Androgenetic Alopecia and Risks of Overall and Aggressive Prostate Cancer: An Updated Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Study Selection Criteria
2.2. Data Extraction
2.3. Statistical Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society (ACS). Cancer Facts and Figures 2024; American Cancer Society: Atlanta, GA, USA, 2024. [Google Scholar]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Attard, G.; Parker, C.; Eeles, R.A.; Schroder, F.; Tomlins, S.A.; Tannock, I.; Drake, C.G.; de Bono, J.S. Prostate cancer. Lancet 2016, 387, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Zeegers, M.P.; Jellema, A.; Ostrer, H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: A meta-analysis. Cancer 2003, 97, 1894–1903. [Google Scholar] [CrossRef]
- Hsing, A.W. Hormones and Prostate Cancer: What’s Next? Epidemiol. Rev. 2001, 23, 42–58. [Google Scholar] [CrossRef]
- Platz, E.A.; Giovannucci, E. The epidemiology of sex steroid hormones and their signaling and metabolic pathways in the etiology of prostate cancer. J. Steroid Biochem. Mol. Biol. 2004, 92, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Roddam, A.W.; Allen, N.E.; Appleby, P.; Key, T.J. Endogenous sex hormones and prostate cancer: A collaborative analysis of 18 prospective studies. J. Natl. Cancer Inst. 2008, 100, 170–183. [Google Scholar] [CrossRef]
- Boyle, P.; Koechlin, A.; Bota, M.; d’Onofrio, A.; Zaridze, D.G.; Perrin, P.; Fitzpatrick, J.; Burnett, A.L.; Boniol, M. Endogenous and exogenous testosterone and the risk of prostate cancer and increased prostate-specific antigen (PSA) level: A meta-analysis. BJU Int. 2016, 118, 731–741. [Google Scholar] [CrossRef]
- Ellis, J.A.; Sinclair, R.; Harrap, S.B. Androgenetic alopecia: Pathogenesis and potential for therapy. Expert Rev. Mol. Med. 2002, 4, 1–11. [Google Scholar] [CrossRef]
- Norwood, O.T. Male pattern baldness: Classification and incidence. South. Med. J. 1975, 68, 1359–1365. [Google Scholar] [CrossRef]
- Cuevas-Diaz Duran, R.; Martinez-Ledesma, E.; Garcia-Garcia, M.; Bajo Gauzin, D.; Sarro-Ramirez, A.; Gonzalez-Carrillo, C.; Rodriguez-Sardin, D.; Fuentes, A.; Cardenas-Lopez, A. The Biology and Genomics of Human Hair Follicles: A Focus on Androgenetic Alopecia. Int. J. Mol. Sci. 2024, 25, 2542. [Google Scholar] [CrossRef]
- Kaufman, K.D. Androgens and alopecia. Mol. Cell. Endocrinol. 2002, 198, 89–95. [Google Scholar] [CrossRef]
- Zhuo, F.L.; Xu, W.; Wang, L.; Wu, Y.; Xu, Z.L.; Zhao, J.Y. Androgen receptor gene polymorphisms and risk for androgenetic alopecia: A meta-analysis. Clin. Exp. Dermatol. 2012, 37, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.P.; Wariboko, M.A.; Hu, X.; Wang, Z.H.; Wu, Q.; Li, Y.M. Factors associated with early-onset androgenetic alopecia: A scoping review. PLoS ONE 2024, 19, e0299212. [Google Scholar] [CrossRef]
- Amoretti, A.; Laydner, H.; Bergfeld, W. Androgenetic alopecia and risk of prostate cancer: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2013, 68, 937–943. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Xie, B.; Xie, L. Male pattern baldness and incidence of prostate cancer: A systematic review and meta-analysis. Medicine 2018, 97, e11379. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 15 January 2025).
- Sanderson, S.; Tatt, I.D.; Higgins, J.P. Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: A systematic review and annotated bibliography. Int. J. Epidemiol. 2007, 36, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Phillips, A.N. Meta-analysis: Principles and procedures. BMJ 1997, 315, 1533–1537. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Hawk, E.; Breslow, R.A.; Graubard, B.I. Male pattern baldness and clinical prostate cancer in the epidemiologic follow-up of the first National Health and Nutrition Examination Survey. Cancer Epidemiol. Biomark. Prev. 2000, 9, 523–527. [Google Scholar]
- Denmark-Wahnefried, W.; Schildkraut, J.M.; Thompson, D.; Lesko, S.M.; McIntyre, L.; Schwingl, P.; Paulson, D.F.; Robertson, C.N.; Anderson, E.E.; Walther, P.J. Early onset baldness and prostate cancer risk. Cancer Epidemiol. Biomark. Prev. 2000, 9, 325–328. [Google Scholar]
- Giles, G.G.; Severi, G.; Sinclair, R.; English, D.R.; McCredie, M.R.; Johnson, W.; Boyle, P.; Hopper, J.L. Androgenetic alopecia and prostate cancer: Findings from an Australian case-control study. Cancer Epidemiol. Biomark. Prev. 2002, 11, 549–553. [Google Scholar]
- Faydaci, G.; Bilal, E.; Necmettin, P.; Fatih, T.; Asuman, O.; Ugur, K. Baldness, benign prostate hyperplasia, prostate cancer and androgen levels. Aging Male 2008, 11, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.L.; Page, S.T.; Lin, D.W.; Stanford, J.L. Male pattern baldness and prostate cancer risk in a population-based case-control study. Cancer Epidemiol. 2010, 34, 131–135. [Google Scholar] [CrossRef]
- Cremers, R.G.; Aben, K.K.; Vermeulen, S.H.; den Heijer, M.; van Oort, I.M.; Kiemeney, L.A. Androgenic alopecia is not useful as an indicator of men at high risk of prostate cancer. Eur. J. Cancer 2010, 46, 3294–3299. [Google Scholar] [CrossRef]
- Yassa, M.; Saliou, M.; De Rycke, Y.; Hemery, C.; Henni, M.; Bachaud, J.M.; Thiounn, N.; Cosset, J.M.; Giraud, P. Male pattern baldness and the risk of prostate cancer. Ann. Oncol. 2011, 22, 1824–1827. [Google Scholar] [CrossRef]
- Muller, D.C.; Giles, G.G.; Sinclair, R.; Hopper, J.L.; English, D.R.; Severi, G. Age-dependent associations between androgenetic alopecia and prostate cancer risk. Cancer Epidemiol. Biomark. Prev. 2013, 22, 209–215. [Google Scholar] [CrossRef]
- Thomas, J.A.; Antonelli, J.A.; Banez, L.L.; Hoyo, C.; Grant, D.; Demark-Wahnefried, W.; Platz, E.A.; Gerber, L.; Shuler, K.; Eyoh, E.; et al. Androgenetic alopecia at various ages and prostate cancer risk in an equal-access multiethnic case-control series of veterans. Cancer Causes Control 2013, 24, 1045–1052. [Google Scholar] [CrossRef]
- Zeigler-Johnson, C.; Morales, K.H.; Spangler, E.; Chang, B.L.; Rebbeck, T.R. Relationship of early-onset baldness to prostate cancer in African-American men. Cancer Epidemiol. Biomark. Prev. 2013, 22, 589–596. [Google Scholar] [CrossRef]
- Kucerova, R.; Bienova, M.; Kral, M.; Bouchal, J.; Trtkova, K.S.; Burdova, A.; Student, V.; Kolar, Z. Androgenetic alopecia and polymorphism of the androgen receptor gene (SNP rs6152) in patients with benign prostate hyperplasia or prostate cancer. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 91–96. [Google Scholar] [CrossRef]
- Zhou, C.K.; Littman, A.J.; Levine, P.H.; Hoffman, H.J.; Cleary, S.D.; White, E.; Cook, M.B. Male pattern baldness in relation to prostate cancer risks: An analysis in the VITamins and lifestyle (VITAL) cohort study. Prostate 2015, 75, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.K.; Pfeiffer, R.M.; Cleary, S.D.; Hoffman, H.J.; Levine, P.H.; Chu, L.W.; Hsing, A.W.; Cook, M.B. Relationship between male pattern baldness and the risk of aggressive prostate cancer: An analysis of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. J. Clin. Oncol. 2015, 33, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Al Edwan, G.; Bhindi, B.; Margel, D.; Chadwick, K.; Finelli, A.; Zlotta, A.; Trachtenberg, J.; Fleshner, N. The association of male pattern baldness and risk of cancer and high-grade disease among men presenting for prostate biopsy. Can. Urol. Assoc. J. 2016, 10, E424–E427. [Google Scholar] [CrossRef]
- Sarre, S.; Maattanen, L.; Tammela, T.L.; Auvinen, A.; Murtola, T.J. Postscreening follow-up of the Finnish Prostate Cancer Screening Trial on putative prostate cancer risk factors: Vitamin and mineral use, male pattern baldness, pubertal development and non-steroidal anti-inflammatory drug use. Scand. J. Urol. 2016, 50, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.K.; Levine, P.H.; Cleary, S.D.; Hoffman, H.J.; Graubard, B.I.; Cook, M.B. Male Pattern Baldness in Relation to Prostate Cancer-Specific Mortality: A Prospective Analysis in the NHANES I Epidemiologic Follow-up Study. Am. J. Epidemiol. 2016, 183, 210–217. [Google Scholar] [CrossRef]
- Papa, N.P.; MacInnis, R.J.; English, D.R.; Bolton, D.; Davis, I.D.; Lawrentschuk, N.; Millar, J.L.; Severi, G.; Hopper, J.L.; Giles, G.G. Early-onset baldness and the risk of aggressive prostate cancer: Findings from a case-control study. Cancer Causes Control 2018, 29, 93–102. [Google Scholar] [CrossRef]
- Khan, S.; Caldwell, J.; Wilson, K.M.; Gonzalez-Feliciano, A.G.; Peisch, S.; Pernar, C.H.; Graff, R.E.; Giovannucci, E.L.; Mucci, L.A.; Gerke, T.A.; et al. Baldness and Risk of Prostate Cancer in the Health Professionals Follow-up Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1229–1236. [Google Scholar] [CrossRef]
- Salmon, C.; Mesidor, M.; Rousseau, M.C.; Richard, H.; Weiss, D.; Spence, A.R.; Parent, M.E. Male-Pattern Vertex Baldness Trajectories, Chest Hair Patterns, and Odds of Overall and Aggressive Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2024, 33, 143–150. [Google Scholar] [CrossRef]
- Heilmann-Heimbach, S.; Hochfeld, L.M.; Henne, S.K.; Nothen, M.M. Hormonal regulation in male androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp. Dermatol. 2020, 29, 814–827. [Google Scholar] [CrossRef]
- Imperato-McGinley, J.; Zhu, Y.S. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol. Cell. Endocrinol. 2002, 198, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, L.; Arlt, W.; Storbeck, K.H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol. Cell. Endocrinol. 2018, 465, 4–26. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Coetzee, G.; Pearce, C.; Reichardt, J.; Bretsky, P.; Kolonel, L.; Henderson, B.; Lander, E.; Altshuler, D.; Daley, G. Androgen metabolism and prostate cancer: Establishing a model of genetic susceptibility. Eur. Urol. 2012, 35, 355–361. [Google Scholar] [CrossRef]
- Inui, S.; Itami, S. Molecular basis of androgenetic alopecia: From androgen to paracrine mediators through dermal papilla. J. Dermatol. Sci. 2011, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Li, S.; Huang, J.Y.; He, Z.Q.; Meng, X.Y.; Cao, Y.; Fang, C.; Zeng, X.T. Androgen receptor gene polymorphisms and risk of prostate cancer: A meta-analysis. Sci. Rep. 2017, 7, 40554. [Google Scholar] [CrossRef]
- Ellis, J.A.; Stebbing, M.; Harrap, S.B. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J. Investig. Dermatol. 2001, 116, 452–455. [Google Scholar] [CrossRef]
- Li, J.; Coates, R.J.; Gwinn, M.; Khoury, M.J. Steroid 5-alpha-reductase Type 2 (SRD5a2) gene polymorphisms and risk of prostate cancer: A HuGE review. Am. J. Epidemiol. 2010, 171, 1–13. [Google Scholar] [CrossRef]
- Levesque, E.; Laverdiere, I.; Lacombe, L.; Caron, P.; Rouleau, M.; Turcotte, V.; Tetu, B.; Fradet, Y.; Guillemette, C. Importance of 5alpha-reductase gene polymorphisms on circulating and intraprostatic androgens in prostate cancer. Clin. Cancer Res. 2014, 20, 576–584. [Google Scholar] [CrossRef]
- Obinata, D.; Takayama, K.; Inoue, S.; Takahashi, S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int. J. Urol. 2024, 31, 590–597. [Google Scholar] [CrossRef]
- Pirastu, N.; Joshi, P.K.; de Vries, P.S.; Cornelis, M.C.; McKeigue, P.M.; Keum, N.; Franceschini, N.; Colombo, M.; Giovannucci, E.L.; Spiliopoulou, A.; et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat. Commun. 2017, 8, 1584. [Google Scholar] [CrossRef]
- Heilmann-Heimbach, S.; Herold, C.; Hochfeld, L.M.; Hillmer, A.M.; Nyholt, D.R.; Hecker, J.; Javed, A.; Chew, E.G.; Pechlivanis, S.; Drichel, D.; et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat. Commun. 2017, 8, 14694. [Google Scholar] [CrossRef] [PubMed]
- Janivara, R.; Hazra, U.; Pfennig, A.; Harlemon, M.; Kim, M.S.; Eaaswarkhanth, M.; Chen, W.C.; Ogunbiyi, A.; Kachambwa, P.; Petersen, L.N.; et al. Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men. Hum. Genet. Genom. Adv. 2025, 6, 100428. [Google Scholar] [CrossRef] [PubMed]
- Sy, N.; Mastacouris, N.; Strunk, A.; Garg, A. Overall and Racial and Ethnic Subgroup Prevalences of Alopecia Areata, Alopecia Totalis, and Alopecia Universalis. JAMA Dermatol. 2023, 159, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Lee, H.J. Characteristics of androgenetic alopecia in asian. Ann. Dermatol. 2012, 24, 243–252. [Google Scholar] [CrossRef]




| Author | Year | Country | Design | Cases | Controls or Cohort | Age (yrs) | Race/Ethnicity | Definition of Aggressive PrCa | Adjustment Variables for Confounding | NOS Score * |
|---|---|---|---|---|---|---|---|---|---|---|
| Demark- Wahnefried | 2000 | USA | Case–control | 134 | 145 | 60 | Cases: W 79%, B 21%; Controls: W 72%, B 28% | NR | Age and race | 6 |
| Hawk | 2000 | USA | Cohort | 214 | 4207 | 55 | W 83%, B 16%, Oth 2% | NR | Age, race, residence, family income (evaluated also education and FH of PrCa) | 6 |
| Gilles | 2002 | Australia | Case–control | 1446 | 1390 | 84% aged 55 to 69 | NR: 31% born outside Australia | GS: 8–10 (high grade) | Age, study center, calendar year, FH of PrCa, and country of birth | 6 |
| Faydaci | 2008 | Turkey | Case–control | 44 | 108 | 66 | NR | NR | None; no logistic model | 4 |
| Cremers | 2010 | Netherlands | Case–control | 938 | 2160 | 65+ (66% cases), (52% control) | W 98% | Stage ≥ T2c or N+/M+ or GS: 8–10 or PSA > 20 | Age and FH of PrCa | 7 |
| Wright | 2010 | USA | Case–control | 999 | 942 | 60% were 60 to 74 | Cases: W 84%, B 16%; Controls: W 90%, B 10% | GS: 7 (4 + 3), 8–10, or regional/metastatic tumor stage, or PSA > 20 ng/mL | Age, race, PSA screening history, FH of PrCa, BMI and finasteride use. | 7 |
| Yassa | 2011 | France | Case–control | 388 | 281 | 66.5 | NR; 16% born outside Australia | GS ≥ 7 or T3/T4 stage | Age and FH of PrCa | 5 |
| Muller | 2013 | Australia | Cohort | 476 | 9448 | 66 | NR | GS > 7 or distant tumor stage | Age and country of birth | 7 |
| Thomas | 2013 | USA | Case–control | 167 | 312 | 62 | W 58%, B 42% | GS ≥ 7 | Age, race, FH of PrCa, BMI, and PSA screening history | 5 |
| Ziegler-Johnson | 2013 | USA | Case–control | 318 | 219 | 59 | B 100% | GS ≥ 7 | Age | 5 |
| Kucerova | 2015 | Czechia | Cross-Sectional | 119 | 190 | 63 | NR | NR | None | 4 |
| Zhou CK | 2015 | USA | Cohort | 2306 | 32,583 | 69 | 7% Other | GS ≥ 7 or regional/distant tumor stage or fatal PrCa | Age, ethnicity, marital status, Charlson comorbidity index, BMI, alcohol, smoking, and aspirin use | 7 |
| Zhou CK | 2015 | USA | Cohort | 1138 | 39,070 | 71 | W 89%, B 3%, Oth: 4% | GS ≥ 7 or regional/distant tumor stage or fatal PrCa | Age, screening arm, study center, education, marital status, diabetes, BMI, smoking, aspirin use, and MI | 8 |
| Al Edwan | 2016 | Canada | Case–control | 194 | 200 | 63 | NR | GS ≥ 7 | Age, PSA and DRE abnormalities | 4 |
| Sarre | 2016 | Finland | Cohort | 757 | 11,795 | 66 | NR | GS ≥ 7 or cT3 or fatal PrCa | Age | 7 |
| Zhou CK | 2016 | USA | Cohort | 107 | 4316 | 54 | B 18% | GS: 8–10 (high grade) | Age, race, family income and residence in poverty area | 6 |
| Papa | 2018 | Australia | Case–control | 1107 | 834 | 65 | Majority White | GS ≥ 8 or pT3+ or N1/M1 tumor stage | Age, growth spurt, body shape, ejaculatory frequency, cigarette smoking and alcohol use | 6 |
| Khan | 2020 | USA | Cohort | 5157 | 36,760 | 60 | W 96%, B 1%, Oth 3% | GS: 7 (4 + 3) or 8–10 | Age, calendar time, race, height, BMI, FH of PrCa, PSA testing history | 8 |
| Salmon | 2024 | Canada | Case–control | 1801 | 1846 | 64 | W 87%, B 7% Asian 1.3% | GS: 7 (4 + 3) or 8–10 | Age, ancestry, education, BMI, smoking status, history of diabetes | 7 |
| Male Pattern Baldness (MPB) | Studies | Pooled RR | 95% CI | I2 (%) | p-het * |
|---|---|---|---|---|---|
| Total PrCa Risk | Nr | ||||
| Frontal-only | 15 | 1.00 | 0.95–1.06 | 28.6% | 0.11 |
| Vertex-only | 12 | 1.06 | 0.98–1.13 | 20.4% | 0.22 |
| Frontal and Vertex | 14 | 1.08 | 1.02–1.14 | 44.8% | 0.016 |
| Age at MPB onset <40 years | |||||
| Frontal-only | 6 | 1.04 | 0.91–1.16 | 70.9% | 0.004 |
| Vertex-only | 5 | 1.02 | 0.68–1.36 | 34.4% | 0.19 |
| Frontal and Vertex | 6 | 1.13 | 0.96–1.31 | 68.4% | 0.007 |
| Age at MPB onset 40+ years | |||||
| Frontal-only | 14 | 0.99 | 0.93–1.05 | 0.0% | 0.64 |
| Vertex-only | 12 | 1.06 | 0.99–1.13 | 25.1% | 0.20 |
| Frontal and Vertex | 14 | 1.06 | 1.00–1.13 | 28.9% | 0.15 |
| Aggressive PrCa Risk† | |||||
| Frontal-only | 10 | 1.03 | 0.94–1.11 | 0.0% | 0.69 |
| Vertex-only | 9 | 1.14 | 1.02–1.25 | 38.8% | 0.09 |
| Frontal and Vertex | 13 | 1.07 | 0.98–1.17 | 52.6% | 0.009 |
| Case–control Studies | |||||
| Frontal-only | 10 | 0.97 | 0.86–1.07 | 39.0% | 0.07 |
| Vertex-only | 9 | 1.22 | 1.07–1.36 | 39.8% | 0.07 |
| Frontal and Vertex | 8 | 1.24 | 1.07–1.41 | 70.1% | <0.001 |
| Cohort Studies | |||||
| Frontal-only | 4 | 1.01 | 0.95–1.07 | 0.0% | 0.88 |
| Vertex-only | 3 | 1.02 | 0.93–1.11 | 0.0% | 0.97 |
| Frontal and Vertex | 6 | 1.07 | 1.00–1.13 | 41.5% | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanelin, D.G.; Amar, S.; Agalliu, I. Androgenetic Alopecia and Risks of Overall and Aggressive Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Cancers 2025, 17, 3581. https://doi.org/10.3390/cancers17213581
Hanelin DG, Amar S, Agalliu I. Androgenetic Alopecia and Risks of Overall and Aggressive Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Cancers. 2025; 17(21):3581. https://doi.org/10.3390/cancers17213581
Chicago/Turabian StyleHanelin, David G., Sapir Amar, and Ilir Agalliu. 2025. "Androgenetic Alopecia and Risks of Overall and Aggressive Prostate Cancer: An Updated Systematic Review and Meta-Analysis" Cancers 17, no. 21: 3581. https://doi.org/10.3390/cancers17213581
APA StyleHanelin, D. G., Amar, S., & Agalliu, I. (2025). Androgenetic Alopecia and Risks of Overall and Aggressive Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Cancers, 17(21), 3581. https://doi.org/10.3390/cancers17213581

