Enhancing Cancer Therapy with TLR7/8 Agonists: Applications in Vaccines and Combination Treatments
Simple Summary
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. Mechanisms of Activation and Downstream Signaling of the TLR Family
3.1. Activation and Signaling of TLR 7/8 Ligand
3.2. Biomarkers for TLR7/8-Based Therapies
4. Challenges Associated with TLR7/8 Agonists
5. Combination Therapies Involving TLR 7/8 Agonists
5.1. TLR7/8 Agonist Combined with Other Immunostimulators
5.2. Combination with Chemotherapy
5.3. Combination with Phototherapy
5.4. Combination with Radiation Therapy and Sonodynamic Therapy
6. Development of TLR7/8 Agonist-Based Cancer Vaccines and Their Clinical Translation

7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| TLRs | Toll-like receptors |
| PRRs | pattern recognition receptors |
| APCs | Antigen-presenting cells |
| DCs | dendritic cells |
| CTLs | cytotoxic T lymphocytes |
| NK | natural killer |
| IMQ | imiquimod |
| PAMPs | pathogen-associated molecular patterns |
| DAMPs | damage-associated molecular patterns |
| MyD88 | Myeloid Differentiation Primary Response Gene 88 |
| MDSCs | myeloid-derived suppressor cells |
| Tregs | regulatory T cells |
| NE | nanoemulsion |
| MOF | metal–organic framework |
| ICD | immunogenic cell death |
| BMDCs | bone marrow-derived dendritic cells |
| DOX | doxorubicin |
| TAA | tumor-associated antigen |
| NCs | nanocomposites |
| R848@NPs | R848-loaded PANi-conjugated glycol-chitosan nanoparticles |
| PARE NPs | prodrug-based nanoparticles |
| ARNPs | acidic-responsive polymeric nanoparticles |
| UCNPs | upconversion nanoparticles |
| PDT | Photodynamic therapy |
| RT | radiation therapy |
| SDT | Sonodynamic therapy |
| dLNs | draining lymph nodes |
References
- Zhang, Y.; Zhang, Z. The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Akunne, O.Z.; Anulugwo, O.E.; Azu, M.G. Emerging Strategies in Cancer Immunotherapy: Expanding Horizons and Future Perspectives. Int. J. Mol. Immuno Oncol. 2024, 9, 77–99. [Google Scholar] [CrossRef]
- Ghemrawi, R.; Abuamer, L.; Kremesh, S.; Hussien, G.; Ahmed, R.; Mousa, W.; Khoder, G.; Khair, M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024, 12, 2158. [Google Scholar] [CrossRef]
- Silva, D.J.; Mesquita, A. Complete and Long-Lasting Response to Immunotherapy. Medicine 2022, 101, e28940. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Cancer Immunotherapy, Part 3: Challenges and Future Trends. Pharm. Ther. 2017, 42, 514–521. [Google Scholar]
- Sanmamed, M.F.; Berraondo, P.; Rodriguez-Ruiz, M.E.; Melero, I. Charting Roadmaps towards Novel and Safe Synergistic Immunotherapy Combinations. Nat. Cancer 2022, 3, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Chen, N.; Li, L.; Du, N.; Bai, L.; Lv, Z.; Tian, H.; Cui, J. Mechanisms of Cancer Resistance to Immunotherapy. Front. Oncol. 2020, 10, 1290. [Google Scholar] [CrossRef]
- Maciejko, L.; Smalley, M.; Goldman, A. Cancer Immunotherapy and Personalized Medicine: Emerging Technologies and Biomarker Based Approaches. J. Mol. Biomark. Diagn. 2017, 08, 350. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef]
- Meng, L.; Wu, H.; Wu, J.; Ding, P.; He, J.; Sang, M.; Liu, L. Mechanisms of Immune Checkpoint Inhibitors: Insights into the Regulation of Circular RNAS Involved in Cancer Hallmarks. Cell Death Dis. 2024, 15, 3. [Google Scholar] [CrossRef]
- Jogalekar, M.P.; Rajendran, R.L.; Khan, F.; Dmello, C.; Gangadaran, P.; Ahn, B.-C. CAR T-Cell-Based Gene Therapy for Cancers: New Perspectives, Challenges, and Clinical Developments. Front. Immunol. 2022, 13, 925985. [Google Scholar] [CrossRef]
- Fraietta, J.A.; Lacey, S.F.; Orlando, E.J.; Pruteanu-Malinici, I.; Gohil, M.; Lundh, S.; Boesteanu, A.C.; Wang, Y.; O’Connor, R.S.; Hwang, W.-T.; et al. Determinants of Response and Resistance to CD19 Chimeric Antigen Receptor (CAR) T Cell Therapy of Chronic Lymphocytic Leukemia. Nat. Med. 2018, 24, 563–571. [Google Scholar] [CrossRef]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An Introduction to Chimeric Antigen Receptor (CAR) T-cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.V.; Nino-Castro, A.C.; Schultze, J.L. Regulatory Dendritic Cells: There Is More than Just Immune Activation. Front. Immunol. 2012, 3, 274. [Google Scholar] [CrossRef] [PubMed]
- Wylie, B.; Macri, C.; Mintern, J.; Waithman, J. Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers 2019, 11, 521. [Google Scholar] [CrossRef]
- Escors, D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J. Sci. 2014, 2014, 734515. [Google Scholar] [CrossRef]
- Kawarada, Y.; Ganss, R.; Garbi, N.; Sacher, T.; Arnold, B.; Hämmerling, G.J. NK- and CD8+ T Cell-Mediated Eradication of Established Tumors by Peritumoral Injection of CpG-Containing Oligodeoxynucleotides. J. Immunol. 2001, 167, 5247–5253. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Huang, H.; Jiang, J.; Zhang, T.; Ni, C. Mature Dendritic Cells Enriched in Immunoregulatory Molecules (MregDCs): A Novel Population in the Tumour Microenvironment and Immunotherapy Target. Clin. Transl. Med. 2023, 13, 1199. [Google Scholar] [CrossRef]
- Shekarian, T.; Valsesia-Wittmann, S.; Brody, J.; Michallet, M.C.; Depil, S.; Caux, C.; Marabelle, A. Pattern Recognition Receptors: Immune Targets to Enhance Cancer Immunotherapy. Ann. Oncol. 2017, 28, 1756–1766. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Zhang, P.; Xing, H.; Zhao, S.; Song, Y.; Wan, D.; Yu, J. Targeting Toll-like Receptor 7/8 for Immunotherapy: Recent Advances and Prospectives. Biomark. Res. 2022, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Gorden, K.B.; Gorski, K.S.; Gibson, S.J.; Kedl, R.M.; Kieper, W.C.; Qiu, X.; Tomai, M.A.; Alkan, S.S.; Vasilakos, J.P. Synthetic TLR Agonists Reveal Functional Differences between Human TLR7 and TLR8. J. Immunol. 2005, 174, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, H.; Barrat, F.J.; Hessel, E.M.; Coffman, R.L. Therapeutic Targeting of Innate Immunity with Toll-like Receptor Agonists and Antagonists. Nat. Med. 2007, 13, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Sakaniwa, K.; Shimizu, T. Targeting the Innate Immune Receptor TLR8 Using Small-Molecule Agents. Acta Crystallogr. Sect. D Struct. Biol. 2020, 76, 621–629. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; He, L.; Sun, S.; Xia, T.; Hu, L.; Yao, L.; Wang, L.; Li, D.; Shi, H.; et al. Structure-Based Design of Highly Potent Toll-like Receptor 7/8 Dual Agonists for Cancer Immunotherapy. J. Med. Chem. 2021, 64, 7507–7532. [Google Scholar] [CrossRef]
- Ryu, J.; Yang, F.C. A Review of Topical Imiquimod in the Management of Basal Cell Carcinoma, Actinic Keratoses, and Other Skin Lesions. Clin. Med. Ther. 2009, 1, 1557–1575. [Google Scholar] [CrossRef]
- Ye, J.; Mills, B.N.; Qin, S.S.; Garrett-Larsen, J.; Murphy, J.D.; Uccello, T.P.; Han, B.J.; Vrooman, T.G.; Johnston, C.J.; Lord, E.M.; et al. Toll-like Receptor 7/8 Agonist R848 Alters the Immune Tumor Microenvironment and Enhances SBRT-Induced Antitumor Efficacy in Murine Models of Pancreatic Cancer. J. Immunother. Cancer 2022, 10, e004784. [Google Scholar] [CrossRef]
- Michaelis, K.A.; Norgard, M.A.; Zhu, X.; Levasseur, P.R.; Sivagnanam, S.; Liudahl, S.M.; Burfeind, K.G.; Olson, B.; Pelz, K.R.; Angeles Ramos, D.M.; et al. The TLR7/8 Agonist R848 Remodels Tumor and Host Responses to Promote Survival in Pancreatic Cancer. Nat. Commun. 2019, 10, 4682. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Wang, G.; Mei, T.; Yang, H.; Liu, Y. The TLR7/8 Agonist R848 Optimizes Host and Tumor Immunity to Improve Therapeutic Efficacy in Murine Lung Cancer. Int. J. Oncol. 2022, 61, 81. [Google Scholar] [CrossRef]
- Inglefield, J.R.; Dumitru, C.D.; Alkan, S.S.; Gibson, S.J.; Lipson, K.E.; Tomai, M.A.; Larson, C.J.; Vasilakos, J.P. TLR7 Agonist 852A Inhibition of Tumor Cell Proliferation Is Dependent on Plasmacytoid Dendritic Cells and Type I IFN. J. Interf. Cytokine Res. 2008, 28, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Vasilakos, J.P.; Tomai, M.A. The Use of Toll-like Receptor 7/8 Agonists as Vaccine Adjuvants. Expert. Rev. Vaccines 2013, 12, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xie, Y.; Xiong, Y.; Liu, S.; Qiu, C.; Zhu, Z.; Mao, H.; Yu, M.; Wang, X. TLR 7/8 Agonist Reverses Oxaliplatin Resistance in Colorectal Cancer via Directing the Myeloid-Derived Suppressor Cells to Tumoricidal M1-Macrophages. Cancer Lett. 2020, 469, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Travis, J. On the Origin of The Immune System. Science 2009, 324, 580–582. [Google Scholar] [CrossRef]
- Medzhitov, R. Pattern Recognition Theory and the Launch of Modern Innate Immunity. J. Immunol. 2013, 191, 4473–4474. [Google Scholar] [CrossRef]
- Chen, R.; Zou, J.; Chen, J.; Zhong, X.; Kang, R.; Tang, D. Pattern Recognition Receptors: Function, Regulation and Therapeutic Potential. Signal Transduct. Target. Ther. 2025, 10, 216. [Google Scholar] [CrossRef]
- McKernan, D.P. Pattern Recognition Receptors as Potential Drug Targets in Inflammatory Disorders. Adv. Protein Chem. Struct. Biol. 2020, 119, 65–109. [Google Scholar]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Pahlavanneshan, S.; Sayadmanesh, A.; Ebrahimiyan, H.; Basiri, M. Toll-Like Receptor-Based Strategies for Cancer Immunotherapy. J. Immunol. Res. 2021, 2021, 9912188. [Google Scholar] [CrossRef]
- Leulier, F.; Lemaitre, B. Toll-like Receptors—Taking an Evolutionary Approach. Nat. Rev. Genet. 2008, 9, 165–178. [Google Scholar] [CrossRef]
- Satoh, T.; Akira, S. Toll-Like Receptor Signaling and Its Inducible Proteins. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Brennan, J.J.; Gilmore, T.D. Evolutionary Origins of Toll-like Receptor Signaling. Mol. Biol. Evol. 2018, 35, 1576–1587. [Google Scholar] [CrossRef]
- Gao, W.; Xiong, Y.; Li, Q.; Yang, H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front. Physiol. 2017, 8, 508. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [PubMed]
- Armant, M.A.; Fenton, M.J. Toll-like Receptors: A Family of Pattern-Recognition Receptors in Mammals. Genome Biol. 2002, 3, reviews3011.1. [Google Scholar] [CrossRef]
- Janssens, S.; Beyaert, R. A Universal Role for MyD88 in TLR/IL-1R-Mediated Signaling. Trends Biochem. Sci. 2002, 27, 474–482. [Google Scholar] [CrossRef]
- Kawagoe, T.; Sato, S.; Jung, A.; Yamamoto, M.; Matsui, K.; Kato, H.; Uematsu, S.; Takeuchi, O.; Akira, S. Essential Role of IRAK-4 Protein and Its Kinase Activity in Toll-like Receptor–Mediated Immune Responses but Not in TCR Signaling. J. Exp. Med. 2007, 204, 1013–1024. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. TLR Signaling. Cell Death Differ. 2006, 13, 816–825. [Google Scholar] [CrossRef]
- Bhagchandani, S.; Johnson, J.A.; Irvine, D.J. Evolution of Toll-like Receptor 7/8 Agonist Therapeutics and Their Delivery Approaches: From Antiviral Formulations to Vaccine Adjuvants. Adv. Drug Deliv. Rev. 2021, 175, 113803. [Google Scholar] [CrossRef]
- Leśniak, M.; Lipniarska, J.; Majka, P.; Kopyt, W.; Lejman, M.; Zawitkowska, J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines 2023, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Revuri, V.; Merali, C.; Wang, B.; Schultz, J.R.; Larson, P.; Yu, D.; Prabha, S.; Griffith, T.S.; Ferguson, D.; et al. A Novel Imidazoquinoline With TLR 7/8, STING, and Inflammasome Activity Demonstrates Antitumor Efficacy in Mouse Melanoma and Neu-Driven Mammary Adenocarcinoma. J. Immunother. 2025. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015, 14, 847–856. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, X.; Piao, M.; Xun, Z.; Wang, Y.; Ning, C.; Zhang, X.; Zhang, L.; Wang, Y.; Wang, S.; et al. Biomarkers and Prognostic Factors of PD-1/PD-L1 Inhibitor-Based Therapy in Patients with Advanced Hepatocellular Carcinoma. Biomark. Res. 2024, 12, 26. [Google Scholar] [CrossRef]
- Lu, S.; Stein, J.E.; Rimm, D.L.; Wang, D.W.; Bell, J.M.; Johnson, D.B.; Sosman, J.A.; Schalper, K.A.; Anders, R.A.; Wang, H.; et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade. JAMA Oncol. 2019, 5, 1195. [Google Scholar] [CrossRef]
- Ballot, E.; Ladoire, S.; Routy, B.; Truntzer, C.; Ghiringhelli, F. Tumor Infiltrating Lymphocytes Signature as a New Pan-Cancer Predictive Biomarker of Anti PD-1/PD-L1 Efficacy. Cancers 2020, 12, 2418. [Google Scholar] [CrossRef]
- Stenzel, P.J.; Schindeldecker, M.; Tagscherer, K.E.; Foersch, S.; Herpel, E.; Hohenfellner, M.; Hatiboglu, G.; Alt, J.; Thomas, C.; Haferkamp, A.; et al. Prognostic and Predictive Value of Tumor-Infiltrating Leukocytes and of Immune Checkpoint Molecules PD1 and PDL1 in Clear Cell Renal Cell Carcinoma. Transl. Oncol. 2020, 13, 336–345. [Google Scholar] [CrossRef]
- Peranzoni, E.; Ingangi, V.; Masetto, E.; Pinton, L.; Marigo, I. Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Front. Immunol. 2020, 11, 1590. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xiao, T.; Pan, C.; Liu, X.; Zhao, Y. Prognostic Role of Toll-like Receptors in Cancer: A Meta-Analysis. Ther. Clin. Risk Manag. 2018, 14, 1323–1330. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Cheng, R.Y.S.; Switzer, C.H.; Heinecke, J.L.; Ambs, S.; Glynn, S.; Young, H.A.; Trinchieri, G.; Wink, D.A. Molecular Pathways: Toll-like Receptors in the Tumor Microenvironment—Poor Prognosis or New Therapeutic Opportunity. Clin. Cancer Res. 2013, 19, 1340–1346. [Google Scholar] [CrossRef]
- Beilmann-Lehtonen, I.; Kasurinen, J.; Hagström, J.; Kaprio, T.; Böckelman, C.; Haglund, C. High Tissue Expression of TLRs Combined with High Density of Tumor Infiltrating Lymphocytes Predicts a Better Prognosis in Colorectal Cancer Patients. PLoS ONE 2023, 18, e0280085. [Google Scholar] [CrossRef]
- Monk, B.J.; Brady, M.F.; Aghajanian, C.; Lankes, H.A.; Rizack, T.; Leach, J.; Fowler, J.M.; Higgins, R.; Hanjani, P.; Morgan, M.; et al. A Phase 2, Randomized, Double-Blind, Placebo- Controlled Study of Chemo-Immunotherapy Combination Using Motolimod with Pegylated Liposomal Doxorubicin in Recurrent or Persistent Ovarian Cancer: A Gynecologic Oncology Group Partners Study. Ann. Oncol. 2017, 28, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Saba, N.F.; Gitlitz, B.J.; Haddad, R.; Sukari, A.; Neupane, P.; Morris, J.C.; Misiukiewicz, K.; Bauman, J.E.; Fenton, M.; et al. Effect of Adding Motolimod to Standard Combination Chemotherapy and Cetuximab Treatment of Patients With Squamous Cell Carcinoma of the Head and Neck. JAMA Oncol. 2018, 4, 1583. [Google Scholar] [CrossRef] [PubMed]
- Zahr, N.M.; Zhao, Q.; Goodcase, R.; Pfefferbaum, A. Systemic Administration of the TLR7/8 Agonist Resiquimod (R848) to Mice Is Associated with Transient, In Vivo-Detectable Brain Swelling. Biology 2022, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, K.A.; Norgard, M.A.; Levasseur, P.R.; Olson, B.; Burfeind, K.G.; Buenafe, A.C.; Zhu, X.; Jeng, S.; McWeeney, S.K.; Marks, D.L. Persistent Toll-like Receptor 7 Stimulation Induces Behavioral and Molecular Innate Immune Tolerance. Brain. Behav. Immun. 2019, 82, 338–353. [Google Scholar] [CrossRef]
- Mullins, S.R.; Vasilakos, J.P.; Deschler, K.; Grigsby, I.; Gillis, P.; John, J.; Elder, M.J.; Swales, J.; Timosenko, E.; Cooper, Z.; et al. Intratumoral Immunotherapy with TLR7/8 Agonist MEDI9197 Modulates the Tumor Microenvironment Leading to Enhanced Activity When Combined with Other Immunotherapies. J. Immunother. Cancer 2019, 7, 244. [Google Scholar] [CrossRef]
- Bourquin, C.; Hotz, C.; Noerenberg, D.; Voelkl, A.; Heidegger, S.; Roetzer, L.C.; Storch, B.; Sandholzer, N.; Wurzenberger, C.; Anz, D.; et al. Systemic Cancer Therapy with a Small Molecule Agonist of Toll-like Receptor 7 Can Be Improved by Circumventing TLR Tolerance. Cancer Res. 2011, 71, 5123–5133. [Google Scholar] [CrossRef]
- Kim, H.; Khanna, V.; Kucaba, T.A.; Zhang, W.; Ferguson, D.M.; Griffith, T.S.; Panyam, J. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Mol. Pharm. 2019, 16, 1200–1210. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, S.; Kim, J.-E.; Lee, S.N.; Shin, I.W.; Shin, H.S.; Jin, S.M.; Noh, Y.-W.; Kang, Y.J.; Kim, Y.S.; et al. Lyophilizable and Multifaceted Toll-like Receptor 7/8 Agonist-Loaded Nanoemulsion for the Reprogramming of Tumor Microenvironments and Enhanced Cancer Immunotherapy. ACS Nano 2019, 13, 12671–12686. [Google Scholar] [CrossRef]
- Ni, K.; Luo, T.; Culbert, A.; Kaufmann, M.; Jiang, X.; Lin, W. Nanoscale Metal–Organic Framework Co-Delivers TLR-7 Agonists and Anti-CD47 Antibodies to Modulate Macrophages and Orchestrate Cancer Immunotherapy. J. Am. Chem. Soc. 2020, 142, 12579–12584. [Google Scholar] [CrossRef]
- Jiang, Z.; Cai, G.; Liu, H.; Liu, L.; Huang, R.; Nie, X.; Gui, R.; Li, J.; Ma, J.; Cao, K.; et al. A Combination of a TLR7/8 Agonist and an Epigenetic Inhibitor Suppresses Triple-Negative Breast Cancer through Triggering Anti-Tumor Immune. J. Nanobiotechnol. 2024, 22, 296. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.A.A.; Gale, E.C.; Roth, G.A.; Maikawa, C.L.; Correa, S.; Yu, A.C.; Appel, E.A. Nanoparticles Presenting Potent TLR7/8 Agonists Enhance Anti-PD-L1 Immunotherapy in Cancer Treatment. Biomacromolecules 2020, 21, 3704–3712. [Google Scholar] [CrossRef]
- Ji, G.; Zhang, Y.; Si, X.; Yao, H.; Ma, S.; Xu, Y.; Zhao, J.; Ma, C.; He, C.; Tang, Z.; et al. Biopolymer Immune Implants’ Sequential Activation of Innate and Adaptive Immunity for Colorectal Cancer Postoperative Immunotherapy. Adv. Mater. 2021, 33, e2004559. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Flores, L.; Ngai, H.W.; Cornejo, Y.R.; Haber, T.; McDonald, M.; Moreira, D.F.; Gonzaga, J.M.; Abidi, W.; Zhang, Y.; et al. Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors’ Microenvironment. Bioconjug. Chem. 2021, 32, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Nahar, S.; Alam, M.M.; Hu, S.; McVicar, D.W.; Yang, D. Reactive Oxygen Species-Sensitive Biodegradable Mesoporous Silica Nanoparticles Harboring TheraVac Elicit Tumor-Specific Immunity for Colon Tumor Treatment. ACS Nano 2023, 17, 19740–19752. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Revuri, V.; Shah, M.; Larson, P.; Shao, Z.; Yu, D.; Prabha, S.; Griffith, T.S.; Ferguson, D.; Panyam, J. Combination of STING and TLR 7/8 Agonists as Vaccine Adjuvants for Cancer Immunotherapy. Cancers 2022, 14, 6091. [Google Scholar] [CrossRef]
- Gadd, A.J.R.; Greco, F.; Cobb, A.J.A.; Edwards, A.D. Targeted Activation of Toll-Like Receptors: Conjugation of a Toll-Like Receptor 7 Agonist to a Monoclonal Antibody Maintains Antigen Binding and Specificity. Bioconjug. Chem. 2015, 26, 1743–1752. [Google Scholar] [CrossRef]
- Ackerman, S.E.; Pearson, C.I.; Gregorio, J.D.; Gonzalez, J.C.; Kenkel, J.A.; Hartmann, F.J.; Luo, A.; Ho, P.Y.; LeBlanc, H.; Blum, L.K.; et al. Immune-Stimulating Antibody Conjugates Elicit Robust Myeloid Activation and Durable Antitumor Immunity. Nat. Cancer 2020, 2, 18–33. [Google Scholar] [CrossRef]
- Janku, F.; Han, S.-W.; Doi, T.; Amatu, A.; Ajani, J.A.; Kuboki, Y.; Cortez, A.; Cellitti, S.E.; Mahling, P.C.; Subramanian, K.; et al. Preclinical Characterization and Phase I Study of an Anti–HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol. Res. 2022, 10, 1441–1461. [Google Scholar] [CrossRef]
- Metz, H.; Childs, M.; Brevik, J.; Winship, D.; Brender, T.; Comeau, M.; Moyes, K.; Chang, J.; Adamo, J.; Setter, B.; et al. SBT6050, a HER2-Directed TLR8 Therapeutic, as a Systemically Administered, Tumor-Targeted Human Myeloid Cell Agonist. J. Clin. Oncol. 2020, 38, 3110. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Spanbroek, R.; Lottaz, C.; Gautier, E.L.; Frankenberger, M.; Hoffmann, R.; Lang, R.; Haniffa, M.; Collin, M.; Tacke, F.; et al. Comparison of Gene Expression Profiles between Human and Mouse Monocyte Subsets. Blood 2010, 115, e10–e19. [Google Scholar] [CrossRef] [PubMed]
- Shay, T.; Jojic, V.; Zuk, O.; Rothamel, K.; Puyraimond-Zemmour, D.; Feng, T.; Wakamatsu, E.; Benoist, C.; Koller, D.; Regev, A. Conservation and Divergence in the Transcriptional Programs of the Human and Mouse Immune Systems. Proc. Natl. Acad. Sci. USA 2013, 110, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Sega, E.; Kotapati, S.; Poudel, Y.B.; Cheng, Q.; Sadanala, K.; Schneider, B.; Chekler, E.P.; Rao, C.; Gangwar, S.; Sproul, T.; et al. Targeted Delivery of TLR7 Agonists to the Tumor Microenvironment Enhances Tumor Immunity via Activation of Tumor-Resident Myeloid Cells. Bioconjug. Chem. 2025, 36, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, S.; Poudel, Y.; Sega, E.; Mukhopadhyay, A.; Ramakrishnan, R.; Ukairo, O.; Liu, S.; Akter, R.; Sadanala, K.; Que, K.; et al. Discovery and Characterization of a First-in-Class LIV1-TLR7/8 Immunomodulatory Conjugate with Robust Myeloid Activation and Antitumor Activity. J. Med. Chem. 2025, 68, 11322–11339. [Google Scholar] [CrossRef]
- Lynn, G.M.; Sedlik, C.; Baharom, F.; Zhu, Y.; Ramirez-Valdez, R.A.; Coble, V.L.; Tobin, K.; Nichols, S.R.; Itzkowitz, Y.; Zaidi, N.; et al. Peptide–TLR-7/8a Conjugate Vaccines Chemically Programmed for Nanoparticle Self-Assembly Enhance CD8 T-Cell Immunity to Tumor Antigens. Nat. Biotechnol. 2020, 38, 320–332. [Google Scholar] [CrossRef]
- Jiang, M.; Zeng, J.; Zhao, L.; Zhang, M.; Ma, J.; Guan, X.; Zhang, W. Chemotherapeutic Drug-Induced Immunogenic Cell Death for Nanomedicine-Based Cancer Chemo–Immunotherapy. Nanoscale 2021, 13, 17218–17235. [Google Scholar] [CrossRef]
- Cerbelli, B.; Pernazza, A.; Botticelli, A.; Fortunato, L.; Monti, M.; Sciattella, P.; Campagna, D.; Mazzuca, F.; Mauri, M.; Naso, G.; et al. PD-L1 Expression in TNBC: A Predictive Biomarker of Response to Neoadjuvant Chemotherapy? Biomed. Res. Int. 2017, 2017, 1750925. [Google Scholar] [CrossRef]
- Casares, N.; Pequignot, M.O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M.; et al. Caspase-Dependent Immunogenicity of Doxorubicin-Induced Tumor Cell Death. J. Exp. Med. 2005, 202, 1691–1701. [Google Scholar] [CrossRef]
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; Martínez-Pérez, A.; Rodrigo, J.P.; García-Pedrero, J.M.; Gonzalez, S. Chemo-Immunotherapy: A New Trend in Cancer Treatment. Cancers 2023, 15, 2912. [Google Scholar] [CrossRef]
- Pauli, G.; Chao, P.-H.; Qin, Z.; Böttger, R.; Lee, S.E.; Li, S.-D. Liposomal Resiquimod for Enhanced Immunotherapy of Peritoneal Metastases of Colorectal Cancer. Pharmaceutics 2021, 13, 1696. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zhao, S.; Chen, H.; Lu, T.; Wang, J.; Han, J.; Wu, W.; Shen, X.; Li, C. Carboxymethylated Alginate-Resiquimod Micelles Reverse the Immunosuppressive Tumor Microenvironment and Synergistically Enhance the Chemotherapy and Immunotherapy for Gastric Cancer. ACS Appl. Mater. Interfaces 2023, 15, 35999–36012. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Z.; Zhan, X.; Chen, K.; Pu, Y.; Liang, Y.; He, B. In Situ Injection of Dual-Delivery PEG Based MMP-2 Sensitive Hydrogels for Enhanced Tumor Penetration and Chemo-Immune Combination Therapy. Nanoscale 2021, 13, 9577–9589. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Xu, L.; Zhuang, Z.; Liu, J.; Liu, S.; Wu, Y.; Gong, A.; Zhang, M.; Du, F. NIR Responsive Tumor Vaccine in Situ for Photothermal Ablation and Chemotherapy to Trigger Robust Antitumor Immune Responses. J. Nanobiotechnol. 2021, 19, 142. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; Zhang, C.; Long, S.; Guo, L.; Yang, G.; Wang, F.; Zhang, L.; Shi, L.; Fu, Y.; et al. In Situ Injectable Hydrogel-Loaded Drugs Induce Anti-Tumor Immune Responses in Melanoma Immunochemotherapy. Mater. Today Bio 2022, 14, 100238. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like Particles: Preparation, Immunogenicity and Their Roles as Nanovaccines and Drug Nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Nkanga, C.I.; Ortega-Rivera, O.A.; Steinmetz, N.F. Photothermal Immunotherapy of Melanoma Using TLR-7 Agonist Laden Tobacco Mosaic Virus with Polydopamine Coat. Nanomed. Nanotechnol. Biol. Med. 2022, 44, 102573. [Google Scholar] [CrossRef] [PubMed]
- Yasothamani, V.; Vivek, R. Targeted NIR-Responsive Theranostic Immuno-Nanomedicine Combined TLR7 Agonist with Immune Checkpoint Blockade for Effective Cancer Photothermal Immunotherapy. J. Mater. Chem. B 2022, 10, 6392–6403. [Google Scholar] [CrossRef]
- Qin, T.; Li, R.; Jin, H.; Wang, Y.; Feng, L. Injectable Thermosensitive Hydrogel to Enhance the Photothermal Ablation and Systemic Immunotherapy of Breast Tumors. Biomater. Sci. 2022, 10, 6003–6012. [Google Scholar] [CrossRef]
- Mei, E.; Li, S.; Song, J.; Xing, R.; Li, Z.; Yan, X. Self-Assembling Collagen/Alginate Hybrid Hydrogels for Combinatorial Photothermal and Immuno Tumor Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 570–575. [Google Scholar] [CrossRef]
- Yue, J.; Mei, Q.; Wang, P.; Miao, P.; Dong, W.-F.; Li, L. Light-Triggered Multifunctional Nanoplatform for Efficient Cancer Photo-Immunotherapy. J. Nanobiotechnol. 2022, 20, 181. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Xu, C.; Pu, K. Activatable Polymer Nanoagonist for Second Near-Infrared Photothermal Immunotherapy of Cancer. Nat. Commun. 2021, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, L.; Yasothamani, V.; Haldorai, Y.; Selvan Christyraj, J.R.S.; Vivek, R. TLR-7/8 Agonist-Loaded Polypyrrole-Based Theranostic Nanovaccine for Second Near-Infrared Photothermal Immunotherapy of Cancer. ACS Appl. Nano Mater. 2023, 6, 6279–6291. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Rithisa, B.; Vivek, R. The Dynamic Therapeutic Effect of a Targeted Photothermal Nanovaccine Incorporating Toll-like Receptor 7 Agonist Enhanced Cancer Immunotherapy. J. Mater. Chem. B 2023, 11, 9005–9018. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-M.; Pan, W.-Y.; Wu, C.-Y.; Yeh, C.-Y.; Korupalli, C.; Luo, P.-K.; Chou, C.-J.; Chia, W.-T.; Sung, H.-W. Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System That Exerts Low-Temperature Hyperthermia and Immunotherapy for in Situ Cancer Vaccination. Biomaterials 2020, 230, 119629. [Google Scholar] [CrossRef]
- Müller, R. Junghanns Nanocrystal Technology, Drug Delivery and Clinical Applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar] [CrossRef]
- Meng, Z.; Fang, X.; Fu, B.; Qian, C.; Yang, Z.; Bai, Y.; Tao, X.; Huang, H.; Ma, C.; Miao, W.; et al. Tumor Immunotherapy Boosted by R837 Nanocrystals through Combining Chemotherapy and Mild Hyperthermia. J. Control. Release 2022, 350, 841–856. [Google Scholar] [CrossRef]
- Qu, H.; Li, L.; Chen, H.; Tang, M.; Cheng, W.; Lin, T.; Li, L.; Li, B.; Xue, X. Drug-Drug Conjugates Self-Assembled Nanomedicines Triggered Photo−/Immuno- Therapy for Synergistic Cancer Treatments. J. Control. Release 2023, 363, 361–375. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.; Jin, Y.; Gao, J.; Li, J.; Zheng, X.; Gao, W.; Saeed, M.; Sheng, W.; Yu, H. Self-Immolated Nanoadjuvant for In Situ Vaccination Immunotherapy of Colorectal Cancer. Adv. Healthc. Mater. 2023, 12, e2300524. [Google Scholar] [CrossRef]
- Chen, B.; Huang, R.; Zeng, W.; Wang, W.; Min, Y. Nanocodelivery of an NIR Photothermal Agent and an Acid-Responsive TLR7 Agonist Prodrug to Enhance Cancer Photothermal Immunotherapy and the Abscopal Effect. Biomaterials 2024, 305, 122434. [Google Scholar] [CrossRef]
- Revuri, V.; Rajendrakumar, S.K.; Park, M.; Mohapatra, A.; Uthaman, S.; Mondal, J.; Bae, W.K.; Park, I.; Lee, Y. Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer. Adv. Healthc. Mater. 2021, 10, e2100907. [Google Scholar] [CrossRef]
- Huis in ‘t Veld, R.V.; Da Silva, C.G.; Jager, M.J.; Cruz, L.J.; Ossendorp, F. Combining Photodynamic Therapy with Immunostimulatory Nanoparticles Elicits Effective Anti-Tumor Immune Responses in Preclinical Murine Models. Pharmaceutics 2021, 13, 1470. [Google Scholar] [CrossRef]
- Xu, J.; Xu, L.; Wang, C.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z.; Zhu, W.; Peng, R.; Liu, Z. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano 2017, 11, 4463–4474. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, A.K.; Wang, P.; Keyal, U.; Zhao, Z.; Ji, J.; Zhu, L.; Wang, X.; Zhang, G. Therapeutic Effect of Imiquimod Enhanced ALA-PDT on Cutaneous Squamous Cell Carcinoma. Photodiagnosis Photodyn. Ther. 2018, 23, 273–280. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Thompson, M.K.; Poortmans, P.; Chalmers, A.J.; Faivre-Finn, C.; Hall, E.; Huddart, R.A.; Lievens, Y.; Sebag-Montefiore, D.; Coles, C.E. Practice-Changing Radiation Therapy Trials for the Treatment of Cancer: Where Are We 150 Years after the Birth of Marie Curie? Br. J. Cancer 2018, 119, 389–407. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Vanpouille-Box, C.; Kawashima, N.; DiNapoli, S.; Babb, J.S.; Formenti, S.C.; Adams, S.; Demaria, S. Synergy of Topical Toll-like Receptor 7 Agonist with Radiation and Low-Dose Cyclophosphamide in a Mouse Model of Cutaneous Breast Cancer. Clin. Cancer Res. 2012, 18, 6668–6678. [Google Scholar] [CrossRef]
- Adlard, A.L.; Dovedi, S.J.; Telfer, B.A.; Koga-Yamakawa, E.; Pollard, C.; Honeychurch, J.; Illidge, T.M.; Murata, M.; Robinson, D.T.; Jewsbury, P.J.; et al. A Novel Systemically Administered Toll-like Receptor 7 Agonist Potentiates the Effect of Ionizing Radiation in Murine Solid Tumor Models. Int. J. Cancer 2014, 135, 820–829. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, H.-J.; Ko, H.-J.; Yoon, B.-I.; Choe, J.; Kim, K.-C.; Hahn, T.-W.; Han, J.A.; Choi, S.S.; Jung, Y.M.; et al. The TLR7 Agonist Imiquimod Induces Anti-Cancer Effects via Autophagic Cell Death and Enhances Anti-Tumoral and Systemic Immunity during Radiotherapy for Melanoma. Oncotarget 2017, 8, 24932–24948. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Melis, M.H.M.; Wilkinson, R.W.; Adlard, A.L.; Stratford, I.J.; Honeychurch, J.; Illidge, T.M. Systemic Delivery of a TLR7 Agonist in Combination with Radiation Primes Durable Antitumor Immune Responses in Mouse Models of Lymphoma. Blood 2013, 121, 251–259. [Google Scholar] [CrossRef]
- Ota, Y.; Inagaki, R.; Nagai, Y.; Hirose, Y.; Murata, M.; Yamamoto, S. TLR7 Agonist, DSP-0509, with Radiation Combination Therapy Enhances Anti-Tumor Activity and Modulates T Cell Dependent Immune Activation. BMC Immunol. 2024, 25, 48. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, R.; Zhao, L.; Kong, R.; Yang, N.; Liu, Y.; Chen, A.; Wang, C.; Cheng, H.; Li, S. Photodynamic Therapy Initiated Immunotherapy of Self-Delivery Re-Educator by Inducing Immunogenic Cell Death and Macrophage Polarization. Chem. Eng. J. 2022, 435, 134783. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, R.; Cai, H.; Yang, N.; Chen, Z.; Zhao, L.; Huang, Y.; Li, P.; Cheng, H.; Chen, A.; et al. Coordination-Driven Self-Assembly of Biomedicine to Enhance Photodynamic Therapy by Inhibiting Proteasome and Bcl-2. Adv. Healthc. Mater. 2023, 12, e2300711. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Hu, J.; Li, Y.; Feng, S.; Pan, D.; Feng, L.; Shen, L. Near-Infrared Phosphorescent Carbon Dots for Sonodynamic Precision Tumor Therapy. Nat. Commun. 2022, 13, 5735. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Tian, H.; Li, B.; Feng, C.; Dai, Y. An Ultrasound-Triggered STING Pathway Nanoagonist for Enhanced Chemotherapy-Induced Immunogenic Cell Death. Small 2024, 20, e2309850. [Google Scholar] [CrossRef]
- Yuan, M.; Liang, S.; Zhou, Y.; Xiao, X.; Liu, B.; Yang, C.; Ma, P.; Cheng, Z.; Lin, J. A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. Nano Lett. 2021, 21, 6042–6050. [Google Scholar] [CrossRef]
- Yu, N.; Li, M.; Zhang, Y.; Wang, F.; Yu, X.; Cai, R.; Li, J. Dual-Modulation of Immunosuppressive Pathways Using Sono-Activatable Semiconducting Polymer Nanofeedbacks for Cancer Immunotherapy. Nano Today 2023, 52, 101944. [Google Scholar] [CrossRef]
- Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; et al. Checkpoint Blockade and Nanosonosensitizer-Augmented Noninvasive Sonodynamic Therapy Combination Reduces Tumour Growth and Metastases in Mice. Nat. Commun. 2019, 10, 2025. [Google Scholar] [CrossRef]
- Babar, Q.; Saeed, A.; Tabish, T.A.; Sarwar, M.; Thorat, N.D. Targeting the Tumor Microenvironment: Potential Strategy for Cancer Therapeutics. Biochim. Biophys. Acta-Mol. Basis Dis. 2023, 1869, 166746. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental Regulation of Tumor Progression and Metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; You, Q.; Zhang, X. Prodrug Strategy for Cancer Cell-Specific Targeting: A Recent Overview. Eur. J. Med. Chem. 2017, 139, 542–563. [Google Scholar] [CrossRef]
- Giang, I.; Boland, E.L.; Poon, G.M.K. Prodrug Applications for Targeted Cancer Therapy. AAPS J. 2014, 16, 899–913. [Google Scholar] [CrossRef]
- Lei, H.; Kim, J.H.; Son, S.; Chen, L.; Pei, Z.; Yang, Y.; Liu, Z.; Cheng, L.; Kim, J.S. Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant Imiquimod. ACS Nano 2022, 16, 10979–10993. [Google Scholar] [CrossRef]
- Hu, H.; Yan, J.; Zhu, H.; Wang, X.; Zhao, Y.; Li, S.; Ma, Z.; Xu, F.; Xia, M.; Jiao, J.; et al. Self-Delivered Sonodynamic Nanomedicine for Enhanced Tumor Immunotherapy by Simultaneously Reversing the Immunosuppression and Immune Resistance. Chem. Eng. J. 2024, 501, 157580. [Google Scholar] [CrossRef]
- Nuhn, L.; De Koker, S.; Van Lint, S.; Zhong, Z.; Catani, J.P.; Combes, F.; Deswarte, K.; Li, Y.; Lambrecht, B.N.; Lienenklaus, S.; et al. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Adv. Mater. 2018, 30, e1803397. [Google Scholar] [CrossRef] [PubMed]
- Dovedi, S.J.; Adlard, A.L.; Ota, Y.; Murata, M.; Sugaru, E.; Koga-Yamakawa, E.; Eguchi, K.; Hirose, Y.; Yamamoto, S.; Umehara, H.; et al. Intravenous Administration of the Selective Toll-like Receptor 7 Agonist DSR-29133 Leads to Anti-Tumor Efficacy in Murine Solid Tumor Models Which Can Be Potentiated by Combination with Fractionated Radiotherapy. Oncotarget 2016, 7, 17035–17046. [Google Scholar] [CrossRef] [PubMed]
- Schölch, S.; Rauber, C.; Tietz, A.; Rahbari, N.N.; Bork, U.; Schmidt, T.; Kahlert, C.; Haberkorn, U.; Tomai, M.A.; Lipson, K.E.; et al. Radiotherapy Combined with TLR7/8 Activation Induces Strong Immune Responses against Gastrointestinal Tumors. Oncotarget 2015, 6, 4663–4676. [Google Scholar] [CrossRef]
- Lanzavecchia, A.; Sallusto, F. Regulation of T Cell Immunity by Dendritic Cells. Cell 2001, 106, 263–266. [Google Scholar] [CrossRef]
- Shang, N.; Figini, M.; Shangguan, J.; Wang, B.; Sun, C.; Pan, L.; Ma, Q.; Zhang, Z. Dendritic Cells Based Immunotherapy. Am. J. Cancer Res. 2017, 7, 2091–2102. [Google Scholar]
- Kim, H.; Griffith, T.S.; Panyam, J. Poly(d,l-Lactide-Co-Glycolide) Nanoparticles as Delivery Platforms for TLR7/8 Agonist-Based Cancer Vaccine. J. Pharmacol. Exp. Ther. 2019, 370, 715–724. [Google Scholar] [CrossRef]
- Pullen, A.M.; Kappler, J.W.; Marrack, P. Tolerance to Self Antigens Shapes the T-Cell Repertoire. Immunol. Rev. 1989, 107, 125–140. [Google Scholar] [CrossRef]
- Dubensky, T.W.; Reed, S.G. Adjuvants for Cancer Vaccines. Semin. Immunol. 2010, 22, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lynn, G.M.; Laga, R.; Darrah, P.A.; Ishizuka, A.S.; Balaci, A.J.; Dulcey, A.E.; Pechar, M.; Pola, R.; Gerner, M.Y.; Yamamoto, A.; et al. In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists That Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.; Kim, S.; Lee, S.N.; Kim, S.-Y.; Kim, J.-E.; Lee, K.Y.; Kim, M.S.; Heo, J.Y.; Park, Y.M.; Ku, B.M.; et al. Therapeutic Efficacy of Cancer Vaccine Adjuvanted with Nanoemulsion Loaded with TLR7/8 Agonist in Lung Cancer Model. Nanomed. Nanotechnol. Biol. Med. 2021, 37, 102415. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.; Kim, J.; Kim, S.; Choi, K.; Kang, T.; Lee, I.; Lim, Y.T.; Um, S.H.; Kim, C. ProLonged Liposomal Delivery of TLR7/8 Agonist for Enhanced Cancer Vaccine. Vaccines 2023, 11, 1503. [Google Scholar] [CrossRef]
- Adams, S.; Kozhaya, L.; Martiniuk, F.; Meng, T.-C.; Chiriboga, L.; Liebes, L.; Hochman, T.; Shuman, N.; Axelrod, D.; Speyer, J.; et al. Topical TLR7 Agonist Imiquimod Can Induce Immune-Mediated Rejection of Skin Metastases in Patients with Breast Cancer. Clin. Cancer Res. 2012, 18, 6748–6757. [Google Scholar] [CrossRef]
- Adams, S.; Demaria, S.; Rinchai, D.; Wang, E.; Novik, Y.; Oratz, R.; Fenton-Kerimian, M.; Levine, P.G.; Li, X.; Marincola, F.; et al. Topical TLR7 Agonist and Radiotherapy in Patients with Metastatic Breast Cancer. J. Immunother. Cancer 2025, 13, e011173. [Google Scholar] [CrossRef]
- Geller, M.A.; Cooley, S.; Argenta, P.A.; Downs, L.S.; Carson, L.F.; Judson, P.L.; Ghebre, R.; Weigel, B.; Panoskaltsis-Mortari, A.; Curtsinger, J.; et al. Toll-like Receptor-7 Agonist Administered Subcutaneously in a Prolonged Dosing Schedule in Heavily Pretreated Recurrent Breast, Ovarian, and Cervix Cancers. Cancer Immunol. Immunother. 2010, 59, 1877–1884. [Google Scholar] [CrossRef]
- Dummer, R.; Hauschild, A.; Becker, J.C.; Grob, J.-J.; Schadendorf, D.; Tebbs, V.; Skalsky, J.; Kaehler, K.C.; Moosbauer, S.; Clark, R.; et al. An Exploratory Study of Systemic Administration of the Toll-like Receptor-7 Agonist 852A in Patients with Refractory Metastatic Melanoma. Clin. Cancer Res. 2008, 14, 856–864. [Google Scholar] [CrossRef]
- Chow, L.Q.M.; Morishima, C.; Eaton, K.D.; Baik, C.S.; Goulart, B.H.; Anderson, L.N.; Manjarrez, K.L.; Dietsch, G.N.; Bryan, J.K.; Hershberg, R.M.; et al. Phase Ib Trial of the Toll-like Receptor 8 Agonist, Motolimod (VTX-2337), Combined with Cetuximab in Patients with Recurrent or Metastatic SCCHN. Clin. Cancer Res. 2017, 23, 2442–2450. [Google Scholar] [CrossRef]
- Dietsch, G.N.; Randall, T.D.; Gottardo, R.; Northfelt, D.W.; Ramanathan, R.K.; Cohen, P.A.; Manjarrez, K.L.; Newkirk, M.; Bryan, J.K.; Hershberg, R.M. Late-Stage Cancer Patients Remain Highly Responsive to Immune Activation by the Selective TLR8 Agonist Motolimod (VTX-2337). Clin. Cancer Res. 2015, 21, 5445–5452. [Google Scholar] [CrossRef]
- Siu, L.; Brody, J.; Gupta, S.; Marabelle, A.; Jimeno, A.; Munster, P.; Grilley-Olson, J.; Rook, A.H.; Hollebecque, A.; Wong, R.K.S.; et al. Safety and Clinical Activity of Intratumoral MEDI9197 Alone and in Combination with Durvalumab and/or Palliative Radiation Therapy in Patients with Advanced Solid Tumors. J. Immunother. Cancer 2020, 8, e001095. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Tolcher, A.W.; Rasco, D.W.; Johnson, M.L.; Alistar, A.T.; Li, L.; Chung, A.H.; Andtbacka, R.H.I. BDB001, an Intravenously Administered Toll-like Receptor 7 and 8 (TLR7/8) Agonist, in Combination with Pembrolizumab in Advanced Solid Tumors: Phase 1 Safety and Efficacy Results. J. Clin. Oncol. 2021, 39, 2512. [Google Scholar] [CrossRef]
- Shi, Y.; White, D.; He, L.; Miller, R.L.; Spaner, D.E. Toll-like Receptor-7 Tolerizes Malignant B Cells and Enhances Killing by Cytotoxic Agents. Cancer Res. 2007, 67, 1823–1831. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koga-Yamakawa, E.; Murata, M.; Dovedi, S.J.; Wilkinson, R.W.; Ota, Y.; Umehara, H.; Sugaru, E.; Hirose, Y.; Harada, H.; Jewsbury, P.J.; et al. TLR7 Tolerance Is Independent of the Type I IFN Pathway and Leads to Loss of Anti-Tumor Efficacy in Mice. Cancer Immunol. Immunother. 2015, 64, 1229–1239. [Google Scholar] [CrossRef]
- Hayashi, T.; Gray, C.S.; Chan, M.; Tawatao, R.I.; Ronacher, L.; McGargill, M.A.; Datta, S.K.; Carson, D.A.; Corr, M. Prevention of Autoimmune Disease by Induction of Tolerance to Toll-like Receptor 7. Proc. Natl. Acad. Sci. USA 2009, 106, 2764–2769. [Google Scholar] [CrossRef]
- Greenberg, E.N.; Marshall, M.E.; Jin, S.; Venkatesh, S.; Dragan, M.; Tsoi, L.C.; Gudjonsson, J.E.; Nie, Q.; Takahashi, J.S.; Andersen, B. Circadian Control of Interferon-Sensitive Gene Expression in Murine Skin. Proc. Natl. Acad. Sci. USA 2020, 117, 5761–5771. [Google Scholar] [CrossRef]
- Silver, A.C.; Buckley, S.M.; Hughes, M.E.; Hastings, A.K.; Nitabach, M.N.; Fikrig, E. Daily Oscillations in Expression and Responsiveness of Toll-like Receptors in Splenic Immune Cells. Heliyon 2018, 4, e00579. [Google Scholar] [CrossRef]
- Chung, C.; Seo, W.; Silwal, P.; Jo, E.-K. Crosstalks between Inflammasome and Autophagy in Cancer. J. Hematol. Oncol. 2020, 13, 100. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Guo, R.; Bian, Z.; Song, Y. Targeting Macrophages in Hematological Malignancies: Recent Advances and Future Directions. J. Hematol. Oncol. 2022, 15, 110. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Kimbrough, E.O.; Manochakian, R.; Zhao, Y.; Lou, Y. Immunotherapies Targeting Stimulatory Pathways and Beyond. J. Hematol. Oncol. 2021, 14, 78. [Google Scholar] [CrossRef]
- Annese, T.; Tamma, R.; Ribatti, D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front. Oncol. 2022, 12, 871085. [Google Scholar] [CrossRef]
- Chiang, E.Y.; Mellman, I. TIGIT-CD226-PVR Axis: Advancing Immune Checkpoint Blockade for Cancer Immunotherapy. J. Immunother. Cancer 2022, 10, e004711. [Google Scholar] [CrossRef]
- Andrews, L.P.; Cillo, A.R.; Karapetyan, L.; Kirkwood, J.M.; Workman, C.J.; Vignali, D.A.A. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clin. Cancer Res. 2022, 28, 5030–5039. [Google Scholar] [CrossRef]










| Treatment Strategies | TLR 7/8 Agonists | Delivery Systems/ Delivery Routes | Cancer Treatments | Study Outcomes/Safety Findings | Ref. |
|---|---|---|---|---|---|
| Immunomodulators | 522 | Nanoparticles Subcutaneously oral gavage Intraperitoneally (IP) | MB49 and B16-OVA murine tumor models |
| [67] |
| R848 | Nanoemulsion (NE) Intratumorally (i.t) | B16F10-OVA tumor-bearing mice TC-1 cervical tumor model |
| [68] | |
| IMD | nMOF i.t | Colorectal tumor model (CT26 cells) |
| [69] | |
| Analog of R848 | Conjugated nanoparticles IP | Murine colon adenocarcinoma model |
| [71] | |
| R848 | Implant | Colorectal Cancer |
| [72] | |
| IMD | Conjugated nanoparticles peritumoral (IT) | 4T1 (mouse breast cancer) tumor B16 melanoma mouse model |
| [133] | |
| R848 | Liposomes IP | Ovarian tumor-bearing mice (ID8 cells) |
| [73] | |
| R848 | Mesoporous nanoparticles (MSN) Intravenous (i.v) | CT26 colon carcinoma, B16 melanoma |
| [74] | |
| 522 | Subcutaneous | Melanoma and bladder tumor models (B16F10, MB49) |
| [75] | |
| Chemotherapy | R848 | Liposomes IP | CT26 murine colorectal tumors |
| [89] |
| R848 | Micelles IP | Gastric Cancer MFC tumor-bearing 615 mice |
| [90] | |
| R837 | Hydrogels Nanoparticles i.t | 4T1 bearing tumor model |
| [91] | |
| IQ | Hydrogel Nanoparticles i.t | Breast cancer (4T1 cells) |
| [92] | |
| R837 | Hydrogels subcutaneous | Melanoma (B16F10 cells) |
| [93] | |
| Phototherapy | 1V209 | TMV particles i.t | B16F10 dermal melanoma |
| [95] |
| R837 | Polyaniline-based NPs i.t | MCF-7 bearing tumor model |
| [96] | |
| R837 | Hydrogel i.t | Breast cancer (4T1 cells) |
| [97] | |
| R837 | Hydrogel i.t | Breast cancer (4T1 cells) |
| [98] | |
| R837 | Mesoporous nanoparticles i.v | 4T1 tumor-bearing mice |
| [99] | |
| R848 | Polymeric nanoparticles i.v | 4T1 tumor-bearing mice |
| [100] | |
| R848 | Polypyrrole (PPy)-based NCs i.t | U14 tumor-bearing mice |
| [101] | |
| R837 | PANI NPs i.v | U14 tumor-bearing mice |
| [102] | |
| R848 | PANI-conjugated glycol-chitosan NPs i.t | CT26 tumor mouse model |
| [103] | |
| R837 | PDA NPs-embedded chitosan hydrogel i.t | Melanoma (B16F10 cells) |
| [105] | |
| R848 | Prodrug-based NPs i.v | SCC-7 tumor mouse models |
| [106] | |
| R848 | Polymeric nanoparticles i.v | Colorectal tumors CT26 xenograft tumor models |
| [107] | |
| Loxoribine | Liposome i.v | 4T1 tumor-bearing mice |
| [108] | |
| R848 | Hydrogel i.t | 4T1 tumor-bearing mice |
| [109] | |
| poly(I:C), R848 | PLGA nanoparticles i.t | MC38, CT26 or TC-1 tumors bearing mice |
| [110] | |
| R837 | UCNPs i.t | CT26 tumor mice model |
| [111] | |
| IMQ | Cream | Skin cancer |
| [112] | |
| Radiation and sonodynamic therapy | IMQ | Placebo cream | TSA mouse tumor model |
| [115] |
| IMQ | Subcutaneous | B16F10 or B16F1 melanoma |
| [117] | |
| DSR-6434 | Intravenous | CT26 or KHT tumor-bearing mice |
| [116] | |
| DSR-29133 | Intravenous | Renal cancer (Renca), metastatic osteosarcoma (LM8), and colorectal cancer (CT26) |
| [134] | |
| DSP-0509 | Intravenous | 4T1 and CT26 bearing tumor model |
| [119] | |
| 3M-011 (854A) | IP | Colorectal (CT26 cells) and pancreatic cancer (Panc-02 cells) |
| [135] | |
| R848 | Intravenous | Mouse models of lymphoma (EG7, EL4, or A20 cells) |
| [118] | |
| R848 | Intravenous | Murine models of pancreatic cancer |
| [28] | |
| R837 | Liposomes i.v | 4T1 or CT26 tumor-bearing mice |
| [126] |
| TLR 7/8 Agonists | Route of Administration | Application Area | Key Findings/Safety Findings | Company | Phase | Trial ID |
|---|---|---|---|---|---|---|
| Imiquimod | Toipcal | Breast cancer | Well tolerated Cytokine production at tumor sites and tumor regression | NYU Langone Health (New York, NY, USA) | II | NCT00899574 |
| Toipcal | Breast cancer | Not significant clinical progress | NYU Langone Health | I/II | NCT01421017 | |
| Topical | Melanoma | Enhancing vaccination | 3 M (Tulsa, OK, USA) | I | NCT00453050 | |
| 852A | SC | Breast, ovarian, endometrial, and cervical cancers | Revealed antitumor activities | Masonic Cancer Center (Minneapolis, MN, USA), University of Minnesota | II | NCT00319748 |
| DSP-0509 | i.v infusion | Advanced solid tumors | Not reported | Sumitomo Pharma Oncology, Inc. (Marlborough, MA, USA) | I/II | NCT03416335 |
| BNT411 | i.v | Solid tumors, ES-SCLC | Investigated for the evaluation of safety, tolerability, clinical benefit, pharmacokinetic (PK), and pharmacodynamic data for phase II | BioNTech Small Molecules GmbH (Planegg, Bavaria, Germany) | I | NCT04101357 |
| DN1508052 | SC | Advanced Solid Tumors | Not reported | Shanghai De Novo Pharmatech Co., Ltd. (Shanghai, China) | Ib/II | NCT03934359 |
| VTX-2337 | i.t | Low-grade B-cell lymphomas | Determining the safety and effectiveness of a combination of radiation | Celgene (Summit, NJ, USA) | I/II | NCT01289210 |
| SC | Ovarian epithelial, Fallopian tube, or peritoneal cavity cancer | Not reported | Celgene | I | NCT01294293 | |
| SC | Squamous Cell Carcinomas of the Head and Neck (SCCHN) | Not reported | Celgene | I | NCT01334177 | |
| Epithelial ovarian, Fallopian tube or primary peritoneal cancer | Did not enhance clinical outcomes with combination treatment Identified significant changes in the OS of participants based on injection site reactions | Celgene | II | NCT01666444 | ||
| Squamous cell carcinoma of the head and neck | Not reported | Celgene | II | NCT01836029 | ||
| i.v infusion | Ovarian cancer | Determined a well-tolerated safety profile and promising efficacy | Celgene | I/II | NCT02431559 | |
| SC | Advanced solid tumors | Not reported | Celgene | Ib | NCT02650635 | |
| SC, i.t | Head and neck cancer | Not reported | Celgene | Ib | NCT03906526 | |
| MEDI9197 (3 M-052) | i.t | Solid tumors or CTCL | Reported induced systemic and intratumoral immune activation | MedImmune LLC (Gaithersburg, MD, USA) | I | NCT02556463 |
| Resiquimod | Topical | Melanoma vaccination | Enhanced vaccination | Mayo Clinic (Rochester, MN, USA) | I/II | NCT01748747 |
| Topical | Melanoma | Enhanced vaccination | Mayo Clinic | II | NCT00470379 | |
| BM201 | i.t | Refractory or metastatic solid tumors | Favorable safety profile Demonstrated antitumor activity | InnoBM Pharmaceutical Co., Ltd. (Suzhou Industrial Park, Jiangsu, China) | I | NCT06368960 |
| BDB001 | i.v | Advanced solid tumors | Well-tolerated 29% response rate in anti-PD-(L)1 refractory tumors Robust immune activation | Seven and Eight Biopharmaceuticals Corp (Edison, NJ, USA) | I | NCT03486301 |
| BDC-1001 | Advanced Cancers | Not progressed | Bolt Biotherapeutics Inc. (Redwood, CA, USA) | I/II | NCT04278144 | |
| LHC-165 | i.t | Advanced malignancies | Not reported | Novartis AG (Basel, Switzerland) | I | NCT03301896 |
| SHR-2150 | i.t | Unresectable/Metastatic Solid Tumors | Not reported | Chinese PLA General Hospital (Beijing, China) | I | NCT04588324 |
| RO-7119929 | Oral | Advanced primary or metastatic liver cancers | Identified dose-limiting safety risk | F. Hoffmann-La Roche Ltd. (Basel, Switzerland) | I | NCT04338685 |
| i.v | Advanced pancreatic adenocarcinoma | Disease control rate of 38% manageable safety profile | Institute Bergonie (Bordeaux Cedex, France) | II | NCT03915678 | |
| EIK1001 | i.v | Stage 4 NSCLC | Evaluating the safety and efficacy | Eikon Therapeutics (Hayward, CA, USA) | II | NCT06246110 |
| INI-4001 | i.v | Advanced solid tumors | First-in-human trial Nanoparticle delivery system; study ongoing in Australia | Inimmune Corporation (Missoula, MT, USA) | I | NCT06302426 |
| TransCon TLR7/8 Agonist | i.t | Advanced solid/metastasis tumors | Intratumoral delivery aims to enhance local immune response while reducing systemic exposure | Ascendis Pharma Oncology Division A/S (Palo Alto, CA, USA) | I/II | NCT04799054 |
| BDB018 | Advanced solid tumors | Designed for enhanced immune activation | Eikon Therapeutics | I | NCT04840394 | |
| NKTR-262 | i.t | Relapsed/refractory metastatic melanoma | Enhanced systemic activation of T and NK cells with minimal toxicity | Nektar Therapeutics (San Francisco, CA, USA) | II | NCT03435640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, J.; Prabha, S.; Griffith, T.S.; Ferguson, D.; Panyam, J. Enhancing Cancer Therapy with TLR7/8 Agonists: Applications in Vaccines and Combination Treatments. Cancers 2025, 17, 3582. https://doi.org/10.3390/cancers17213582
Mondal J, Prabha S, Griffith TS, Ferguson D, Panyam J. Enhancing Cancer Therapy with TLR7/8 Agonists: Applications in Vaccines and Combination Treatments. Cancers. 2025; 17(21):3582. https://doi.org/10.3390/cancers17213582
Chicago/Turabian StyleMondal, Jagannath, Swayam Prabha, Thomas S. Griffith, David Ferguson, and Jayanth Panyam. 2025. "Enhancing Cancer Therapy with TLR7/8 Agonists: Applications in Vaccines and Combination Treatments" Cancers 17, no. 21: 3582. https://doi.org/10.3390/cancers17213582
APA StyleMondal, J., Prabha, S., Griffith, T. S., Ferguson, D., & Panyam, J. (2025). Enhancing Cancer Therapy with TLR7/8 Agonists: Applications in Vaccines and Combination Treatments. Cancers, 17(21), 3582. https://doi.org/10.3390/cancers17213582

