Immune Checkpoint Inhibitor Use in Advanced Hepatocellular Carcinoma: A Real-World Analysis of Efficacy and Toxicity
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Selection and Study Design
2.2. The Study Outcomes
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Predictors of Progression-Free Survival
3.3. Predictors of Overall Survival ICI
3.4. Predictors of Overall Survival
3.5. Predictors of irAE
3.6. ALBI vs. CTP Score in HCC Management
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.; Hao, J.; Wang, R.R.; Liu, X.; Gu, P.; Yu, H.; Yu, Y.; Wu, C.; Ou, B.; et al. Global burden of primary liver cancer by five etiologies and global prediction by 2035 based on global burden of disease study 2019. Cancer Med. 2022, 11, 1310–1323. [Google Scholar] [CrossRef]
- Kalligeros, M.; Henry, L.; Younossi, Z.M. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024, 160, 156004. [Google Scholar] [CrossRef]
- El-Serag, H.B. Hepatocellular carcinoma: Recent trends in the United States. Gastroenterology 2004, 127, S27–S34. [Google Scholar] [CrossRef]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2021, 76, 681–693. [Google Scholar] [CrossRef]
- Ducreux, M.; Abou-Alfa, G.K.; Bekaii-Saab, T.; Berlin, J.; Cervantes, A.; de Baere, T.; Eng, C.; Galle, P.; Gill, S.; Gruenberger, T.; et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open 2023, 8, 101567. [Google Scholar] [CrossRef]
- Trevisani, F.; Vitale, A.; Kudo, M.; Kulik, L.; Park, J.W.; Pinato, D.J.; Cillo, U. Merits and boundaries of the BCLC staging and treatment algorithm: Learning from the past to improve the future with a novel proposal. J. Hepatol. 2024, 80, 661–669. [Google Scholar] [CrossRef]
- Jogi, S.; Varanai, R.; Bantu, S.S.; Manne, A. Selecting the first line treatment in non-metastatic hepatocellular carcinoma—Comparing clinical practice guidelines. Oncol. Rev. 2020, 14, 515. [Google Scholar] [CrossRef]
- Chen, L.T.; Martinelli, E.; Cheng, A.L.; Pentheroudakis, G.; Qin, S.; Bhattacharyya, G.S.; Ikeda, M.; Lim, H.Y.; Ho, G.F.; Choo, S.P.; et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with intermediate and advanced/relapsed hepatocellular carcinoma: A TOS-ESMO initiative endorsed by CSCO, ISMPO, JSMO, KSMO, MOS and SSO. Ann. Oncol. 2020, 31, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, B.H.; Park, J.W. Overview of Asian clinical practice guidelines for the management of hepatocellular carcinoma: An Asian perspective comparison. Clin. Mol. Hepatol. 2023, 29, 252–262. [Google Scholar] [CrossRef]
- Bitterman, D.S.; Sanford, N.N.; Niemierko, A.; Mahal, B.A.; Qadan, M.; Ganguli, S.; Blaszkowsky, L.S.; Zhu, A.X.; Hong, T.S.; Devlin, P.M.; et al. Patterns of Care and Outcomes of Definitive External Beam Radiotherapy and Radioembolization for Localized Hepatocellular Carcinoma: A Propensity Score-adjusted Analysis. Am. J. Clin. Oncol. 2019, 42, 564–572. [Google Scholar] [CrossRef]
- Podlasek, A.; Abdulla, M.; Broering, D.; Bzeizi, K. Recent Advances in Locoregional Therapy of Hepatocellular Carcinoma. Cancers 2023, 15, 3347. [Google Scholar] [CrossRef]
- Kwong, A.J.; Ghaziani, T.T.; Yao, F.; Sze, D.; Mannalithara, A.; Mehta, N. National Trends and Waitlist Outcomes of Locoregional Therapy Among Liver Transplant Candidates With Hepatocellular Carcinoma in the United States. Clin. Gastroenterol. Hepatol. 2022, 20, 1142–1150.e1144. [Google Scholar] [CrossRef]
- Makary, M.S.; Khandpur, U.; Cloyd, J.M.; Mumtaz, K.; Dowell, J.D. Locoregional Therapy Approaches for Hepatocellular Carcinoma: Recent Advances and Management Strategies. Cancers 2020, 12, 1914. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Yau, T.; Galle, P.R.; Decaens, T.; Sangro, B.; Qin, S.; Fonseca, L.G.; Karachiwala, H.; Blanc, J.-F.; Park, J.-W.; Gane, E.; et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): An open-label, randomised, phase 3 trial. Lancet 2025, 405, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Rimassa, L.; Chan, S.L.; Sangro, B.; Lau, G.; Kudo, M.; Reig, M.; Breder, V.; Ryu, M.-H.; Ostapenko, Y.; Sukeepaisarnjaroen, W.; et al. Five-year overall survival update from the HIMALAYA study of tremelimumab plus durvalumab in unresectable HCC. J. Hepatol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, M.; Yang, Z.; Tan, K.; Zheng, D.; Du, X.; Liu, L. Comparison between Child-Pugh score and Albumin-Bilirubin grade in the prognosis of patients with HCC after liver resection using time-dependent ROC. Ann. Transl. Med. 2020, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Demirtas, C.O.; D’Alessio, A.; Rimassa, L.; Sharma, R.; Pinato, D.J. ALBI grade: Evidence for an improved model for liver functional estimation in patients with hepatocellular carcinoma. JHEP Rep. 2021, 3, 100347. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Q.; Wang, M.; Wang, E.; Li, H.; Liu, L. Comparison between Child-Pugh Score and albumin-bilirubin grade in patients treated with the combination therapy of transarterial chemoembolization and sorafenib for hepatocellular carcinoma. Ann. Transl. Med. 2020, 8, 537. [Google Scholar] [CrossRef]
- Toyoda, H.; Johnson, P.J. The ALBI score: From liver function in patients with HCC to a general measure of liver function. JHEP Rep. 2022, 4, 100557. [Google Scholar] [CrossRef]
- Jiang, J.; Diaz, D.A.; Nuguru, S.P.; Mittra, A.; Manne, A. Stereotactic Body Radiation Therapy (SBRT) Plus Immune Checkpoint Inhibitors (ICI) in Hepatocellular Carcinoma and Cholangiocarcinoma. Cancers 2022, 15, 50. [Google Scholar] [CrossRef]
- Bajestani, N.; Wu, G.; Hussein, A.; Makary, M.S. Examining the Efficacy and Safety of Combined Locoregional Therapy and Immunotherapy in Treating Hepatocellular Carcinoma. Biomedicines 2024, 12, 1432. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Kawashima, N.; Yang, A.M.; Devitt, M.L.; Babb, J.S.; Allison, J.P.; Formenti, S.C. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 2005, 11, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; See, A.P.; Phallen, J.; Jackson, C.M.; Belcaid, Z.; Ruzevick, J.; Durham, N.; Meyer, C.; Harris, T.J.; Albesiano, E.; et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 343–349. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef]
- Friedman, D.; Baird, J.R.; Young, K.H.; Cottam, B.; Crittenden, M.R.; Friedman, S.; Gough, M.J.; Newell, P. Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma. Hepatol. Res. 2017, 47, 702–714. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; Mckenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [PubMed]
- Young, K.H.; Baird, J.R.; Savage, T.; Cottam, B.; Friedman, D.; Bambina, S.; Messenheimer, D.J.; Fox, B.; Newell, P.; Bahjat, K.S.; et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS ONE 2016, 11, e0157164. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N (%) |
---|---|
Age at diagnosis | 66 years (40–86) |
Gender (male) | 81.1% |
Race | Caucasian: 84.9%, African-American: 13.2%, other: 1.8% |
Hepatitis C status | Positive: 45.2%, negative: 54.8% |
Smoking status | 69.8% |
Barcelona Clinic Liver Cancer Staging Category | D: 67.9%, C: 22.6%, B: 9.4% |
Lines of immune-checkpoint inhibitors used | 1: 50.9%, 2: 18.8%, 3: 16.9%, 4: 5.6%, >4: 7.5% |
History of systemic therapy | 35.8% |
Immune-checkpoint inhibitor agent used | Atezolizumab—32%, Durvalumab—2%, Nivolumab—62%, Pembrolizumab—3.7% |
Bevacizumab combination * | 24.5% |
Alpha-fetoprotein at the use of immune-checkpoint inhibitors | 404 (1.4–1,000,000) |
Number of lesions (≤3) | 35.8% |
Portal vein tumor thrombosis | Negative: 54.7% |
Distant metastatic disease | 41.5% |
Locoregional therapy used | Ablation: 11%, TACE: 26.4%, TARE: 19%, SBRT: 19%, Surgery: 9% |
Previous locoregional therapy | 49% |
Ascites # | 66% |
Encephalopathy # | Negative: 79.2% |
Child–Pugh Score # | A—53%, B—36%, C—11% |
White blood cell count #m | 5.54 (1.97–14.76) K/uL |
Red blood cell count #m | 4 (2.5–6.2) M/uL |
Hemoglobin #m | 12.4 (7–16.3) g/dL |
Platelet count #m | 163 (43–581) K/uL |
Absolute neutrophil count #m | 3.63 (1.1–12.1) K/uL |
Lymphocyte count #m | 1.1 (0.16–4.3)K/uL |
Platelet lymphocyte ratio #m | 163 (25.1–488.2) |
Neutrophil lymphocyte ratio #m | 3.54 (0.72–26.06) |
Total bilirubin #m | 1.1 (0.3–5.3) mg/dL |
Albumin #m | 3.3 (2.3–4.7) g/dL |
Albumin–bilirubin (ALBI) score # | 1: 20%, 2: 63%, 3: 17% |
Immune-related adverse event | Hepatitis: 3/10, pneumonitis: 2/10, dermatitis: 2/10 |
Immune-related adverse event required hospitalization | 6/10 |
Immune-checkpoint inhibitor discontinuation reason | Disease progression: 66%, Immune-related adverse event: 13.2%, Death: 16.9% |
Next line of therapy ## | TKIs—21%, TACE—4%, TARE-2%, capecitabine—6%, DI-2%, supportive care or death—65% |
First immune-checkpoint inhibitor dose after 2020 | 55% |
Factor | Univariable (PFS) | Multivariable (PFS) | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | Adjusted HR | 95% CI | p-Value | |
Alcohol History | ||||||
No | - | - | - | - | ||
Yes | 2.10 | 1.15, 3.83 | 0.016 | 2.24 | 1.20, 4.17 | 0.011 |
Line of ICI | ||||||
1 | - | - | - | - | ||
>1 | 1.74 | 0.96, 3.17 | 0.070 | 1.85 | 0.97, 3.53 | 0.062 |
Previous Locoregional Therapy | ||||||
no | - | - | ||||
yes | 1.74 | 0.96, 3.17 | 0.070 | |||
ALBI Grade | ||||||
Grade 1 | - | - | - | - | ||
Grade 2 | 2.21 | 0.89, 5.52 | 0.089 | 2.91 | 1.12, 7.52 | 0.028 |
Grade 3 | 3.51 | 1.28, 9.63 | 0.015 | 3.14 | 1.12, 8.80 | 0.030 |
PLR * | 1.00 | 1.00, 1.01 | 0.045 | |||
NLR * | 1.08 | 1.01, 1.15 | 0.033 |
Factor | Univariable (OS-ICI) | Multivariable (OS-ICI) | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | Adjusted HR | 95% CI | p-Value | |
Age | 0.97 | 0.94, 1.00 | 0.060 | 0.96 | 0.93, 1.01 | 0.086 |
Alcohol History | ||||||
No | - | - | - | - | ||
Yes | 2.07 | 1.11, 3.84 | 0.021 | 2.13 | 1.09, 4.19 | 0.028 |
Bevacizumab Combination | ||||||
No | - | - | - | - | ||
Yes | 0.46 | 0.23, 0.93 | 0.032 | 0.37 | 0.16, 0.86 | 0.021 |
Size of the Primary Lesion (in cm) | ||||||
≤3 | - | - | - | - | ||
>3 | 0.50 | 0.25, 1.00 | 0.051 | 0.53 | 0.25, 1.13 | 0.10 |
ALBI Grade | ||||||
Grade 1 | - | - | - | - | ||
Grade 2 | 1.69 | 0.72, 3.97 | 0.2 | 2.74 | 1.10, 6.80 | 0.030 |
Grade 3 | 2.35 | 0.91, 6.03 | 0.076 | 6.06 | 1.99, 18.5 | 0.002 |
PLR * | 1.00 | 1.00, 1.01 | 0.049 |
Factor | Univariable (OS) | Multivariable (OS) | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | Adjusted HR | 95% CI | p-Value | |
Alcohol History | ||||||
No | - | - | - | - | - | - |
Yes | 1.74 | 0.94, 3.22 | 0.077 | 1.68 | 0.89, 3.15 | 0.11 |
Previous Locoregional Therapy | ||||||
None | - | - | - | - | - | - |
Yes | 0.53 | 0.29, 0.95 | 0.033 | 0.43 | 0.22, 0.83 | 0.012 |
ALBI Grade | ||||||
Grade 1 | - | - | - | - | - | - |
Grade 2 | 2.33 | 0.96, 5.64 | 0.061 | 2.63 | 1.07, 6.46 | 0.035 |
Grade 3 | 2.05 | 0.80, 5.20 | 0.13 | 2.84 | 1.03, 7.87 | 0.044 |
Child–Pugh Category | ALBI Grades | |||
---|---|---|---|---|
1 (n = 8) | 2 (n = 31) | 3 (n = 14) | p-Value | |
A | 7 (88%) | 19 (61%) | 2 (14%) | 0.01 |
B | 1 (12%) | 11 (31%) | 7 (50%) | |
C | 0 | 1 (2%) | 5 (36%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tounkara, F.; Sherpally, D.; Mumtaz, K.; Makary, M.S.; Palm, R.F.; Manne, A. Immune Checkpoint Inhibitor Use in Advanced Hepatocellular Carcinoma: A Real-World Analysis of Efficacy and Toxicity. Cancers 2025, 17, 3034. https://doi.org/10.3390/cancers17183034
Tounkara F, Sherpally D, Mumtaz K, Makary MS, Palm RF, Manne A. Immune Checkpoint Inhibitor Use in Advanced Hepatocellular Carcinoma: A Real-World Analysis of Efficacy and Toxicity. Cancers. 2025; 17(18):3034. https://doi.org/10.3390/cancers17183034
Chicago/Turabian StyleTounkara, Fode, Deepak Sherpally, Khalid Mumtaz, Mina S. Makary, Russell F. Palm, and Ashish Manne. 2025. "Immune Checkpoint Inhibitor Use in Advanced Hepatocellular Carcinoma: A Real-World Analysis of Efficacy and Toxicity" Cancers 17, no. 18: 3034. https://doi.org/10.3390/cancers17183034
APA StyleTounkara, F., Sherpally, D., Mumtaz, K., Makary, M. S., Palm, R. F., & Manne, A. (2025). Immune Checkpoint Inhibitor Use in Advanced Hepatocellular Carcinoma: A Real-World Analysis of Efficacy and Toxicity. Cancers, 17(18), 3034. https://doi.org/10.3390/cancers17183034