Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalytic Activity
2.2. Structure and Surface Acid Sites
2.3. Surface Chemical State
2.4. Poisoning Effect of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Activity Test
3.3. Catalysts Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schobing, J.; Tschamber, V.; Brilhac, J.F.; Auclaire, A.; Vonarb, R. Investigation of the impact of calcium, zinc and phosphorus on DeNOx activity of a commercial SCR catalyst. Top. Catal. 2016, 59, 1013–1019. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.; Si, W.; Luo, J.; Wang, Y.; Fu, J.; Li, X.; Crittenden, J.; Hao, J. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Appl. Catal. B Environ. 2015, 168, 195–202. [Google Scholar] [CrossRef]
- Putluru, S.S.R.; Schill, L.; Gardini, D.; Mossin, S.; Wagner, J.B.; Jensen, A.D.; Fehrmann, R. Superior DeNOx activity of V2O5–WO3/TiO2 catalysts prepared by deposition–precipitation method. J. Mater. Sci. 2014, 49, 2705–2713. [Google Scholar] [CrossRef]
- Miao, J.; Li, H.; Su, Q.; Yu, Y.; Chen, Y.; Chen, J.; Wang, J. The combined promotive effect of SO2 and HCl on Pb-poisoned commercial NH3-SCR V2O5-WO3/TiO2 catalysts. Catal. Commun. 2019, 125, 118–122. [Google Scholar] [CrossRef]
- Nicosia, D.; Elsener, M.; Kröcher, O.; Jansohn, P. Basic investigation of the chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate. Top. Catal. 2007, 42, 333–336. [Google Scholar] [CrossRef]
- Madia, G.; Elsener, M.; Koebel, M.; Raimondi, F.; Wokaun, A. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl. Catal. B Environ. 2002, 39, 181–190. [Google Scholar] [CrossRef]
- Kling, Å.; Andersson, C.; Myringer, Å.; Eskilsson, D.; Järås, S.G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers: Influence of flue gas composition. Appl. Catal. B Environ. 2007, 69, 240–251. [Google Scholar] [CrossRef]
- Khodayari, R.; Odenbrand, C.U.I. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications. Ind. Eng. Chem. Res. 1998, 37, 1196–1202. [Google Scholar] [CrossRef]
- Hu, W.; Gao, X.; Deng, Y.; Qu, R.; Zheng, C.; Zhu, X.; Cen, K. Deactivation mechanism of arsenic and resistance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2016, 293, 118–128. [Google Scholar] [CrossRef]
- Chen, J.P.; Yang, R.T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3. J. Catal. 1990, 125, 411–420. [Google Scholar] [CrossRef]
- Hiroyuki, K.; Katsumi, T.; Odenbrand, C.U.I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)-TiO2 commercial selective catalytic reduction catalyst. J. Mol. Catal. A Chem. 1999, 139, 189–198. [Google Scholar]
- Larsson, A.C.; Einvall, J.; Sanati, M. Deactivation of SCR catalysts by exposure to aerosol particles of potassium and zinc salts. Aerosol Sci. Technol. 2007, 41, 369–379. [Google Scholar] [CrossRef]
- Odenbrand, C.U.I. CaSO4 deactivated V2O5-WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reactions. Appl. Catal. B Environ. 2018, 234, 365–377. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Chen, J.; Meng, X.; Chen, Y.; Chi, H. Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: An in situ DRIFT study. Ind. Eng. Chem. Res. 2014, 53, 16229–16234. [Google Scholar] [CrossRef]
- Yu, Y.; Miao, J.; He, C.; Chen, J.; Li, C.; Douthwaite, M. The remarkable promotional effect of SO2 on Pb-poisoned V2O5-WO3/TiO2 catalysts: An in-depth experimental and theoretical study. Chem. Eng. J. 2018, 338, 191–201. [Google Scholar] [CrossRef]
- Kong, M.; Liu, Q.; Jiang, L.; Guo, F.; Ren, S.; Yao, L.; Yang, J. Property influence and poisoning mechanism of HgCl2 on V2O5-WO3/TiO2 SCR-DeNOx catalysts. Catal. Commun. 2016, 85, 34–38. [Google Scholar] [CrossRef]
- Klimczak, M.; Kern, P.; Heinzelmann, T.; Lucas, M.; Claus, P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part I: V2O5–WO3/TiO2 catalysts. Appl. Catal. B Environ. 2010, 95, 39–47. [Google Scholar] [CrossRef]
- Chen, J.P.; Buzanowski, M.A.; Yang, R.T.; Cichanowicz, J.E. Deactivation of the vanadia catalyst in the selective catalytic reduction process. J. Air Waste Manage. Assoc. 1990, 40, 1403–1409. [Google Scholar] [CrossRef]
- Tokarz, M.; Järårs, S.; Persson, B. Poisoning of De-NOx SCR catalyst by flue gases from a waste incineration plant. Stud. Surf. Sci. Catal. 1991, 68, 523–530. [Google Scholar]
- Chen, L.; Li, J.; Ge, M. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2011, 170, 531–537. [Google Scholar] [CrossRef]
- Song, L.; Zhang, R.; Zang, S.; He, H.; Su, Y.; Qiu, W.; Sun, X. Activity of selective catalytic reduction of NO over V2O5/TiO2 catalysts preferentially exposed anatase [18] and [10] facets. Catal. Lett. 2017, 147, 934–945. [Google Scholar] [CrossRef]
- Yu, W.; Wu, X.; Si, Z.; Weng, D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Appl. Surf. Sci. 2013, 283, 209–214. [Google Scholar] [CrossRef]
- Wang, S.; Guo, R.; Pan, W.; Li, M.; Sun, P.; Liu, S.; Liu, S.; Sun, X.; Liu, J. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3: TPD and DRIFT studies. Phys. Chem. Chem. Phys. 2017, 19, 5333–5342. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yao, X.; Yang, F.; Chen, L.; Fu, M.; Tang, C.; Dong, L. Improving the denitration performance and K-poisoning resistance of the V2O5-WO3/TiO2 catalyst by Ce4+ and Zr4+ co-doping. Chin. J. Catal. 2019, 40, 95–104. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q. Surface characterization studies on the interaction of V2O5–WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J. Solid State Chem. 2015, 221, 49–56. [Google Scholar] [CrossRef]
- Shi, Y.; Shu, H.; Zhang, Y.; Fan, H.; Zhang, Y.; Yang, L. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Process. Technol. 2016, 150, 141–147. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Li, X.; Chen, J.; Li, J.; Crittenden, J.; Hao, J. Investigation of the poisoning mechanism of lead on the CeO2-WO3 catalyst for the NH3-SCR reaction via in situ IR and Raman spectroscopy measurement. Environ. Sci. Technol. 2016, 50, 9576–9582. [Google Scholar] [CrossRef]
- Gan, L.; Chen, J.; Peng, Y.; Yu, J.; Tran, T.; Li, K.; Wang, D.; Xu, G.; Li, J. NOx removal over V2O5/WO3–TiO2 prepared by a grinding method: Influence of the precursor on vanadium dispersion. Ind. Eng. Chem. Res. 2017, 57, 150–157. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Peng, Y.; Li, X.; Zhang, Y.; Wang, D.; Chen, J.; Li, J. Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism. Chem. Eng. J. 2018, 347, 173–183. [Google Scholar] [CrossRef]
- Shao, G.; Wang, F.; Ren, T.; Liu, Y.; Yuan, Z. Hierarchical mesoporous phosphorus and nitrogen doped titania materials: Synthesis, characterization and visible-light photocatalytic activity. Appl. Catal. B Environ. 2009, 92, 61–67. [Google Scholar] [CrossRef]
- Hiroyuki, K.; Katsumi, T.; Odenbrand, C.U.I. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst. Catal. Lett. 1998, 53, 65–71. [Google Scholar]
- Dong, Y.; Qu, R.; Hao, S.; Zheng, C.; Cen, K. Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts. RSC Adv. 2016, 6, 55584–55592. [Google Scholar]
- Parvulescu, V.I.; Boghosian, S.; Parvulescu, V.; Jung, S.M.; Grange, P. Selective catalytic reduction of NO with NH3 over mesoporous V2O5–TiO2–SiO2 catalysts. J. Catal. 2003, 217, 172–185. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C 2009, 113, 21177–21184. [Google Scholar] [CrossRef]
- Jiang, B.Q.; Wu, Z.B.; Liu, Y.; Lee, S.C.; Ho, W.K. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. J. Phys. Chem. C 2010, 114, 4961–4965. [Google Scholar] [CrossRef]
- Nova, I.; Lietti, L.; Tronconi, E.; Forzatti, P. Dynamics of SCR reaction over a TiO2-supported vanadia–tungsta commercial catalyst. Catal. Today 2000, 60, 73–82. [Google Scholar] [CrossRef]
- Guo, R.; Wang, Q.; Pan, W.; Chen, Q.; Ding, H.; Yin, X.; Yang, N.; Lu, C.; Wang, S.; Yuan, Y. The poisoning effect of heavy metals doping on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. J. Mol. Catal. A Chem. 2015, 407, 1–7. [Google Scholar] [CrossRef]
- Chang, H.Z.; Shi, C.N.; Li, M.G.; Zhang, T.; Wang, C.Z.; Jiang, L.L.; Wang, X.Y. The effect of cations (NH4+, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides. Chin. J. Catal. 2018, 39, 710–717. [Google Scholar] [CrossRef]
- Yin, X.; Han, H.; Gunji, I.; Endou, A.; Ammal, S.S.C.; Kubo, M.; Miyamoto, A. NH3 adsorption on the brönsted and lewis acid sites of V2O5 (010): A periodic density functional study. J. Phys. Chem. B 1999, 103, 4701–4706. [Google Scholar] [CrossRef]
- Ye, J.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J. Hazard. Mater. 2014, 274, 270–278. [Google Scholar]
- Yang, Y.; Xu, W.; Wu, Y.; Wang, J.; Zhu, T. Inhibition effect of HBr over a commercial V2O5-WO3/TiO2 catalyst in a NH3-SCR process. Catal. Commun. 2017, 94, 82–85. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Q.; Sun, J.; Liu, Q.; Zhao, D.; Gao, W.; Liu, L. Effects of mercury oxidation on V2O5–WO3/TiO2 catalyst properties in NH3-SCR process. Catal. Commun. 2015, 59, 78–82. [Google Scholar] [CrossRef]
- Sheng, H.; Zhou, J.; Zhu, Y.; Luo, Z.; Ni, M.; Cen, K. Mercury oxidation over a Vanadia-based selective catalytic reduction catalyst. Energy Fuels 2009, 23, 253–259. [Google Scholar]
- Sudarsan, V.; Muthe, K.P.; Vyas, J.C.; Kulshreshtha, S.K. PO43- tetrahedra in SbPO4 and SbOPO4: A 31P NMR and XPS study. J. Alloys Compd. 2002, 336, 119–123. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Q.; Zang, S.; Li, J.; Wang, Q. Enhanced photoactivity of Sm, N, P-tridoped anatase-TiO2 nano-photocatalyst for 4-chlorophenol degradation under sunlight irradiation. J. Hazard. Mater. 2013, 261, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Li, Q.; Chen, S.; Liu, Z.; Liu, Q. KCl-induced deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3: Comparison of poisoning methods. Chem. Eng. J. 2016, 296, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Zhong, Q. Promotional effect of F-doped V2O5–WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Appl. Catal. A Gen. 2012, 435–436, 156–162. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.; Liu, Z.; Liu, Q. Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst. Appl. Catal. B Environ. 2015, 164, 475–482. [Google Scholar] [CrossRef]
- You, Y.; Shi, C.; Chang, H.; Guo, L.; Xu, L.; Li, J. The promoting effects of amorphous CePO4 species on phosphorus-doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx by NH3. Mol. Catal. 2018, 453, 47–54. [Google Scholar] [CrossRef]
- van Der Bij, H.E.; Weckhuysen, B.M. Phosphorus promotion and poisoning in zeolite-based materials: Synthesis, characterisation and catalysis. Chem. Soc. Rev. 2015, 44, 7406–7428. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ma, L.; Peng, Y.; Qu, Z.; Yan, N.; Chen, J.; Chang, H.; Li, J. Substitution of WO3 in V2O5/WO3–TiO2 by Fe2O3 for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2013, 3, 161–168. [Google Scholar] [CrossRef]
- Szaleniec, M.; Drzewiecka-Matuszek, A.; Witko, M.; Hejduk, P. Ammonium adsorption on Brønsted acidic centers on low-index vanadium pentoxide surfaces. J. Mol. Model. 2013, 19, 4487–4501. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, F.; Zhao, B.; Li, Y.; Wang, Y. The behaviors of V2O5–WO3/TiO2 loaded on ceramic surfaces for NH3–SCR. J. Ind. Eng. Chem. 2016, 33, 262–269. [Google Scholar] [CrossRef]
Sample | Loading Amount (wt %) | SBET (m2/g) | VP* (cm3/g) | DA (nm) | ||
---|---|---|---|---|---|---|
P | K | Pb | ||||
Fresh | - | - | - | 41.8 | 0.231 | 11.06 |
D-P | 0.95 | - | - | 34.3 | 0.207 | 12.09 |
D-Pb | - | - | 0.86 | 41.6 | 0.227 | 10.74 |
D-K | - | 0.48 | - | 41.5 | 0.234 | 12.75 |
D-P-K | 0.91 | 0.45 | - | 31.3 | 0.225 | 14.38 |
D-P-Pb | 0.88 | - | 0.87 | 34.9 | 0.215 | 12.34 |
Samples | Oα % | Oβ % | Oγ % |
---|---|---|---|
Fresh | 532.4 (18.1) | 531.3 (17.4) | 529.9 (64.5) |
D-P | 532.3 (19.3) | 531.2 (25.4) | 529.9 (55.3) |
D-Pb | 532.3 (22.1) | 531.0 (14.6) | 529.7 (63.3) |
D-K | 532.3 (22.9) | 531.0 (5.7) | 529.8 (71.4) |
D-P-Pb | 532.4 (22.8) | 531.4 (22.8) | 529.9 (54.4) |
D-P-K | 532.3 (26.2) | 531.3 (17.9) | 530.0 (55.9) |
Samples | Binding Energy (eV) | V5+/V4+ | |
---|---|---|---|
V4+ | V5+ | ||
Fresh | 516.1 | 517.1 | 1.21 |
D-P | 516.2 | 517.1 | 0.86 |
D-Pb | 516.1 | 517.1 | 0.51 |
D-K | 516.2 | 517.1 | 0.43 |
D-P-K | 516.2 | 517.1 | 0.71 |
D-P-Pb | 516.3 | 517.2 | 0.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.; Yi, X.; Su, Q.; Li, H.; Chen, J.; Wang, J. Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3. Catalysts 2020, 10, 345. https://doi.org/10.3390/catal10030345
Miao J, Yi X, Su Q, Li H, Chen J, Wang J. Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3. Catalysts. 2020; 10(3):345. https://doi.org/10.3390/catal10030345
Chicago/Turabian StyleMiao, Jifa, Xianfang Yi, Qingfa Su, Huirong Li, Jinsheng Chen, and Jinxiu Wang. 2020. "Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3" Catalysts 10, no. 3: 345. https://doi.org/10.3390/catal10030345
APA StyleMiao, J., Yi, X., Su, Q., Li, H., Chen, J., & Wang, J. (2020). Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3. Catalysts, 10(3), 345. https://doi.org/10.3390/catal10030345