UTLAM: Unsupervised Two-Level Adapting Model for Alzheimer’s Disease Classification
Abstract
1. Introduction
2. Literature Review
2.1. Learning-Based Unsupervised Domain Adaptation
2.2. Statistically Based Unsupervised Domain Adaptation
2.3. State-of-the-Art AD Classification Methods
2.4. Research Gap
3. Materials and Methods
3.1. Datasets
- Scanner heterogeneity: ADNI-1 (1.5 T) → ADNI-2 (3 T).
- Cross-institutional variation: ADNI-1 → AIBL and AIBL → ADNI-3.
- Longitudinal protocol differences: ADNI-1 → ADNI-3.
3.2. Methodology
3.3. Preprocessing and Feature Extraction
3.4. Feature Alignment Using the Proposed MIID Metric
3.5. Pseudo-Labeling and Adversarial Learning
| Algorithm 1. Pseudo-labeling and adversarial learning phase |
| Initialize: domain discriminator , pseudo-label set , Confidence threshold , domain adaptation. |
| 1: from 1 to max_epochs do //Pseudo-Labeling 2: for each do 3: Predict an initial pseudo-label: 4: Compute confidence score: 5: if > then 6: Add pseudo-labeled sample to ) 7: end if 8: end for //Adversarial Domain Adaptation 9: Compute discriminator loss : 10: Optimize to minimize 11: Compute adversarial loss : 12: Optimize to minimize //Evaluate the Model 13: Compute validation accuracy on target domain 14: if validation accuracy > best validation accuracy then 15: Best validation accuracy ← current accuracy 16: end if 17: end for |
4. Results
4.1. Implementation Setup
4.2. Grad-CAM Visualization
4.3. Evaluation Metrics
4.4. Per-Class Performance Evaluation
4.5. Comparisons of the 3-T → 1.5-T Classification Accuracy
4.6. Comprehensive Analysis and Classification Comparisons
5. Discussion
5.1. Compared Approaches Discussion
5.2. t-SNE Visualization of Feature Distribution
5.3. Complexity DISCUSSION
5.4. Ablation Study
5.5. Pseudo-Label Confidence Evolution During Training
5.6. Comparisons with the State-of-the-Art AD Classification Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| UTLAM | Unsupervised two-level adapting model |
| MIID | Mean inter and intra class discrepancy |
| MRI | Magnetic resonance imaging |
| ADNI | Alzheimer’s disease neuroimaging initiative |
| AIBL | Australian imaging, biomarker and lifestyle |
| AD | Alzheimer’s disease |
| MCI | Mild cognitive impairment |
| CN | Cognitive normal |
| UDA | Unsupervised domain adaptation |
| MMD | Maximum mean discrepancy |
| GPU | Graphics processing unit |
| CPU | Central processing unit |
| FFT | Fast Fourier transform |
| Grad-CAM | Gradient-weighted class activation mapping |
References
- Kumari, S.; Singh, P. Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives. Comput. Biol. Med. 2023, 167, 107912. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng. 2021, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gong, H.; Wan, X.; Li, H. ASC: Appearance and Structure Consistency for Unsupervised Domain Adaptation in Fetal Brain MRI Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; Springer: Cham, Switzerland, 2023; pp. 325–335. [Google Scholar] [CrossRef]
- Munk, A.; Nielsen, M. MDD-UNet: Domain Adaptation for Medical Image Segmentation with Theoretical Guarantees, a Proof of Concept. In Proceedings of the Northern Lights Deep Learning Conference, Tromsø, Norway, 9–11 January 2024; PMLR: New York, NY, USA, 2024; pp. 174–180. [Google Scholar]
- Sarafraz, G.; Behnamnia, A.; Hosseinzadeh, M.; Balapour, A.; Meghrazi, A.; Rabiee, H.R. Domain adaptation and generalization on functional medical images: A systematic survey. arXiv 2022, arXiv:2212.03176. [Google Scholar] [CrossRef]
- Feng, W.; Ju, L.; Wang, L.; Song, K.; Zhao, X.; Ge, Z. Unsupervised domain adaptation for medical image segmentation by selective entropy constraints and adaptive semantic alignment. Proc. AAAI Conf. Artif. Intell. 2023, 37, 623–631. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, J.; Chen, Y.; Shao, S.; Zhu, L.; Wu, Z.; Zhu, H. FVP: Fourier visual prompting for source-free unsupervised domain adaptation of medical image segmentation. IEEE Trans. Med. Imaging 2023, 42, 3738–3751. [Google Scholar] [CrossRef]
- Shin, H.; Kim, H.; Kim, S.; Jun, Y.; Eo, T.; Hwang, D. SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; IEEE: New York, NY, USA, 2023; pp. 7412–7421. [Google Scholar] [CrossRef]
- En, Q.; Guo, Y. Unsupervised Domain Adaptation for Medical Image Segmentation with Dynamic Prototype-Based Contrastive Learning. In Proceedings of the Conference Health, Inference, Learning; PMLR: New York, NY, USA, 2024; pp. 312–325. [Google Scholar]
- Guan, H.; Liu, M. DomainATM: Domain adaptation toolbox for medical data analysis. NeuroImage 2023, 268, 119863. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Chen, Y.; Tang, Y.; Wu, Z.; Qi, Y.; Tsui, B.M. Low-dose CT image synthesis for domain adaptation imaging using a generative adversarial network with noise encoding transfer learning. IEEE Trans. Med. Imaging 2023, 42, 2616–2630. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Xu, X.; Wang, Y.; Fu, H.; Li, S.; Tan, C.H. Contrastive domain adaptation with consistency match for automated pneumonia diagnosis. Med. Image Anal. 2023, 83, 102664. [Google Scholar] [CrossRef]
- Li, S.; Wu, H.; Tang, C.; Chen, D.; Chen, Y.; Mei, L.; Lv, J. Self-supervised domain adaptation with significance-oriented masking for pelvic organ prolapse detection. Pattern Recognit. Lett. 2024, 185, 94–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Wu, Q.; Zhao, P.; Niu, S.; Huang, J.; Tan, M. Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Trans. Image Process. 2020, 29, 7834–7844. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, D.; Yu, Z.; Liu, F.; Cai, J.; Yu, L.; Roth, H. Uncertainty-aware multiview cotraining for semisupervised medical image segmentation and domain adaptation. Med. Image Anal. 2020, 65, 101766. [Google Scholar] [CrossRef]
- Zam, A.; Bohlooli, A.; Jamshidi, K. Unsupervised deep domain adaptation algorithm for video-based human activity recognition via recurrent neural networks. Eng. Appl. Artif. Intell. 2024, 136, 108922. [Google Scholar] [CrossRef]
- Zhu, X. Cross-modal domain adaptation in brain disease diagnosis: Maximum mean discrepancy-based convolutional neural networks. arXiv 2024, arXiv:2405.03235. [Google Scholar] [CrossRef]
- Yang, C.; Guo, X.; Chen, Z.; Yuan, Y. Source free domain adaptation for medical image segmentation with Fourier style mining. Med. Image Anal. 2022, 79, 102457. [Google Scholar] [CrossRef]
- Song, R.; Cao, P.; Wen, G.; Zhao, P.; Huang, Z.; Zhang, X.; Zaiane, O.R. BrainDAS: Structure-aware domain adaptation network for multisite brain network analysis. Med. Image Anal. 2024, 96, 103211. [Google Scholar] [CrossRef] [PubMed]
- Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H.; Ayed, I.B. Source-free domain adaptation for image segmentation. Med. Image Anal. 2022, 82, 102617. [Google Scholar] [CrossRef]
- Liu, X.; Yoo, C.; Xing, F.; Oh, H.; El Fakhri, G.; Kang, J.W.; Woo, J. Deep unsupervised domain adaptation: A review of recent advances and perspectives. APSIPA Trans. Signal Inf. Process. 2022, 11, e14. [Google Scholar] [CrossRef]
- He, Y.; Carass, A.; Zuo, L.; Dewey, B.E.; Prince, J.L. Autoencoder-based self-supervised test-time adaptation for medical image analysis. Med. Image Anal. 2021, 72, 102136. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hu, Y.; He, S.; Xu, T.; Yuan, J.; Gu, X. Applying conditional generative adversarial networks for imaging diagnosis. arXiv 2024, arXiv:2408.02074. [Google Scholar] [CrossRef]
- Wu, L.; Lu, M.; Fang, L. Deep covariance alignment for domain-adaptive remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Shin, Y.; Oh, K.; Suk, H.I. DyMix: Dynamic frequency mixup scheduler-based unsupervised domain adaptation for enhancing Alzheimer’s disease identification. arXiv 2024, arXiv:2410.12827. [Google Scholar] [CrossRef]
- Mueller, S.G.; Weiner, M.W.; Thal, L.J.; Petersen, R.C.; Jack, C.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L. The Alzheimer’s Disease Neuroimaging Initiative. Neuroimaging Clin. N. Am. 2005, 15, 869–877. [Google Scholar] [CrossRef]
- Rowe, C.C.; Ellis, K.A.; Rimajova, M.; Bourgeat, P.; Pike, K.E.; Jones, G.; Fripp, J.; Tochon-Danguy, H.; Morandeau, L.; O’Keefe, G.; et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 2010, 31, 1275–1283. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Prajapati, R.; Kwon, G.R. A binary classifier using a fully connected neural network for Alzheimer’s disease classification. J. Multimed. Inf. Syst. 2022, 9, 21–32. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, Q.; Long, Y. Prototype-guided multiscale domain adaptation for Alzheimer’s disease detection. Comput. Biol. Med. 2023, 154, 106570. [Google Scholar] [CrossRef]
- Oh, K.; Chung, Y.C.; Kim, K.W.; Kim, W.S.; Oh, I.S. Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Sci. Rep. 2019, 9, 18150. [Google Scholar] [CrossRef]
- Guan, H.; Liu, Y.; Yang, E.; Yap, P.T.; Shen, D.; Liu, M. Multisite MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med. Image Anal. 2021, 71, 102076. [Google Scholar] [CrossRef]
- Shin, Y.; Maeng, J.; Oh, K.; Suk, H.I. Frequency Mixup Manipulation-Based Unsupervised Domain Adaptation for Brain Disease Identification. In Proceedings of the Asian Conference Pattern Recognition, Kitakyushu, Japan, 5–8 November; Springer: Cham, Switzerland, 2023; pp. 123–135. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2096–2130. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp. 7167–7176. [Google Scholar] [CrossRef]
- Chen, C.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.A. Synergistic image and feature adaptation: Toward cross-modality domain adaptation for medical image segmentation. Proc. AAAI Conf. Artif. Intell. 2019, 33, 865–872. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Armanious, K.; Jiang, C.; Fischer, M.; Küstner, T.; Hepp, T.; Nikolaou, K.; Yang, B. MedGAN: Medical image translation using GANs. Comput. Med. Imaging Graph. 2020, 79, 101684. [Google Scholar] [CrossRef]
- Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2021, 438, 219–234. [Google Scholar] [CrossRef]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Sun, B.; Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 443–450. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R., Jr.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of artificial intelligence in neurodegenerative disease diagnosis: A systematic review. Front. Neurol. 2019, 10, 1003. [Google Scholar] [CrossRef]
- Muksimova, S.; Umirzakova, S.; Iskhakova, N.; Khaitov, A.; Cho, Y.I. Advanced convolutional neural network with attention mechanism for Alzheimer’s disease classification using MRI. Comput. Biol. Med. 2025, 190, 110095. [Google Scholar] [CrossRef] [PubMed]
- Gryshchuk, V.; Singh, D.; Teipel, S.; Dyrba, M.; ADNI, AIBL, FTLDNI Study Groups. Contrastive self-supervised learning for neurodegenerative disorder classification. Front. Neuroinform. 2025, 19, 1527582. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.; Wang, T.; Anwaar, W.; Elazab, A. Multi-scale multimodal deep learning framework for Alzheimer’s disease diagnosis. Comput. Biol. Med. 2025, 184, 109438. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. Adv. Neural Inf. Process. Syst. 2018, 31, 1640–1650. [Google Scholar]






| Transfer | Task | TP | FP | TN | FN | Precision | Recall | F1-Score |
|---|---|---|---|---|---|---|---|---|
| ADNI1 → AIBL | AD vs. CN | 43 | 2 | 48 | 7 | 0.96 | 0.86 | 0.91 |
| AD vs. MCI | 34 | 7 | 43 | 16 | 0.83 | 0.68 | 0.75 | |
| MCI vs. CN | 40 | 3 | 47 | 10 | 0.93 | 0.81 | 0.87 | |
| ADNI1 → ADNI2 | AD vs. CN | 42 | 2 | 48 | 8 | 0.98 | 0.83 | 0.90 |
| AD vs. MCI | 37 | 15 | 35 | 13 | 0.71 | 0.74 | 0.72 | |
| MCI vs. CN | 34 | 22 | 28 | 16 | 0.61 | 0.69 | 0.65 | |
| AIBL → ADNI3 | AD vs. CN | 28 | 1 | 49 | 22 | 0.97 | 0.56 | 0.71 |
| AD vs. MCI | 41 | 7 | 43 | 9 | 0.85 | 0.82 | 0.83 | |
| MCI vs. CN | 35 | 3 | 47 | 15 | 0.92 | 0.70 | 0.80 |
| Model | Datasets—Samples | AD vs. CN | MCI vs. CN | MCI vs. AD |
|---|---|---|---|---|
| ICAE [31] | ADNI: 198AD, 267MCI, 230CN | 86.60% | 63.04% | 60.97% |
| Binary [29] | ADNI: 207CN,154AD, 346MCI | 88.30% | 79.04% | 75.20% |
| PMDA [30] | ADNI: 152CN, 128AD, 160MCI | 92.11% | 82.37% | 76.01% |
| DyMix [25] | ADNI: 165CN, 141AD, 210MCI | 91.4% | 83.10% | 78.61% |
| UTLAM (Ours) | ADNI: 160CN, 120AD, 180MCI | 93.6% | 85.23% | 80.13% |
| Target | Method | CN vs. AD | AD vs. MCI | MCI vs. CN | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ACC | SEN | SPE | AUC | ACC | SEN | SPE | AUC | ACC | SEN | SPE | AUC | ||
| ADNI1 AIBL | [32] | 88.80 | 85.92 | 89.26 | 92.73 | 71.79 | 60.05 | 79.17 | 69.58 | 72.29 | 64.17 | 84.28 | 69.23 |
| PMDA [30] | 86.21 | 60.87 | 92.47 | 76.67 | 71.54 | 60.10 | 75.00 | 67.50 | 77.87 | 70.83 | 87.35 | 74.09 | |
| FFM [33] | 89.65 | 78.26 | 92.47 | 85.37 | 76.92 | 66.67 | 83.33 | 75.00 | 80.10 | 72.50 | 84.08 | 78.84 | |
| DyMix [25] | 91.38 | 78.27 | 94.62 | 86.44 | 78.97 | 66.67 | 86.67 | 76.67 | 81.57 | 79.17 | 92.04 | 77.69 | |
| UTLAM | 92.02 | 86.12 | 95.30 | 93.05 | 77.72 | 67.59 | 86.87 | 78.95 | 83.04 | 80.88 | 94.15 | 83.90 | |
| ADNI1 ADNI2 | [32] | 89.92 | 87.65 | 91.70 | 94.01 | 75.55 | 46.29 | 89.44 | 77.67 | 56.25 | 60.32 | 51.02 | 55.67 |
| PMDA [30] | 90.28 | 81.25 | 97.50 | 89.37 | 58.27 | 43.33 | 51.08 | 52.21 | 55.36 | 55.24 | 47.96 | 54.57 | |
| FFM [33] | 90.28 | 81.25 | 97.50 | 89.37 | 59.82 | 66.67 | 51.02 | 58.84 | 59.82 | 66.67 | 51.02 | 58.84 | |
| DyMix [25] | 91.67 | 81.25 | 100.0 | 90.62 | 71.15 | 73.33 | 70.27 | 71.80 | 61.78 | 67.14 | 54.90 | 61.02 | |
| UTLAM | 92.60 | 83.08 | 99.05 | 91.87 | 71.45 | 73.61 | 70.41 | 72.08 | 62.50 | 68.76 | 56.09 | 62.70 | |
| AIBL ADNI3 | [32] | 81.25 | 56.92 | 82.09 | 79.51 | 80.77 | 45.45 | 90.24 | 67.85 | 69.52 | 44.71 | 95.77 | 55.24 |
| PMDA [30] | 83.75 | 30.77 | 85.07 | 77.92 | 80.77 | 27.27 | 92.68 | 59.98 | 66.67 | 40.00 | 98.59 | 49.30 | |
| FFM [33] | 90.00 | 53.85 | 97.01 | 75.43 | 81.76 | 72.73 | 82.93 | 77.83 | 65.71 | 59.41 | 93.10 | 56.25 | |
| DyMix [25] | 91.25 | 53.85 | 98.51 | 80.18 | 84.62 | 81.82 | 85.36 | 83.59 | 70.66 | 68.82 | 93.37 | 61.59 | |
| UTLAM | 93.22 | 55.70 | 99.02 | 82.13 | 84.80 | 81.67 | 85.71 | 84.01 | 72.19 | 70.06 | 94.98 | 72.83 | |
| Ablation Settings | ADNI1 → AIBL (AD vs. CN) | AIBL → ADNI3 (AD vs. CN) | ||||||
|---|---|---|---|---|---|---|---|---|
| ACC | SEN | SPEC | AUC | ACC | SEN | SPEC | AUC | |
| No MIID | 62.30% | 59.10% | 64.12% | 61.90% | 58.90% | 41.81% | 77.23% | 60.30% |
| No adversarial | 75.80% | 68.55% | 73.61% | 69.45% | 67.23% | 46.43% | 89.10% | 69.11% |
| No pseudo-labeling | 80.12% | 75.70% | 84.50% | 80.15% | 71.41% | 50.10% | 95.23% | 75.05% |
| Full framework | 92.02% | 86.12% | 95.30% | 93.05% | 93.22% | 55.70% | 99.02% | 82.13% |
| Method | ADNI | AIBL | ||||
|---|---|---|---|---|---|---|
| Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | |
| MSB [44] | 95.00% | 94.80% | 96.10% | - | - | - |
| Contrastive [45] | 93.40% | 85.50% | 100% | 80.00% | 66.03% | 94.01% |
| MMSDL [46] | 95.25% | 97.35% | 92.71% | - | - | - |
| UTLAM | 97.30% | 98.75% | 99.80% | 85.26% | 70.10% | 95.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farnoosh, R.; Abdulateef, J. UTLAM: Unsupervised Two-Level Adapting Model for Alzheimer’s Disease Classification. Computers 2025, 14, 526. https://doi.org/10.3390/computers14120526
Farnoosh R, Abdulateef J. UTLAM: Unsupervised Two-Level Adapting Model for Alzheimer’s Disease Classification. Computers. 2025; 14(12):526. https://doi.org/10.3390/computers14120526
Chicago/Turabian StyleFarnoosh, Rahman, and Juman Abdulateef. 2025. "UTLAM: Unsupervised Two-Level Adapting Model for Alzheimer’s Disease Classification" Computers 14, no. 12: 526. https://doi.org/10.3390/computers14120526
APA StyleFarnoosh, R., & Abdulateef, J. (2025). UTLAM: Unsupervised Two-Level Adapting Model for Alzheimer’s Disease Classification. Computers, 14(12), 526. https://doi.org/10.3390/computers14120526

