The Role of MRI Radiomics Using T2-Weighted Images and the Apparent Diffusion Coefficient Map for Discriminating Between Warthin’s Tumors and Malignant Parotid Gland Tumors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Image Acquisition
- T2-WI PROPELLER: echo time = 80 ms; repetition time = 5500 ms; slice thickness = 3 mm; slice gap = 3.6 mm; flip angle = 160°, matrix (mm) 384 × 384.
- ADC map automatically generated by the MRI vendor from the DWI: b-values = 0 and 1000 s/mm2; echo time = 100 ms; repetition time = 6800 ms; slice thickness = 3 mm; slice gap = 3.6 mm; flip angle = 160°, matrix (mm) 384 × 384.
2.3. Tumor Segmentation
2.4. Image Preprocessing
2.5. Feature Extraction
2.6. Feature Selection and Statistical Analysis
3. Results
3.1. Feature Selection Results
3.2. Diagnostic Accuracy of the Final Selected Radiomic Parameters
3.3. The Diagnostic Accuracy of the Radiomic Score in the Training and Validation Datasets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PGT | parotid gland tumors |
WT | Warthin’s tumor |
MT | Malignant tumor |
T2-WI | T2-weighted image |
ADC | Apparent Diffusion Coefficient |
AUC | Area Under the Curve |
References
- Stenner, M.; Klussmann, J.P. Current update on established and novel biomarkers in salivary gland carcinoma pathology and the molecular pathways involved. Eur. Arch. Otorhinolaryngol. 2009, 266, 333–341. [Google Scholar] [CrossRef] [PubMed]
- To, V.S.H.; Chan, J.Y.W.; Tsang, R.K.Y.; Wei, W.I. Review of salivary gland neoplasms. ISRN Otolaryngol. 2012, 2012, 872982. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. (Eds.) WHO Classification of Head and Neck Tumours, 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Bussu, F.; Parrilla, C.; Rizzo, D.; Almadori, G.; Paludetti, G.; Galli, J. Clinical approach and treatment of benign and malignant parotid masses, personal experience. Acta Otorhinolaryngol. Ital. 2011, 31, 135–143. [Google Scholar]
- Tartaglione, T.; Botto, A.; Sciandra, M.; Gaudino, S.; Danieli, L.; Parrilla, C.; Paludetti, G.; Colosimo, C. Differential diagnosis of parotid gland tumours: Which magnetic resonance findings should be taken in account? Acta Otorhinolaryngol. Ital. 2015, 35, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Cracchiolo, J.R.; Shaha, A.R. Parotidectomy for parotid cancer. Otolaryngol. Clin. N. Am. 2016, 49, 415–424. [Google Scholar] [CrossRef]
- Zbären, P.; Triantafyllou, A.; Devaney, K.O.; Poorten, V.V.; Hellquist, H.; Rinaldo, A.; Ferlito, A. Preoperative diagnostic of parotid gland neoplasms: Fine-needle aspiration cytology or core needle biopsy? Eur. Arch. Otorhinolaryngol. 2018, 275, 2609–2613. [Google Scholar] [CrossRef]
- Jering, M.; Mayer, M.; Thölken, R.; Schiele, S.; Maccagno, A.; Zenk, J. Diagnostic Accuracy and Post-Procedural Complications Associated with Ultrasound-Guided Core Needle Biopsy in the Preoperative Evaluation of Parotid Tumors. Head Neck Pathol. 2022, 16, 651–656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gökçe, E. Multiparametric Magnetic Resonance Imaging for the Diagnosis and Differential Diagnosis of Parotid Gland Tumors. J. Magn. Reson. Imaging 2020, 52, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Maraghelli, D.; Pietragalla, M.; Cordopatri, C.; Nardi, C.; Peired, A.J.; Maggiore, G.; Colagrande, S. Magnetic resonance imaging of salivary gland tumours: Key findings for imaging characterisation. Eur. J. Radiol. 2021, 139, 109716. [Google Scholar] [CrossRef]
- Pietragalla, M.; Nardi, C.; Bonasera, L.; Mungai, F.; Taverna, C.; Novelli, L.; De Renzis, A.G.D.; Calistri, L.; Tomei, M.; Occhipinti, M.; et al. The role of diffusion-weighted and dynamic contrast enhancement perfusion-weighted imaging in the evaluation of salivary glands neoplasms. Radiol. Med. 2020, 125, 851–863. [Google Scholar] [CrossRef]
- Coudert, H.; Mirafzal, S.; Dissard, A.; Boyer, L.; Montoriol, P.F. Multiparametric magnetic resonance imaging of parotid tumors: A systematic review. Diagn. Interv. Imaging 2021, 102, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Motoori, K.; Hanazawa, T.; Nagai, Y.; Yamamoto, S.; Ueda, T.; Funatsu, H.; Ito, H. Warthin tumor of the parotid gland: Diagnostic value of MR imaging with histopathologic correlation. Am. J. Neuroradiol. 2004, 25, 1256–1262. [Google Scholar] [PubMed]
- Nguyen, V.X.; Nguyen, B.D.; Ram, P.C. Bilateral and multifocal Warthin's tumors of parotid glands: PET/CT imaging. Clin. Nucl. Med. 2012, 37, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Aringhieri, G.; Fanni, S.C.; Febi, M.; Colligiani, L.; Cioni, D.; Neri, E. The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics 2022, 12, 3002. [Google Scholar] [CrossRef]
- Zhang, R.; Ai, Q.Y.H.; Wong, L.M.; Green, C.; Qamar, S.; So, T.Y.; Vlantis, A.C.; King, A.D. Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Cancers 2022, 14, 5804. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Guo, J.; Feng, J.; Huang, Y.; Xu, H.; Zhou, Q. Value of T2-weighted-based radiomics model in distinguishing Warthin tumor from pleomorphic adenoma of the parotid. Eur. Radiol. 2023, 33, 4453–4463. [Google Scholar] [CrossRef]
- Gabelloni, M.; Faggioni, L.; Attanasio, S.; Vani, V.; Goddi, A.; Colantonio, S.; Germanese, D.; Caudai, C.; Bruschini, L.; Scarano, M.; et al. Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot Study. Diagnostics 2020, 10, 900. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, Z.; Zhu, J.; Liu, L.; Li, Y.; Huang, H.; Zhang, Y.; Cheng, J. Apparent Diffusion Coefficient Map-Based Radiomics Features for Differential Diagnosis of Pleomorphic Adenomas and Warthin Tumors from Malignant Tumors. Front. Oncol. 2022, 12, 830496. [Google Scholar] [CrossRef]
- Kocak, B.; Baessler, B.; Bakas, S.; Cuocolo, R.; Fedorov, A.; Maier-Hein, L.; Mercaldo, N.; Müller, H.; Orlhac, F.; Pinto Dos Santos, D.; et al. CheckList for EvaluAtion of Radiomics research (CLEAR): A step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 2023, 14, 75. [Google Scholar] [CrossRef]
- Shur, J.D.; Doran, S.J.; Kumar, S.; Ap Dafydd, D.; Downey, K.; O’Connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.M.; Orton, M.R. Radiomics in Oncology: A Practical Guide. Radiographics 2021, 41, 1717–1732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, C.; Zhang, Y.; Wen, B.; Zhu, J.; Cheng, J. Apparent diffusion coefficient (ADC) histogram analysis: Differentiation of benign from malignant parotid gland tumors using readout-segmented diffusion-weighted imaging. Dentomaxillofacial Radiol. 2019, 48, 20190100. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Yokota, H.; Horikoshi, T.; Starkey, J.; Hattori, S.; Hashiba, J.; Uno, T. Diagnostic performance and inter-operator variability of apparent diffusion coefficient analysis for differentiating pleomorphic adenoma and carcinoma ex pleomorphic adenoma: Comparing one-point measurement and whole-tumor measurement including radiomics approach. Jpn. J. Radiol. 2020, 38, 207–214. [Google Scholar]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Collewet, G.; Strzelecki, M.; Mariette, F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 2004, 22, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Depeursinge, A.; Foncubierta-Rodriguez, A.; Van De Ville, D.; Müller, H. Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities. Med. Image Anal. 2014, 18, 176–196. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, B.; Miles, K.A. Quantifying tumour heterogeneity with CT. Cancer Imaging 2013, 13, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.M.; Li, J.; Liu, S.; Cui, J.F.; Zhan, J.F.; Pang, J.; Zhou, R.Z.; Li, X.L.; Dong, C. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur. Radiol. 2021, 31, 4042–4052. [Google Scholar] [CrossRef]
- He, Z.; Mao, Y.; Lu, S.; Tan, L.; Xiao, J.; Tan, P.; Zhang, H.; Li, G.; Yan, H.; Tan, J.; et al. Machine learning-based radiomics for histological classification of parotid tumors using morphological MRI: A comparative study. Eur. Radiol. 2022, 32, 8099–8110. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yuan, Y.; Shi, Y.; Tao, X. Tumor heterogeneity in oral and oropharyngeal squamous cell carcinoma assessed by texture analysis of CT and conventional MRI: A potential marker of overall survival. Acta Radiol. 2019, 60, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, H.; Tsujimoto, T.; Kakimoto, N.; Majima, M.; Iwamoto, Y.; Senda, Y.; Murakami, S. Effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for reducing motion artifacts caused by mandibular movements on fat-suppressed T2-weighted magnetic resonance (MR) images. Magn. Reson. Imaging 2018, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fruehwald-Pallamar, J.; Czerny, C.; Holzer-Fruehwald, L.; Nemec, S.F.; Mueller-Mang, C.; Weber, M.; Mayerhoefer, M.E. Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed. 2013, 26, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Sarioglu, O.; Sarioglu, F.C.; Akdogan, A.I.; Kucuk, U.; Arslan, I.B.; Cukurova, I.; Pekcevik, Y. MRI-based texture analysis to differentiate the most common parotid tumours. Clin. Radiol. 2020, 75, 877.e15–877.e23. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.; Hawk, J.; Srinivasan, A. A Review of Salivary Gland Malignancies: Common Histologic Types, Anatomic Considerations,and Imaging Strategies. Neuroimaging Clin. 2018, 28, 171–182. [Google Scholar] [CrossRef]
- Cattell, R.; Chen, S.; Huang, C. Robustness of radiomic features in magnetic resonance imaging: Review and a phantom study. Vis. Comput. Ind. Biomed. Art 2019, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Muntean, D.D.; Dudea, S.M.; Băciuț, M.; Dinu, C.; Stoia, S.; Solomon, C.; Csaba, C.; Rusu, G.M.; Lenghel, L.M. The Role of an MRI-Based Radiomic Signature in Predicting Malignancy of Parotid Gland Tumors. Cancers 2023, 15, 3319. [Google Scholar] [CrossRef]
Tumor Histology | Number (%) |
---|---|
Warthin’s tumors | 66 (62.26) |
Malignant parotid gland tumors | 40 (37.74) |
Squamous cell carcinomas | 8 (7.55) |
Metastatic tumors | 8 (7.55) |
Salivary duct carcinomas | 6 (5.66) |
Adenoid cystic carcinomas | 6 (5.66) |
Acinic cell carcinomas | 4 (3.77) |
Mucoepidermoid carcinomas | 3 (2.83) |
Basal cell carcinomas | 2 (1.89) |
Undifferentiated sarcomas | 1 (0.94) |
Histiocytic sarcomas | 1 (0.94) |
Carcinoma ex pleomorphic adenomas | 1 (0.94) |
Images Type | Radiomic Feature Category | Number |
---|---|---|
Original | Shape | 14 |
First Order | 18 | |
Second Order | ||
GLCM (gray-level co-occurrence matrix) | 24 | |
GLRLM (gray-level run-length matrix) | 16 | |
GLSZM (gray-level size zone matrix) | 16 | |
GLDM (gray-level dependence matrix) | 14 | |
NGTDM (neighboring gray-tone difference matrix) | 5 | |
Filtered | Wavelet | 744 |
Laplacian of Gaussian | ||
sigma 3.0 mm: 93 | 93 | |
sigma 5.0 mm: 93 | 93 |
MRI Sequence | Radiomic Feature Name | Radiomic Group | Associated Filter | p-Value * |
---|---|---|---|---|
T2-WI | JointEnergy | GLCM | LoG filter (3 mm) | <0.001 |
T2-WI | SmallAreaEmphasis | GLSZM | original | 0.001 |
T2-WI | HighGrayLevelRunEmphasis | GLRLM | wavelet-LLH | 0.013 |
T2-WI | JointAverage | GLCM | wavelet-LLL | 0.002 |
T2-WI | GrayLevelNonUniformityNormalized | GLSZM | wavelet-HLH | 0.022 |
T2-WI | Strength | NGTDM | LoG filter (5 mm) | 0.012 |
T2-WI | Correlation | GLCM | wavelet-LHL | <0.001 |
T2-WI | GrayLevelVariance | GLSZM | LoG filter (3 mm) | 0.015 |
T2-WI | SizeZoneNonUniformityNormalized | GLSZM | LoG filter (5 mm) | 0.029 |
T2-WI | InterquartileRange | first order | wavelet-LLH | <0.001 |
T2-WI | Imc2 | GLCM | LoG filter (3 mm) | 0.019 |
T2-WI | Correlation | NGTDM | wavelet-LLH | 0.016 |
T2-WI | RunEntropy | first order | wavelet-LLH | 0.022 |
T2-WI | JointAverage | GLCM | original | 0.005 |
T2-WI | Busyness | NGTDM | LoG filter (3 mm) | <0.001 |
ADC map | Contrast | GLCM | LoG filter (5 mm) | 0.015 |
ADC map | RobustMeanAbsoluteDeviation | First order | LoG filter (3 mm) | 0.029 |
ADC map | InverseVariance | GLCM | wavelet-LHH | 0.011 |
ADC map | RootMeanSquared | first order | wavelet-HLL | <0.001 |
ADC map | SmallDependenceEmphasis | GLDM | LoG filter (5 mm) | 0.038 |
MRI Sequence | Radiomic Feature Name | Radiomic Group | Associated Filter | Coefficient |
---|---|---|---|---|
T2-WI | GrayLevelVariance | Texture GLSZM | LoG filter (3 mm) | −0.765 |
ADC map | RootMeanSquared | First order | Wavelet-HLL | 0.24 |
T2-WI | HighGrayLevelRunEmphasis | Texture GLRLM | Wavelet-LLH | 1.654 |
Intercept | −0.895 |
Radiomic Feature | Cut-Off | Se (95% CI) | Sp (95% CI) | +LR (95% CI) | −LR (95% CI) | AUC (95% CI) | p |
---|---|---|---|---|---|---|---|
GrayLevelVariance | ≤−0.488 | 67.74 (48.6–83.3) | 81.25 (67.4–91.1) | 3.61 (1.91–6.83) | 0.40 (0.23–0.67) | 0.767 (0.639–0.840 | <0.001 |
RootMeanSquared | ≤−0.142 | 77.42 (58.9–90.4) | 64.58 (49.5–77.8) | 2.19 (1.43–3.35) | 0.35 (0.18–0.69) | 0.738 (0.627–0.830) | <0.001 |
HighGrayLevelRunEmphasis | ≥0.483 | 77.42 (58.9–90.4) | 62.5 (47.5–76) | 2.06 (1.37–3.12) | 0.36 (0.18–0.72) | 0.703 (0.590–0.801) | 0.002 |
Radiomic Score | Cut-Off | Se (95% CI) | Sp (95% CI) | +LR (95% CI) | −LR (95% CI) | AUC (95% CI) | p |
---|---|---|---|---|---|---|---|
Training set | <−0.477 | 74.19 55.4–88.1 | 81.25 67.4–91.1 | 3.96 2.12–7.39 | 0.32 0.17–0.59 | 0.785 0.677–0.868 | <0.001 |
Testing set | <−0.543 | 70 34.8–82.35 | 82.35 56.6–96.2 | 3.97 1.31–11.97 | 0.36 0.14–0.96 | 0.741 0.538–0.889 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donci, D.D.; Solomon, C.; Băciuț, M.; Dinu, C.; Stoia, S.; Rusu, G.M.; Csutak, C.; Lenghel, L.M.; Ciurea, A. The Role of MRI Radiomics Using T2-Weighted Images and the Apparent Diffusion Coefficient Map for Discriminating Between Warthin’s Tumors and Malignant Parotid Gland Tumors. Cancers 2025, 17, 620. https://doi.org/10.3390/cancers17040620
Donci DD, Solomon C, Băciuț M, Dinu C, Stoia S, Rusu GM, Csutak C, Lenghel LM, Ciurea A. The Role of MRI Radiomics Using T2-Weighted Images and the Apparent Diffusion Coefficient Map for Discriminating Between Warthin’s Tumors and Malignant Parotid Gland Tumors. Cancers. 2025; 17(4):620. https://doi.org/10.3390/cancers17040620
Chicago/Turabian StyleDonci, Delia Doris, Carolina Solomon, Mihaela Băciuț, Cristian Dinu, Sebastian Stoia, Georgeta Mihaela Rusu, Csaba Csutak, Lavinia Manuela Lenghel, and Anca Ciurea. 2025. "The Role of MRI Radiomics Using T2-Weighted Images and the Apparent Diffusion Coefficient Map for Discriminating Between Warthin’s Tumors and Malignant Parotid Gland Tumors" Cancers 17, no. 4: 620. https://doi.org/10.3390/cancers17040620
APA StyleDonci, D. D., Solomon, C., Băciuț, M., Dinu, C., Stoia, S., Rusu, G. M., Csutak, C., Lenghel, L. M., & Ciurea, A. (2025). The Role of MRI Radiomics Using T2-Weighted Images and the Apparent Diffusion Coefficient Map for Discriminating Between Warthin’s Tumors and Malignant Parotid Gland Tumors. Cancers, 17(4), 620. https://doi.org/10.3390/cancers17040620