-2.0 | 839 | 3.85 | 60 | −4 |
P20-3-2.0 | 839 | 3.86 | 60 | −3 |
P20-4-2.0 | 839 | 3.85 | 60 | −3 |
P20-5-2.0 | 839 | 3.83 | 60 | −3 |
Product | |||
---|---|---|---|
P-2-0.5 | 0.48 | 0.29 | 0.23 |
P20-3-0.5 | 0.44 | 0.27 | 0.29 |
P20-4-0.5 | 0.40 | 0.26 | 0.34 |
P20-5-0.5 | 0.37 | 0.23 | 0.40 |
P20-2-1.0 | 0.40 | 0.42 | 0.18 |
P20-3-1.0 | 0.37 | 0.41 | 0.22 |
P20-4-1.0 | 0.34 | 0.42 | 0.24 |
P20-5-1.0 | 0.34 | 0.38 | 0.29 |
P20-2-1.5 | 0.48 | 0.42 | 0.09 |
P20-3-1.5 | 0.45 | 0.43 | 0.12 |
P20-4-1.5 | 0.41 | 0.44 | 0.16 |
P20-5-1.5 | 0.35 | 0.46 | 0.19 |
P20-2-2.0 | 0.43 | 0.48 | 0.09 |
P20-3-2.0 | 0.41 | 0.50 | 0.10 |
P20-4-2.0 | 0.36 | 0.53 | 0.11 |
P20-5-2.0 | 0.34 | 0.52 | 0.14 |
Product | DB | HDO | HDCx | HDCn | Methanation | HDS | HDN | HDA | Total Hydrogen Consumption (m3·m−3) | ExH |
---|---|---|---|---|---|---|---|---|---|---|
P20-2-0.5 | 18.3 | 27.0 | 4.1 | 6.6 | 3.5 | 2.9 | 0.4 | 36.5 | 99 | 4.9 |
P20-3-0.5 | 18.3 | 24.9 | 3.8 | 8.3 | 4.8 | 2.9 | 0.4 | 34.1 | 98 | 5.0 |
P20-4-0.5 | 18.3 | 22.8 | 3.6 | 9.6 | 6.0 | 2.9 | 0.4 | 34.7 | 98 | 4.9 |
P20-5-0.5 | 18.3 | 20.9 | 3.3 | 11.3 | 8.6 | 2.9 | 0.4 | 32.6 | 98 | 4.9 |
P20-2-1.0 | 18.3 | 22.5 | 6.0 | 5.1 | 2.5 | 2.9 | 0.4 | 26.5 | 84 | 2.9 |
P20-3-1.0 | 18.3 | 20.8 | 5.8 | 6.2 | 4.1 | 2.9 | 0.4 | 27.4 | 86 | 2.8 |
P20-4-1.0 | 18.3 | 19.0 | 6.0 | 6.8 | 4.0 | 2.9 | 0.4 | 27.1 | 85 | 2.9 |
P20-5-1.0 | 18.3 | 19.1 | 5.3 | 8.1 | 6.1 | 2.9 | 0.4 | 25.1 | 85 | 2.8 |
P20-2-1.5 | 18.3 | 27.4 | 6.0 | 2.6 | 0.7 | 2.6 | 0.2 | 23.7 | 82 | 2.0 |
P20-3-1.5 | 18.3 | 25.4 | 6.0 | 3.5 | 1.6 | 2.7 | 0.3 | 23.2 | 81 | 2.0 |
P20-4-1.5 | 18.3 | 23.0 | 6.2 | 4.4 | 1.8 | 2.8 | 0.4 | 22.9 | 80 | 2.0 |
P20-5-1.5 | 18.3 | 20.1 | 6.5 | 5.3 | 2.7 | 2.9 | 0.4 | 22.3 | 78 | 2.1 |
P20-2-2.0 | 18.3 | 24.3 | 6.8 | 2.4 | 0.6 | 2.5 | 0.2 | 22.2 | 77 | 1.6 |
P20-3-2.0 | 18.3 | 23.0 | 7.0 | 2.7 | 0.9 | 2.6 | 0.2 | 22.9 | 78 | 1.6 |
P20-4-2.0 | 18.3 | 20.3 | 7.4 | 3.2 | 1.2 | 2.7 | 0.2 | 22.5 | 76 | 1.6 |
P20-5-2.0 | 18.3 | 19.3 | 7.3 | 3.9 | 1.3 | 2.8 | 0.2 | 23.4 | 77 | 1.6 |
Properties | F0 | F20 |
---|---|---|
Density at 15 °C (kg∙m−3) | 857 | 869 |
Viscosity at 40 °C (mm2∙s−1) | 3.52 | 5.48 |
Sulphur (wt %) | 0.28 | 0.22 |
Nitrogen (mg∙kg−1) | 178 | 144 |
Cetane index | 50 | - |
Saturated hydrocarbons (wt %) | 72.7 | 58.1 |
Monoaromatics (wt %) | 17.0 | 13.6 |
Diaromatics (wt %) | 9.2 | 7.4 |
Triaromatics (wt %) | 1.1 | 0.9 |
Rapeseed oil (wt %) | 0.0 | 20.0 |
Acyl Group a | Content | Acyl Group a | Content |
---|---|---|---|
C14:0 | 0.1 | C18:1 | 60.0 |
C16:0 | 5.5 | C18:2 | 20.3 |
C16:1 | 0.4 | C18:3 | 8.8 |
C18:0 | 2.0 | C20+ | 3.0 |
Product Labelling | Reaction Temperature (°C) | WHSV (h−1) | Hydrogen/Feedstock Ratio (m3∙m−3) |
---|---|---|---|
P0-2-1.0 | 318 | 1.0 | 240 |
P0-3-1.0 | 328 | ||
P0-4-1.0 | 340 | ||
P0-5-1.0 | 351 |
Product Labelling | Reaction Temperature (°C) | WHSV (h−1) | Hydrogen/Feedstock Ratio (m3∙m−3) |
---|---|---|---|
P20-2-0.5 | 323 | 0.5 | 480 |
P20-3-0.5 | 335 | ||
P20-4-0.5 | 342 | ||
P20-5-0.5 | 350 | ||
P20-2-1.0 | 325 | 1.0 | 240 |
P20-3-1.0 | 337 | ||
P20-4-1.0 | 343 | ||
P20-5-1.0 | 350 | ||
P20-2-1.5 | 319 | 1.5 | 160 |
P20-3-1.5 | 334 | ||
P20-4-1.5 | 339 | ||
P20-5-1.5 | 350 | ||
P20-2-2.0 | 326 | 2.0 | 120 |
P20-3-2.0 | 335 | ||
P20-4-2.0 | 342 | ||
P20-5-2.0 | 353 |
Parameter | Description |
---|---|
Analytic columns | Inactivated precolumn (1.5 m × 0.53 mm) Analytical column VARIAN WCOT ULTIMETAL (10 m × 0.53 mm × 0.17 μm) |
Injection | On-column, 1 μl of carbon disulphide solution, sample concentration of 8–10 mg∙g−1 |
Carrier gas | He, constant flow 5 ml∙min−1 |
Temperature programme | Isothermal −30 °C for 2 min, then a linear gradient of 15 °C∙min−1 up to 410 °C (held for 10 min) |
Detector | FID (temperature 430 °C) |
Parameter | Description |
---|---|
Analytic column | Agilent J&W CP CARBOBOND (50 m × 0.53 mm × 50 μm) |
Injection | Split injection, split ratio 1/5, injected volume: 500 μL at a temperature of 150 °C |
Temperature programme | Isothermal 30 °C for 5 min, then a linear gradient of 30 °C∙min−1 up to 180 °C (held for 30 min) |
Detectors | Channel 1: FID (hydrocarbons C1–C5) Channel 2: TCD (permanent gases) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straka, P.; Blažek, J.; Toullis, D.; Ihnát, T.; Šimáček, P. The Effect of the Reaction Conditions on the Properties of Products from Co-Hydrotreating of Rapeseed Oil and Petroleum Middle Distillates. Catalysts 2021, 11, 442. https://doi.org/10.3390/catal11040442
Straka P, Blažek J, Toullis D, Ihnát T, Šimáček P. The Effect of the Reaction Conditions on the Properties of Products from Co-Hydrotreating of Rapeseed Oil and Petroleum Middle Distillates. Catalysts. 2021; 11(4):442. https://doi.org/10.3390/catal11040442
Chicago/Turabian StyleStraka, Petr, Josef Blažek, Daria Toullis, Tomáš Ihnát, and Pavel Šimáček. 2021. "The Effect of the Reaction Conditions on the Properties of Products from Co-Hydrotreating of Rapeseed Oil and Petroleum Middle Distillates" Catalysts 11, no. 4: 442. https://doi.org/10.3390/catal11040442
APA StyleStraka, P., Blažek, J., Toullis, D., Ihnát, T., & Šimáček, P. (2021). The Effect of the Reaction Conditions on the Properties of Products from Co-Hydrotreating of Rapeseed Oil and Petroleum Middle Distillates. Catalysts, 11(4), 442. https://doi.org/10.3390/catal11040442