Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation of the Mathematical Model
| Quick Guide 1: Original Model Equations and Assumptions |
| Here, we summarize the model from Nikolopoulou et al. [27], which we will adapt for this study. The model simplifies the tumor microenvironment to consist of two primary interacting cell populations: tumor cells, with volume (), and effector T-cells, with volume (). The model also tracks the concentration of the two therapeutic agents: the anti-PD-L1 antibody Avelumab, , and the immunocytokine NHS-muIL12, . The dynamics of these populations and agents are governed by the following system of ordinary differential equations: The T-cell activation function F quantifies the production and stimulation of the immune system and is given by: |
2.2. Experiment Data
2.3. Updated Parameter Values
2.4. Model Refinement: Drug- and Tumor Size-Dependent
| Quick Guide 2: Dynamic PD-L1 Incorporation |
| To account for the adaptive nature of the tumor’s PD-L1 expression, we introduced a fifth ordinary differential equation to govern the dynamics of the state variable . The rate of change of is modeled as a balance between production and degradation forces: A fundamental mechanism of tumor immune escape is the upregulation of PD-L1 in response to an active antitumor immune attack. This process is primarily driven by pro-inflammatory cytokines, most notably interferon-gamma (IFN-), which is secreted by activated T-cells upon tumor antigen recognition. The PD-L1 production rate is modeled as being stimulated by NHS-muIL12 () in a tumor size-dependent manner, representing IFN--mediated upregulation. This formulation captures adaptive immune resistance, in which immune-activating signals from the drug induce PD-L1 expression as a tumor defense mechanism. Based on this discussion, we assume functional forms that follow a saturation curve for both and V: Avelumab is a monoclonal antibody that specifically binds to the PD-L1 protein on cancer cells. By doing so, it prevents PD-L1 from attaching to the PD-1 receptor on T-cells, which would normally send an inhibitory signal to deactivate them. This blockade allows the T-cells to remain active and effectively target and destroy the tumor cells. To this end, we assume the drug-mediated suppression of PD-L1 by Avelumab () is given by the following: Finally, we assume that tumor-derived PD-L1 expression decays at rate . The governing equation for the change in tumor PD-L1 expression level () over time is |
2.5. Parameter Estimation
3. Results
3.1. Base Model Limitations Highlight the Need for Dynamic
3.2. Dynamic Improves Fit and Explanatory Power
3.3. Model Comparisons (RSS and AIC)
3.4. Model Conclusions Are Robust to Parameter Uncertainty
4. Discussion
4.1. Summary of Key Findings
4.2. Interpretation of Model Comparisons
4.3. Adaptive Resistance via PD-L1 Upregulation
4.4. Model Generalizability and Cross-Validation
4.5. Alternative Mechanisms and Model Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Var. | Meaning | Value | Ref. |
|---|---|---|---|
| r | Tumor cell growth rate | [27] | |
| Kill rate of tumor cells by T cells | [27] | ||
| Source of T cell activation | [27] | ||
| Activation rate of T cells by IL-12 | [32] | ||
| Inhibition of T cells by PD-1–PD-L1 | [27] | ||
| Dissociation constant of PD-L1–anti-PD-L1 | mol/L | [27] | |
| Dissociation constant of PD-L1–anti-PD-L1 | mol/L | [27] | |
| Death rate of T cells | 0– | [51] | |
| Degradation rate of Anti-PD-L1 | [33] | ||
| Degradation rate of NHS-muIL12 | [34] | ||
| Expression level of PD-1 | – | [32] | |
| Expression level of PD-L1 | – | [32] | |
| PD-L1 expression from tumor | – | fitted | |
| Complex assoc./dissoc. fraction | [27] | ||
| Infusion rate of Avelumab | – g/day | [27] | |
| Infusion rate of NHS-muIL12 | – g/day | [27] | |
| Conversion constant for | – | [27] | |
| Conversion constant for | – | [27] |
References
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; McGranahan, N.; Dewhurst, S.M.; Burrell, R.A.; Tomlinson, I.; Swanton, C. Cancer: Evolution Within a Lifetime. Annu. Rev. Genet. 2014, 48, 215–236. [Google Scholar] [CrossRef]
- Vendramin, R.; Litchfield, K.; Swanton, C. Cancer evolution: Darwin and beyond. EMBO J. 2021, 40, e108389. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Schilsky, R.L. Implementing personalized cancer care. Nat. Rev. Clin. Oncol. 2014, 11, 432–438. [Google Scholar] [CrossRef]
- Lin, H.H.; Wei, N.C.; Chou, T.Y.; Lin, C.C.; Lan, Y.T.; Chang, S.C.; Wang, H.S.; Yang, S.H.; Chen, W.S.; Lin, T.C.; et al. Building personalized treatment plans for early-stage colorectal cancer patients. Oncotarget 2017, 8, 13805–13817. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Juneja, V.R.; McGuire, K.A.; Manguso, R.T.; LaFleur, M.W.; Collins, N.; Haining, W.N.; Freeman, G.J.; Sharpe, A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 2017, 214, 895–904. [Google Scholar] [CrossRef]
- Collins, J.M.; Gulley, J.L. Product review: Avelumab, an anti-PD-L1 antibody. Hum. Vaccines Immunother. 2019, 15, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Vaishampayan, U.; Schöffski, P.; Ravaud, A.; Borel, C.; Peguero, J.; Chaves, J.; Morris, J.C.; Kotecki, N.; Smakal, M.; Zhou, D.; et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: Phase Ib results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer 2019, 7, 275. [Google Scholar] [CrossRef]
- Liu, K.; Tan, S.; Chai, Y.; Chen, D.; Song, H.; Zhang, C.W.H.; Shi, Y.; Liu, J.; Tan, W.; Lyu, J.; et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Res. 2017, 27, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.; Tighe, R.; Kradjian, G.; Guzman, W.; Bernhardt, A.; Neuteboom, B.; Lan, Y.; Sabzevari, H.; Schlom, J.; Greiner, J.W. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2014, 5, 1869–1884. [Google Scholar] [CrossRef]
- Greiner, J.W.; Morillon, Y.M., II; Schlom, J. NHS-IL12, a Tumor-Targeting Immunocytokine. Immunotargets Ther. 2021, 10, 155–169. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Rolfe, P.A.; Hernández, V.M.; Guzman, W.; Kradjian, G.; Marelli, B.; Qin, G.; Qi, J.; Wang, H.; et al. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin. Cancer Res. 2017, 23, 5869–5880. [Google Scholar] [CrossRef]
- Altrock, P.M.; Liu, L.L.; Michor, F. The mathematics of cancer: Integrating quantitative models. Nat. Rev. Cancer 2015, 15, 730–745. [Google Scholar] [CrossRef]
- Phan, T.; Crook, S.M.; Bryce, A.H.; Maley, C.C.; Kostelich, E.J.; Kuang, Y. Review: Mathematical Modeling of Prostate Cancer and Clinical Application. Appl. Sci. 2020, 10, 2721. [Google Scholar] [CrossRef]
- Brady, R.; Enderling, H. Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to. Bull. Math. Biol. 2019, 81, 3722–3731. [Google Scholar] [CrossRef]
- Rauf, S.; Smirnova, A.; Chang, A.; Liu, Y.; Jiang, Y. Immunogenic Cell Death: The Key to Unlocking the Potential for Combined Radiation and Immunotherapy. bioRxiv 2025. [Google Scholar] [CrossRef]
- Kuang, Y.; Nagy, J.D.; Eikenberry, S.E. Introduction to Mathematical Oncology; Chapman & Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Serre, R.; Benzekry, S.; Padovani, L.; Meille, C.; André, N.; Ciccolini, J.; Barlesi, F.; Muracciole, X.; Barbolosi, D. Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy. Cancer Res. 2016, 76, 4931–4940. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, K. Optimization of chemotherapy regimens using mathematical programming. Comput. Ind. Eng. 2024, 191, 110078. [Google Scholar] [CrossRef]
- Hahnfeldt, P.; Panigrahy, D.; Folkman, J.; Hlatky, L. Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 1999, 59, 4770–4775. [Google Scholar] [PubMed]
- Reckell, T.; Nguyen, K.; Phan, T.; Crook, S.; Kostelich, E.J.; Kuang, Y. Modeling the synergistic properties of drugs in hormonal treatment for prostate cancer. J. Theor. Biol. 2021, 514, 110570. [Google Scholar] [CrossRef]
- Meade, W.; Weber, A.; Phan, T.; Hampston, E.; Resa, L.F.; Nagy, J.; Kuang, Y. High Accuracy Indicators of Androgen Suppression Therapy Failure for Prostate Cancer—A Modeling Study. Cancers 2022, 14, 4033. [Google Scholar] [CrossRef]
- Phan, T.; Weber, A.; Bryce, A.H.; Kuang, Y. The prognostic value of androgen to PSA ratio in predictive modeling of prostate cancer. Med. Hypotheses 2023, 176, 111084. [Google Scholar] [CrossRef]
- Glasser, J.W.; Feng, Z. Mechanistic models are hypotheses: A perspective. Math. Biosci. 2025, 383, 109419. [Google Scholar] [CrossRef]
- Nikolopoulou, E.; Eikenberry, S.E.; Gevertz, J.L.; Kuang, Y. Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. Discret. Contin. Dyn. Syst. B 2021, 26, 2133–2159. [Google Scholar] [CrossRef]
- Sarapata, E.A.; de Pillis, L.G. A Comparison and Catalog of Intrinsic Tumor Growth Models. Bull. Math. Biol. 2014, 76, 2010–2024. [Google Scholar] [CrossRef]
- Kuznetsov, V.A.; Makalkin, I.A.; Taylor, M.A.; Perelson, A.S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295–321. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, D.; Panetta, J.C. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 1998, 37, 235–252. [Google Scholar] [CrossRef] [PubMed]
- PlotDigitizer: Version 3.1.6. 2025. Available online: https://plotdigitizer.com (accessed on 18 June 2025).
- Lai, X.; Friedman, A. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS ONE 2017, 12, e0178479. [Google Scholar] [CrossRef]
- Zalba, S.; Contreras-Sandoval, A.M.; Martisova, E.; Debets, R.; Smerdou, C.; Garrido, M.J. Quantification of Pharmacokinetic Profiles of PD-1/PD-L1 Antibodies by Validated ELISAs. Pharmaceutics 2020, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Unverdorben, F.; Richter, F.; Hutt, M.; Seifert, O.; Malinge, P.; Fischer, N.; Kontermann, R.E. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. mAbs 2016, 8, 120–128. [Google Scholar] [CrossRef]
- Fallon, J.K.; Vandeveer, A.J.; Schlom, J.; Greiner, J.W. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 2017, 8, 20558–20571. [Google Scholar] [CrossRef]
- Liao, K.L.; Watt, K.D. Mathematical modeling for the combination treatment of IFN-γ and anti-PD-1 in cancer immunotherapy. Math. Biosci. 2022, 353, 108911. [Google Scholar] [CrossRef]
- Wang, X.; Teng, F.; Kong, L.; Yu, J. PD-L1 expression in human cancers and its association with clinical outcomes. Oncotargets Ther. 2016, 9, 5023–5039. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, Z.; Xie, Y.; Li, N.; Chen, H.; Jin, M. The association between PD-1/PD-L1 expression and clinicopathological features in sarcomatoid renal cell carcinoma. Asian J. Surg. 2024, 47, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, W.; Young, K.H.; Li, Y. Posttranslational Modifications in PD-L1 Turnover and Function: From Cradle to Grave. Biomedicines 2021, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- Lemma, E.Y.; Letian, A.; Altorki, N.K.; McGraw, T.E. Regulation of PD-L1 Trafficking from Synthesis to Degradation. Cancer Immunol. Res. 2023, 11, 866–874. [Google Scholar] [CrossRef]
- Lai, X.; Yu, T. Modeling Combination Therapies and T Cell Exhaustion Dynamics in the Tumor Under Immune Checkpoint Blockade. Bull. Math. Biol. 2025, 87, 128. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Zhang, B.; Qiao, L.; Zhang, Y. T Cell Dysfunction and Exhaustion in Cancer. Front. Cell Dev. Biol. 2020, 8, 17. [Google Scholar] [CrossRef]
- Pauken, K.E.; Wherry, E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015, 36, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Gniadek, T.J.; Li, Q.K.; Tully, E.; Chatterjee, S.; Nimmagadda, S.; Gabrielson, E. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: Implications for assessment by small biopsy. Mod. Pathol. 2017, 30, 530–538. [Google Scholar] [CrossRef]
- Portz, T.; Kuang, Y.; Nagy, J.D. A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy. AIP Adv. 2012, 2, 011002. [Google Scholar] [CrossRef]
- Portz, T.; Kuang, Y. A mathematical model for the immunotherapy of advanced prostate cancer. In Proceedings of the BIOMAT 2012—International Symposium on Mathematical and Computational Biology, Tempe, AZ, USA, 6–10 November 2012; World Scientific: Singapore, 2013; pp. 70–85. [Google Scholar] [CrossRef]
- Baez, J.; Kuang, Y. Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy. Appl. Sci. 2016, 6, 352. [Google Scholar] [CrossRef]
- Phan, T.; He, C.; Martinez, A.; Kuang, Y.; Phan, T.; He, C.; Martinez, A.; Kuang, Y. Dynamics and implications of models for intermittent androgen suppression therapy. Math. Biosci. Eng. 2019, 16, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Nguyen, K.; Sharma, P.; Kuang, Y. The Impact of Intermittent Androgen Suppression Therapy in Prostate Cancer Modeling. Appl. Sci. 2019, 9, 36. [Google Scholar] [CrossRef]
- Everett, R.A.; Packer, A.M.; Kuang, Y. Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy? Biophys. Rev. Lett. 2014, 9, 173–191. [Google Scholar] [CrossRef]
- Nikolopoulou, E.; Johnson, L.; Harris, D.; Nagy, J.; Stites, E.; Kuang, Y. Tumour-immune dynamics with an immune checkpoint inhibitor. Lett. Biomath. 2018, 5, S137–S159. [Google Scholar] [CrossRef]






| Var. | Meaning | Fitted Value |
|---|---|---|
| Basal proliferation rate | ||
| PD-L1 Upregulation Sensitivity | 50 | |
| Decay rate induced by Avelumab | ||
| Proliferation induced by NHS-muIL12 | ||
| Decay rate |
| Therapy | Original | Constant | Dynamic | ||
|---|---|---|---|---|---|
| RSS | RSS | AIC | RSS | AIC | |
| (a) Isotype Control (No Drug) | 5401 | 5367.9 | 42.779 | 6555.9 | 51.978 |
| (b) NHS-muIL12 (2 μg) | 26,367 | 5664.4 | 43.101 | 8251.0 | 53.358 |
| (c) NHS-muIL12 (10 μg) | 12,332 | 3240.4 | 39.750 | 6474.1 | 51.903 |
| (d) Avelumab (200 μg) | 27,188 | 18,396.0 | 50.169 | 14,853.0 | 56.885 |
| (e) Av (200 μg) + NHS (2 μg) | 249,770 | 739.9 | 30.889 | 2330.5 | 45.772 |
| (f) Av (200 μg) + NHS (10 μg) | 9094.4 | 1762.4 | 36.096 | 9161.8 | 53.986 |
| Total/Global Fit | 3.30 | 3.52 | 259.84 | 4.76 | 268.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pell, B.; Kalizhanova, A.; Tursynkozha, A.; Dengi, D.; Kashkynbayev, A.; Kuang, Y. Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy. Cancers 2025, 17, 3803. https://doi.org/10.3390/cancers17233803
Pell B, Kalizhanova A, Tursynkozha A, Dengi D, Kashkynbayev A, Kuang Y. Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy. Cancers. 2025; 17(23):3803. https://doi.org/10.3390/cancers17233803
Chicago/Turabian StylePell, Bruce, Aigerim Kalizhanova, Aisha Tursynkozha, Denise Dengi, Ardak Kashkynbayev, and Yang Kuang. 2025. "Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy" Cancers 17, no. 23: 3803. https://doi.org/10.3390/cancers17233803
APA StylePell, B., Kalizhanova, A., Tursynkozha, A., Dengi, D., Kashkynbayev, A., & Kuang, Y. (2025). Dynamic PD-L1 Regulation Shapes Tumor Immune Escape and Response to Immunotherapy. Cancers, 17(23), 3803. https://doi.org/10.3390/cancers17233803

