AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Original research article
- -
- Use of artificial intelligence modality
- -
- Application to currently available radiological modalities
- -
- Potential relevance to clinical workflows in neuroradiology or neurosurgery (e.g., classification, segmentation, molecular prediction)
- -
- Reviews, editorials, conference abstracts, or letters
- -
- Not related to neuroradiology or neurosurgery
3. Results
3.1. Gliomas
3.2. Metastases
3.3. Others
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gittleman, H.R.; Ostrom, Q.T.; Rouse, C.D.; Dowling, J.A.; De Blank, P.M.; Kruchko, C.A.; Elder, J.B.; Rosenfeld, S.S.; Selman, W.R.; Sloan, A.E.; et al. Trends in Central Nervous System Tumor Incidence Relative to Other Common Cancers in Adults, Adolescents, and Children in the United States, 2000 to 2010. Cancer 2015, 121, 102–112. [Google Scholar] [CrossRef]
- Vernooij, M.W.; Ikram, M.A.; Tanghe, H.L.; Vincent, A.J.P.E.; Hofman, A.; Krestin, G.P.; Niessen, W.J.; Breteler, M.M.B.; van der Lugt, A. Incidental Findings on Brain MRI in the General Population. N. Engl. J. Med. 2007, 357, 1821–1828. [Google Scholar] [CrossRef]
- Niewykorzystany Potencjał Wysokospecjalistycznej Aparatury Medycznej—Najwyższa Izba Kontroli. Available online: https://www.nik.gov.pl/aktualnosci/niewykorzystany-potencjal-wysokospecjalistycznej-aparatury-medycznej.html (accessed on 13 May 2024).
- Mismatch Between Radiologist Shortages, Rising Exam Volumes a Growing Concern in Medical Imaging. Available online: https://radiologybusiness.com/topics/healthcare-management/healthcare-staffing/mismatch-between-radiologist-shortages-rising-exam-volumes-growing-concern-medical-imaging (accessed on 13 May 2024).
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of Machine Learning to Diagnosis and Treatment of Neurodegenerative Diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef]
- Puzio, T.; Matera, K.; Wiśniewski, K.; Grobelna, M.; Wanibuchi, S.; Jaskólski, D.J.; Bobeff, E.J. Automated Volumetric Evaluation of Intracranial Compartments and Cerebrospinal Fluid Distribution on Emergency Trauma Head CT Scans to Quantify Mass Effect. Front. Neurosci. 2024, 18, 1341734. [Google Scholar] [CrossRef]
- Onakpojeruo, E.P.; Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I. Enhanced MRI-Based Brain Tumour Classification with a Novel Pix2pix Generative Adversarial Network Augmentation Framework. Brain Commun. 2024, 6, fcae372. [Google Scholar] [CrossRef]
- Onakpojeruo, E.P.; Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I. A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification. Brain Sci. 2024, 14, 559. [Google Scholar] [CrossRef]
- Thillaikkarasi, R.; Saravanan, S. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM. J. Med. Syst. 2019, 43, 84. [Google Scholar] [CrossRef]
- Zhang, Q.; Ruan, G.; Yang, W.; Liu, Y.; Zhao, K.; Feng, Q.; Chen, W.; Wu, E.X.; Feng, Y. MRI Gibbs-Ringing Artifact Reduction by Means of Machine Learning Using Convolutional Neural Networks. Magn. Reson. Med. 2019, 82, 2133–2145. [Google Scholar] [CrossRef]
- Khan, F.; Ayoub, S.; Gulzar, Y.; Majid, M.; Reegu, F.A.; Mir, M.S.; Soomro, A.B.; Elwasila, O. MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor. J. Imaging 2023, 9, 163. [Google Scholar] [CrossRef]
- Gauriau, R.; Bizzo, B.C.; Kitamura, F.C.; Junior, O.L.; Ferraciolli, S.F.; Macruz, F.B.C.; Sanchez, T.A.; Garcia, M.R.T.; Vedolin, L.M.; Domingues, R.C.; et al. A Deep Learning-Based Model for Detecting Abnormalities on Brain MR Images for Triaging: Preliminary Results from a Multisite Experience. Radiol. Artif. Intell. 2021, 3, e200184. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Quang, D.; Guan, Y. Three-Plane-Assembled Deep Learning Segmentation of Gliomas. Radiol. Artif. Intell. 2020, 2, e190011. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, J.; Liang, Y.; Zhao, J.; Wu, Y.; Luo, S.; Lai, X.; Wang, J. ScSE-NL V-Net: A Brain Tumor Automatic Segmentation Method Based on Spatial and Channel “Squeeze-and-Excitation” Network with Non-Local Block. Front. Neurosci. 2022, 16, 916818. [Google Scholar] [CrossRef]
- Rasheed, Z.; Ma, Y.K.; Ullah, I.; Al Shloul, T.; Tufail, A.B.; Ghadi, Y.Y.; Khan, M.Z.; Mohamed, H.G. Automated Classification of Brain Tumors from Magnetic Resonance Imaging Using Deep Learning. Brain Sci. 2023, 13, 602. [Google Scholar] [CrossRef]
- Shen, S.; Li, C.; Fan, Y.; Lu, S.; Yan, Z.; Liu, H.; Zhou, H.; Zhang, Z. Development and Validation of a Multi-Modality Fusion Deep Learning Model for Differentiating Glioblastoma from Solitary Brain Metastases. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024, 49, 58–67. [Google Scholar] [CrossRef]
- Shin, I.; Kim, H.; Ahn, S.S.; Sohn, B.; Bae, S.; Park, J.E.; Kim, H.S.; Lee, S.K. Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images. AJNR Am. J. Neuroradiol. 2021, 42, 838–844. [Google Scholar] [CrossRef]
- Bae, S.; An, C.; Ahn, S.S.; Kim, H.; Han, K.; Kim, S.W.; Park, J.E.; Kim, H.S.; Lee, S.K. Robust Performance of Deep Learning for Distinguishing Glioblastoma from Single Brain Metastasis Using Radiomic Features: Model Development and Validation. Sci. Rep. 2020, 10, 12110. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, H.; Ouyang, Y.; Su, R.; Yang, W.; Huang, B. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures. J. Magn. Reson. Imaging 2023, 60, 909–920. [Google Scholar] [CrossRef]
- Yan, Q.; Li, F.; Cui, Y.; Wang, Y.; Wang, X.; Jia, W.; Liu, X.; Li, Y.; Chang, H.; Shi, F.; et al. Discrimination Between Glioblastoma and Solitary Brain Metastasis Using Conventional MRI and Diffusion-Weighted Imaging Based on a Deep Learning Algorithm. J. Digit. Imaging 2023, 36, 1480–1488. [Google Scholar] [CrossRef]
- Bathla, G.; Dhruba, D.D.; Liu, Y.; Le, N.H.; Soni, N.; Zhang, H.; Mohan, S.; Roberts-Wolfe, D.; Rathore, S.; Sonka, M.; et al. Differentiation Between Glioblastoma and Metastatic Disease on Conventional MRI Imaging Using 3D-Convolutional Neural Networks: Model Development and Validation. Acad. Radiol. 2024, 31, 2041–2049. [Google Scholar] [CrossRef]
- Stadlbauer, A.; Heinz, G.; Marhold, F.; Meyer-Bäse, A.; Ganslandt, O.; Buchfelder, M.; Oberndorfer, S. Differentiation of Glioblastoma and Brain Metastases by MRI-Based Oxygen Metabolomic Radiomics and Deep Learning. Metabolites 2022, 12, 1264. [Google Scholar] [CrossRef]
- Bai, J.; He, M.; Gao, E.; Yang, G.; Zhang, C.; Yang, H.; Dong, J.; Ma, X.; Gao, Y.; Zhang, H.; et al. High-Performance Presurgical Differentiation of Glioblastoma and Metastasis by Means of Multiparametric Neurite Orientation Dispersion and Density Imaging (NODDI) Radiomics. Eur. Radiol. 2024, 34, 6616–6628. [Google Scholar] [CrossRef]
- Yun, J.; Park, J.E.; Lee, H.; Ham, S.; Kim, N.; Kim, H.S. Radiomic Features and Multilayer Perceptron Network Classifier: A Robust MRI Classification Strategy for Distinguishing Glioblastoma from Primary Central Nervous System Lymphoma. Sci. Rep. 2019, 9, 5746. [Google Scholar] [CrossRef]
- Banzato, T.; Bernardini, M.; Cherubini, G.B.; Zotti, A. A Methodological Approach for Deep Learning to Distinguish between Meningiomas and Gliomas on Canine MR-Images. BMC Vet. Res. 2018, 14, 317. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Prakash, D.; Kim, C.H.; Kim, H.C.; Choi, H.K. Texture, Morphology, and Statistical Analysis to Differentiate Primary Brain Tumors on Two-Dimensional Magnetic Resonance Imaging Scans Using Artificial Intelligence Techniques. Healthc. Inform. Res. 2022, 28, 46–57. [Google Scholar] [CrossRef]
- Tariciotti, L.; Caccavella, V.M.; Fiore, G.; Schisano, L.; Carrabba, G.; Borsa, S.; Giordano, M.; Palmisciano, P.; Remoli, G.; Remore, L.G.; et al. A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study. Front. Oncol. 2022, 12, 816638. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J. Aided Diagnosis Model Based on Deep Learning for Glioblastoma, Solitary Brain Metastases, and Primary Central Nervous System Lymphoma with Multi-Modal MRI. Biology 2024, 13, 99. [Google Scholar] [CrossRef]
- Mahum, R.; Sharaf, M.; Hassan, H.; Liang, L.; Huang, B. A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding. Biomedicines 2023, 11, 1715. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, B.; Cheng, H.; Yu, Y.; Wang, W.; Yang, Y.; Ding, Y.; Qiu, L.; Qin, Z.; Yao, Z.; et al. A Convolutional Neural Network Model for Distinguishing Hemangioblastomas from Other Cerebellar-and-Brainstem Tumors Using Contrast-Enhanced MRI. J. Magn. Reson. Imaging 2024, 60, 1512–1520. [Google Scholar] [CrossRef]
- Pattanaik, B.B.; Anitha, K.; Rathore, S.; Biswas, P.; Sethy, P.K.; Behera, S.K. Brain Tumor Magnetic Resonance Images Classification Based Machine Learning Paradigms. Contemp. Oncol. 2022, 26, 268–274. [Google Scholar] [CrossRef]
- Asif, S.; Zhao, M.; Chen, X.; Zhu, Y. BMRI-NET: A Deep Stacked Ensemble Model for Multi-Class Brain Tumor Classification from MRI Images. Interdiscip. Sci. 2023, 15, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Hussain, S.J.; Zafar, A.; Bhutta, M.R.; Lee, S.W. WBM-DLNets: Wrapper-Based Metaheuristic Deep Learning Networks Feature Optimization for Enhancing Brain Tumor Detection. Bioengineering 2023, 10, 475. [Google Scholar] [CrossRef]
- Abd El-Wahab, B.S.; Nasr, M.E.; Khamis, S.; Ashour, A.S. BTC-FCNN: Fast Convolution Neural Network for Multi-Class Brain Tumor Classification. Health Inf. Sci. Syst. 2023, 11, 3. [Google Scholar] [CrossRef]
- Rasool, M.; Ismail, N.; Boulila, W.; Ammar, A.; Samma, H.; Yafooz, W.S.; Emara, A.H. A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy 2022, 24, 799. [Google Scholar] [CrossRef]
- Ullah, N.; Javed, A.; Alhazmi, A.; Hasnain, S.M.; Tahir, A.; Ashraf, R. TumorDetNet: A Unified Deep Learning Model for Brain Tumor Detection and Classification. PLoS ONE 2023, 18, e0291200. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Al-Ani, M.S. An Efficient Approach to Diagnose Brain Tumors through Deep CNN. Math. Biosci. Eng. 2020, 18, 851–867. [Google Scholar] [CrossRef]
- Peng, J.; Kim, D.D.; Patel, J.B.; Zeng, X.; Huang, J.; Chang, K.; Xun, X.; Zhang, C.; Sollee, J.; Wu, J.; et al. Deep Learning-Based Automatic Tumor Burden Assessment of Pediatric High-Grade Gliomas, Medulloblastomas, and Other Leptomeningeal Seeding Tumors. Neuro. Oncol. 2022, 24, 289–299. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Sotiras, A.; Milchenko, M.; Lamontagne, P.; Hileman, M.; Marcus, D. MRI-Based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-Institutional Analysis. Radiol. Artif. Intell. 2021, 3, e200301. [Google Scholar] [CrossRef]
- Stadlbauer, A.; Marhold, F.; Oberndorfer, S.; Heinz, G.; Buchfelder, M.; Kinfe, T.M.; Meyer-Bäse, A. Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data. Cancers 2022, 14, 2363. [Google Scholar] [CrossRef]
- Windisch, P.; Weber, P.; Fürweger, C.; Ehret, F.; Kufeld, M.; Zwahlen, D.; Muacevic, A. Implementation of Model Explainability for a Basic Brain Tumor Detection Using Convolutional Neural Networks on MRI Slices. Neuroradiology 2020, 62, 1515–1518. [Google Scholar] [CrossRef]
- Ye, N.; Yang, Q.; Chen, Z.; Teng, C.; Liu, P.; Liu, X.; Xiong, Y.; Lin, X.; Li, S.; Li, X. Classification of Gliomas and Germinomas of the Basal Ganglia by Transfer Learning. Front. Oncol. 2022, 12, 844197. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, W.; Lin, Z.; Zhu, W.; Zhou, J.; Wong, J.; Ding, Z. Brain Tumor Grading Based on Neural Networks and Convolutional Neural Networks. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 699–702. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, H.; Yu, P.; Kang, H.; Zhang, R. MMMNA-Net for Overall Survival Time Prediction of Brain Tumor Patients. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11–15 July 2022; pp. 3805–3808. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Chen, H.; Luo, L. Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans with Deep Learning. Front. Neurosci. 2019, 13, 810. [Google Scholar] [CrossRef]
- Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.Y.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef]
- Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D Deep Learning for Multi-Modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. Med. Image Comput. Comput. Assist. Interv. 2016, 9901, 212–220. [Google Scholar] [CrossRef]
- Quon, J.L.; Chen, L.C.; Kim, L.; Grant, G.A.; Edwards, M.S.B.; Cheshier, S.H.; Yeom, K.W. Deep Learning for Automated Delineation of Pediatric Cerebral Arteries on Pre-Operative Brain Magnetic Resonance Imaging. Front. Surg. 2020, 7, 517375. [Google Scholar] [CrossRef]
- Zhang, F.; Hoffmann, N.; Karayumak, S.C.; Rathi, Y.; Golby, A.J.; O’Donnell, L.J. Deep White Matter Analysis: Fast, Consistent Tractography Segmentation across Populations and DMRI Acquisitions. Med. Image Comput. Comput. Assist. Interv. 2019, 11766, 599–608. [Google Scholar] [CrossRef]
- Young, F.; Aquilina, K.; Seunarine, K.K.; Mancini, L.; Clark, C.A.; Clayden, J.D. Fibre Orientation Atlas Guided Rapid Segmentation of White Matter Tracts. Hum. Brain Mapp. 2024, 45, e26578. [Google Scholar] [CrossRef]
- Meesters, S.; Landers, M.; Rutten, G.J.; Florack, L. Subject-Specific Automatic Reconstruction of White Matter Tracts. J. Digit. Imaging 2023, 36, 2648–2661. [Google Scholar] [CrossRef]
- Lucena, O.; Lavrador, J.P.; Irzan, H.; Semedo, C.; Borges, P.; Vergani, F.; Granados, A.; Sparks, R.; Ashkan, K.; Ourselin, S. Assessing Informative Tract Segmentation and NTMS for Pre-Operative Planning. J. Neurosci. Methods 2023, 396, 109933. [Google Scholar] [CrossRef]
- Luckett, P.H.; Park, K.Y.; Lee, J.J.; Lenze, E.J.; Wetherell, J.L.; Eyler, L.T.; Snyder, A.Z.; Ances, B.M.; Shimony, J.S.; Leuthardt, E.C. Data-Efficient Resting-State Functional Magnetic Resonance Imaging Brain Mapping with Deep Learning. J. Neurosurg. 2023, 139, 1258–1269. [Google Scholar] [CrossRef]
- Ge, C.; Gu, I.Y.H.; Jakola, A.S.; Yang, J. Deep Semi-Supervised Learning for Brain Tumor Classification. BMC Med. Imaging 2020, 20, 87. [Google Scholar] [CrossRef]
- Kihira, S.; Mei, X.; Mahmoudi, K.; Liu, Z.; Dogra, S.; Belani, P.; Tsankova, N.; Hormigo, A.; Fayad, Z.A.; Doshi, A.; et al. U-Net Based Segmentation and Characterization of Gliomas. Cancers 2022, 14, 4457. [Google Scholar] [CrossRef]
- Cao, M.; Suo, S.; Zhang, X.; Wang, X.; Xu, J.; Yang, W.; Zhou, Y. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Biomed Res. Int. 2021, 2021, 1235314. [Google Scholar] [CrossRef]
- Choi, Y.S.; Bae, S.; Chang, J.H.; Kang, S.G.; Kim, S.H.; Kim, J.; Rim, T.H.; Choi, S.H.; Jain, R.; Lee, S.K. Fully Automated Hybrid Approach to Predict the IDH Mutation Status of Gliomas via Deep Learning and Radiomics. Neuro. Oncol. 2021, 23, 304–313. [Google Scholar] [CrossRef]
- Kawaguchi, R.K.; Takahashi, M.; Miyake, M.; Kinoshita, M.; Takahashi, S.; Ichimura, K.; Hamamoto, R.; Narita, Y.; Sese, J. Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers 2021, 13, 3611. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Ji, Y.; Guo, Y.; Duan, J.; Liu, X.; Yan, D.; Liang, D.; Li, W.; Zhang, Z.; et al. Computational Pathology for Prediction of Isocitrate Dehydrogenase Gene Mutation from Whole Slide Images in Adult Patients with Diffuse Glioma. Am. J. Pathol. 2024, 194, 747–758. [Google Scholar] [CrossRef]
- Bangalore Yogananda, C.G.; Wagner, B.C.; Truong, N.C.D.; Holcomb, J.M.; Reddy, D.D.; Saadat, N.; Hatanpaa, K.J.; Patel, T.R.; Fei, B.; Lee, M.D.; et al. MRI-Based Deep Learning Method for Classification of IDH Mutation Status. Bioengineering 2023, 10, 1045. [Google Scholar] [CrossRef]
- Safari, M.; Beiki, M.; Ameri, A.; Toudeshki, S.H.; Fatemi, A.; Archambault, L. Shuffle-ResNet: Deep Learning for Predicting LGG IDH1 Mutation from Multicenter Anatomical MRI Sequences. Biomed. Phys. Eng. Express 2022, 8, 065036. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Iwamoto, Y.; Cheng, J.; Bai, J.; Zhao, G.; Chen, Y.W. An Intra- and Inter-Modality Fusion Model Using MR Images for Prediction of Glioma Isocitrate Dehydrogenase (IDH) Mutation. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11–15 July 2022; pp. 198–202. [Google Scholar] [CrossRef]
- Zeng, H.; Xing, Z.; Gao, F.; Wu, Z.; Huang, W.; Su, Y.; Chen, Z.; Cai, S.; Cao, D.; Cai, C. A Multimodal Domain Adaptive Segmentation Framework for IDH Genotype Prediction. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1923–1931. [Google Scholar] [CrossRef]
- Park, J.E.; Eun, D.; Kim, H.S.; Lee, D.H.; Jang, R.W.; Kim, N. Generative Adversarial Network for Glioblastoma Ensures Morphologic Variations and Improves Diagnostic Model for Isocitrate Dehydrogenase Mutant Type. Sci. Rep. 2021, 11, 9912. [Google Scholar] [CrossRef]
- Choi, Y.; Nam, Y.; Lee, Y.S.; Kim, J.; Ahn, K.J.; Jang, J.; Shin, N.Y.; Kim, B.S.; Jeon, S.S. IDH1 Mutation Prediction Using MR-Based Radiomics in Glioblastoma: Comparison between Manual and Fully Automated Deep Learning-Based Approach of Tumor Segmentation. Eur. J. Radiol. 2020, 128, 109031. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, X.; Zhu, L.; Zhang, L.; Schonlieb, C.B.; Price, S.; Li, C. Multi-Modal Learning for Predicting the Genotype of Glioma. IEEE Trans. Med. Imaging 2023, 42, 3167–3178. [Google Scholar] [CrossRef] [PubMed]
- Nalawade, S.; Murugesan, G.K.; Vejdani-Jahromi, M.; Fisicaro, R.A.; Bangalore Yogananda, C.G.; Wagner, B.; Mickey, B.; Maher, E.; Pinho, M.C.; Fei, B.; et al. Classification of Brain Tumor Isocitrate Dehydrogenase Status Using MRI and Deep Learning. J. Med. Imaging 2019, 6, 046003. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Choi, S.H.; Jeong, B. Prediction of IDH Genotype in Gliomas with Dynamic Susceptibility Contrast Perfusion MR Imaging Using an Explainable Recurrent Neural Network. Neuro. Oncol. 2019, 21, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Bai, H.X.; Zhou, H.; Su, C.; Bi, W.L.; Agbodza, E.; Kavouridis, V.K.; Senders, J.T.; Boaro, A.; Beers, A.; et al. Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging. Clin. Cancer Res. 2018, 24, 1073–1081. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, S.; Sun, Q.; Wang, W.; Duan, W.; Wang, L.; Ding, T.; Pei, D.; Sun, C.; Wang, W.; et al. Predicting 1p/19q Co-Deletion Status from Magnetic Resonance Imaging Using Deep Learning in Adult-Type Diffuse Lower-Grade Gliomas: A Discovery and Validation Study. Lab. Investig. 2022, 102, 154–159. [Google Scholar] [CrossRef]
- Yogananda, C.G.B.; Shah, B.R.; Yu, F.F.; Pinho, M.C.; Nalawade, S.S.; Murugesan, G.K.; Wagner, B.C.; Mickey, B.; Patel, T.R.; Fei, B.; et al. A Novel Fully Automated MRI-Based Deep-Learning Method for Classification of 1p/19q Co-Deletion Status in Brain Gliomas. Neuro-Oncol. Adv. 2020, 2, iv42–iv48. [Google Scholar] [CrossRef]
- Ge, C.; Gu, I.Y.H.; Jakola, A.S.; Yang, J. Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5894–5897. [Google Scholar] [CrossRef]
- Capuozzo, S.; Gravina, M.; Gatta, G.; Marrone, S.; Sansone, C. A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification. J. Imaging 2022, 8, 321. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Ye, M.; Li, Y.; Sun, Y.; Liang, J.; Lu, J.; Wang, Z.; Zhu, Z.; Zhang, X.; et al. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics. J. Clin. Med. 2022, 11, 3445. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, H.; Choi, K.S.; Nam, J.G.; Park, C.K.; Park, S.H.; Chung, J.W.; Choi, S.H. Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge. Cancers 2022, 14, 4827. [Google Scholar] [CrossRef]
- Usuzaki, T.; Takahashi, K.; Inamori, R.; Morishita, Y.; Shizukuishi, T.; Takagi, H.; Ishikuro, M.; Obara, T.; Takase, K. Identifying Key Factors for Predicting O6-Methylguanine-DNA Methyltransferase Status in Adult Patients with Diffuse Glioma: A Multimodal Analysis of Demographics, Radiomics, and MRI by Variable Vision Transformer. Neuroradiology 2024, 66, 761–773. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Cheng, J.; Bai, J.; Zhao, G.; Chen, Y.W. Multi-Task Model for Glioma Segmentation and Isocitrate Dehydrogenase Status Prediction Using Global and Local Features. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Saeed, N.; Ridzuan, M.; Alasmawi, H.; Sobirov, I.; Yaqub, M. MGMT Promoter Methylation Status Prediction Using MRI Scans? An Extensive Experimental Evaluation of Deep Learning Models. Med. Image Anal. 2023, 90, 102989. [Google Scholar] [CrossRef]
- Robinet, L.; Siegfried, A.; Roques, M.; Berjaoui, A.; Cohen-Jonathan Moyal, E. MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation. Cancers 2023, 15, 2253. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Hussain, L.; Ibrar, U.; Alabdulkreem, E.; Nour, M.K.; Alqahtani, M.S.; Nafie, F.M.; Mohamed, A.; Mohammed, G.P.; Duong, T.Q. Radiogenomic Classification for MGMT Promoter Methylation Status Using Multi-Omics Fused Feature Space for Least Invasive Diagnosis through MpMRI Scans. Sci. Rep. 2023, 13, 3291. [Google Scholar] [CrossRef]
- Saxena, S.; Jena, B.; Mohapatra, B.; Gupta, N.; Kalra, M.; Scartozzi, M.; Saba, L.; Suri, J.S. Fused Deep Learning Paradigm for the Prediction of O6-Methylguanine-DNA Methyltransferase Genotype in Glioblastoma Patients: A Neuro-Oncological Investigation. Comput. Biol. Med. 2023, 153, 106492. [Google Scholar] [CrossRef]
- Faghani, S.; Khosravi, B.; Moassefi, M.; Conte, G.M.; Erickson, B.J. A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI. J. Digit. Imaging 2023, 36, 837–846. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, M.; Tong, Y.; Zhang, T.; Fu, Y.; Li, H.; Zhang, Z.; Cheng, Z.; Xu, X.; Yang, R.; et al. Automatic Prediction of MGMT Status in Glioblastoma via Deep Learning-Based MR Image Analysis. Biomed Res. Int. 2020, 2020, 9258649. [Google Scholar] [CrossRef]
- Crisi, G.; Filice, S. Predicting MGMT Promoter Methylation of Glioblastoma from Dynamic Susceptibility Contrast Perfusion: A Radiomic Approach. J. Neuroimaging 2020, 30, 458–462. [Google Scholar] [CrossRef]
- Yogananda, C.G.B.; Shah, B.R.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner, B.C.; Mickey, B.; Patel, T.R.; Fei, B.; et al. MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status. AJNR Am. J. Neuroradiol. 2021, 42, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Kamdar, M.R. MRI to MGMT: Predicting Methylation Status in Glioblastoma Patients Using Convolutional Recurrent Neural Networks. Pacific Symp. Biocomput. 2018, 23, 331–342. [Google Scholar] [CrossRef]
- Korfiatis, P.; Kline, T.L.; Lachance, D.H.; Parney, I.F.; Buckner, J.C.; Erickson, B.J. Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status. J. Digit. Imaging 2017, 30, 622–628. [Google Scholar] [CrossRef]
- Tillmanns, N.; Lost, J.; Tabor, J.; Vasandani, S.; Vetsa, S.; Marianayagam, N.; Yalcin, K.; Erson-Omay, E.Z.; von Reppert, M.; Jekel, L.; et al. Application of Novel PACS-Based Informatics Platform to Identify Imaging Based Predictors of CDKN2A Allelic Status in Glioblastomas. Sci. Rep. 2023, 13, 22942. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Qu, L.; Sun, T.; Duan, Y.; Wu, M.; Weng, J.; Li, Z.; Gong, X.; Liu, X.; et al. Deep Learning for Noninvasive Assessment of H3 K27M Mutation Status in Diffuse Midline Gliomas Using MR Imaging. J. Magn. Reson. Imaging 2023, 58, 850–861. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Y.; Mao, Q.; Ju, Y.; Liu, Y.; Su, Z.; Lei, Y.; Ren, Y. Deep Learning-Based Prediction of H3K27M Alteration in Diffuse Midline Gliomas Based on Whole-Brain MRI. Cancer Med. 2023, 12, 17139–17148. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Lamontagne, P.; Shimony, J.; Marcus, D.S.; Sotiras, A. MRI-Based Classification of IDH Mutation and 1p/19q Codeletion Status of Gliomas Using a 2.5D Hybrid Multi-Task Convolutional Neural Network. Neuro-Oncol. Adv. 2023, 5, vdad023. [Google Scholar] [CrossRef]
- Decuyper, M.; Bonte, S.; Deblaere, K.; Van Holen, R. Automated MRI Based Pipeline for Segmentation and Prediction of Grade, IDH Mutation and 1p19q Co-Deletion in Glioma. Comput. Med. Imaging Graph. 2021, 88, 101831. [Google Scholar] [CrossRef]
- Kihira, S.; Derakhshani, A.; Leung, M.; Mahmoudi, K.; Bauer, A.; Zhang, H.; Polson, J.; Arnold, C.; Tsankova, N.M.; Hormigo, A.; et al. Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign. Cancers 2023, 15, 1037. [Google Scholar] [CrossRef] [PubMed]
- Nalawade, S.S.; Yu, F.F.; Bangalore Yogananda, C.G.; Murugesan, G.K.; Shah, B.R.; Pinho, M.C.; Wagner, B.C.; Xi, Y.; Mickey, B.; Patel, T.R.; et al. Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-Based Deep Learning: An Initial Study on the Effect of Motion and Motion Correction. J. Med. Imaging 2022, 9, 016001. [Google Scholar] [CrossRef] [PubMed]
- Buz-Yalug, B.; Turhan, G.; Cetin, A.I.; Dindar, S.S.; Danyeli, A.E.; Yakicier, C.; Pamir, M.N.; Özduman, K.; Dincer, A.; Ozturk-Isik, E. Identification of IDH and TERTp Mutations Using Dynamic Susceptibility Contrast MRI with Deep Learning in 162 Gliomas. Eur. J. Radiol. 2024, 170, 111257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, R.; Gao, J.; Tang, Y.; Xu, X.; Kan, Y.; Cao, X.; Wen, Z.; Liu, Z.; Cui, S.; et al. A Novel MRI-Based Deep Learning Networks Combined with Attention Mechanism for Predicting CDKN2A/B Homozygous Deletion Status in IDH-Mutant Astrocytoma. Eur. Radiol. 2024, 34, 391–399. [Google Scholar] [CrossRef]
- Calabrese, E.; Villanueva-Meyer, J.E.; Cha, S. A Fully Automated Artificial Intelligence Method for Non-Invasive, Imaging-Based Identification of Genetic Alterations in Glioblastomas. Sci. Rep. 2020, 10, 11852. [Google Scholar] [CrossRef]
- Rui, W.; Zhang, S.; Shi, H.; Sheng, Y.; Zhu, F.; Yao, Y.; Chen, X.; Cheng, H.; Zhang, Y.; Aili, A.; et al. Deep Learning-Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular Subtyping of Gliomas. Phenomics 2023, 3, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.B.; Gu, I.Y.H.; Berger, M.S.; Pallud, J.; Southwell, D.; Widhalm, G.; Roux, A.; Vecchio, T.G.; Jakola, A.S. Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas. Brain Sci. 2020, 10, 463. [Google Scholar] [CrossRef]
- Li, Y.; Wei, D.; Liu, X.; Fan, X.; Wang, K.; Li, S.; Zhang, Z.; Ma, K.; Qian, T.; Jiang, T.; et al. Molecular Subtyping of Diffuse Gliomas Using Magnetic Resonance Imaging: Comparison and Correlation between Radiomics and Deep Learning. Eur. Radiol. 2022, 32, 747–758. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, Q.Q.; Shi, N.; Dong, L.N.; Zhu, H.; Xu, K. A Multitask Classification Framework Based on Vision Transformer for Predicting Molecular Expressions of Glioma. Eur. J. Radiol. 2022, 157, 110560. [Google Scholar] [CrossRef]
- Tak, D.; Ye, Z.; Zapaischykova, A.; Zha, Y.; Boyd, A.; Vajapeyam, S.; Chopra, R.; Hayat, H.; Prabhu, S.P.; Liu, K.X.; et al. Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning. Radiol. Artif. Intell. 2024, 6, e230333. [Google Scholar] [CrossRef]
- Matsui, Y.; Maruyama, T.; Nitta, M.; Saito, T.; Tsuzuki, S.; Tamura, M.; Kusuda, K.; Fukuya, Y.; Asano, H.; Kawamata, T.; et al. Prediction of Lower-Grade Glioma Molecular Subtypes Using Deep Learning. J. Neurooncol. 2020, 146, 321–327. [Google Scholar] [CrossRef]
- Liu, L.; Chang, J.; Zhang, P.; Qiao, H.; Xiong, S. SASG-GCN: Self-Attention Similarity Guided Graph Convolutional Network for Multi-Type Lower-Grade Glioma Classification. IEEE J. Biomed. Health Inform. 2023, 27, 3384–3395. [Google Scholar] [CrossRef]
- Buda, M.; Saha, A.; Mazurowski, M.A. Association of Genomic Subtypes of Lower-Grade Gliomas with Shape Features Automatically Extracted by a Deep Learning Algorithm. Comput. Biol. Med. 2019, 109, 218–225. [Google Scholar] [CrossRef]
- Yoon, J.; Baek, N.; Yoo, R.E.; Choi, S.H.; Kim, T.M.; Park, C.K.; Park, S.H.; Won, J.K.; Lee, J.H.; Lee, S.T.; et al. Added Value of Dynamic Contrast-Enhanced MR Imaging in Deep Learning-Based Prediction of Local Recurrence in Grade 4 Adult-Type Diffuse Gliomas Patients. Sci. Rep. 2024, 14, 2171. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Unberath, M.; Heo, H.Y.; Eberhart, C.G.; Lim, M.; Blakeley, J.O.; Jiang, S. Learning-Based Analysis of Amide Proton Transfer-Weighted MRI to Identify True Progression in Glioma Patients. NeuroImage Clin. 2022, 35, 103121. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Molina-Romero, M.; Diehl, C.; Menze, B.H.; Straube, C.; Meyer, B.; Zimmer, C.; Wiestler, B.; Combs, S.E. Deep Learning Derived Tumor Infiltration Maps for Personalized Target Definition in Glioblastoma Radiotherapy. Radiother. Oncol. 2019, 138, 166–172. [Google Scholar] [CrossRef]
- Ermiş, E.; Jungo, A.; Poel, R.; Blatti-Moreno, M.; Meier, R.; Knecht, U.; Aebersold, D.M.; Fix, M.K.; Manser, P.; Reyes, M.; et al. Fully Automated Brain Resection Cavity Delineation for Radiation Target Volume Definition in Glioblastoma Patients Using Deep Learning. Radiat. Oncol. 2020, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.Y.; Chung, S.W.; Jeong, J.H.; Hwang, I.; Park, C.K.; Kim, T.M.; Park, S.H.; Won, J.K.; Lee, J.H.; Lee, S.T.; et al. Radiomics-Based Neural Network Predicts Recurrence Patterns in Glioblastoma Using Dynamic Susceptibility Contrast-Enhanced MRI. Sci. Rep. 2021, 11, 9974. [Google Scholar] [CrossRef]
- Lee, J.; Wang, N.; Turk, S.; Mohammed, S.; Lobo, R.; Kim, J.; Liao, E.; Camelo-Piragua, S.; Kim, M.; Junck, L.; et al. Discriminating Pseudoprogression and True Progression in Diffuse Infiltrating Glioma Using Multi-Parametric MRI Data through Deep Learning. Sci. Rep. 2020, 10, 20331. [Google Scholar] [CrossRef]
- Akbari, H.; Rathore, S.; Bakas, S.; Nasrallah, M.P.; Shukla, G.; Mamourian, E.; Rozycki, M.; Bagley, S.J.; Rudie, J.D.; Flanders, A.E.; et al. Histopathology-Validated Machine Learning Radiographic Biomarker for Noninvasive Discrimination between True Progression and Pseudo-Progression in Glioblastoma. Cancer 2020, 126, 2625–2636. [Google Scholar] [CrossRef]
- Bacchi, S.; Zerner, T.; Dongas, J.; Asahina, A.T.; Abou-Hamden, A.; Otto, S.; Oakden-Rayner, L.; Patel, S. Deep Learning in the Detection of High-Grade Glioma Recurrence Using Multiple MRI Sequences: A Pilot Study. J. Clin. Neurosci. 2019, 70, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Moassefi, M.; Faghani, S.; Conte, G.M.; Kowalchuk, R.O.; Vahdati, S.; Crompton, D.J.; Perez-Vega, C.; Cabreja, R.A.D.; Vora, S.A.; Quiñones-Hinojosa, A.; et al. A Deep Learning Model for Discriminating True Progression from Pseudoprogression in Glioblastoma Patients. J. Neurooncol. 2022, 159, 447–455. [Google Scholar] [CrossRef]
- Zhu, J.; Ye, J.; Dong, L.; Ma, X.; Tang, N.; Xu, P.; Jin, W.; Li, R.; Yang, G.; Lai, X. Non-Invasive Prediction of Overall Survival Time for Glioblastoma Multiforme Patients Based on Multimodal MRI Radiomics. Int. J. Imaging Syst. Technol. 2023, 33, 1261–1274. [Google Scholar] [CrossRef]
- Luckett, P.H.; Olufawo, M.; Lamichhane, B.; Park, K.Y.; Dierker, D.; Verastegui, G.T.; Yang, P.; Kim, A.H.; Chheda, M.G.; Snyder, A.Z.; et al. Predicting Survival in Glioblastoma with Multimodal Neuroimaging and Machine Learning. J. Neurooncol. 2023, 164, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Yun, S.; Park, J.E.; Cheong, E.N.; Park, S.Y.; Kim, N.; Kim, H.S. Deep Learning of Time-Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma. AJNR Am. J. Neuroradiol. 2023, 44, 543–552. [Google Scholar] [CrossRef]
- Shaheen, A.; Bukhari, S.T.; Nadeem, M.; Burigat, S.; Bagci, U.; Mohy-ud-Din, H. Overall Survival Prediction of Glioma Patients With Multiregional Radiomics. Front. Neurosci. 2022, 16, 911065. [Google Scholar] [CrossRef]
- Tang, Z.; Cao, H.; Xu, Y.; Yang, Q.; Wang, J.; Zhang, H. Overall Survival Time Prediction for Glioblastoma Using Multimodal Deep KNN. Phys. Med. Biol. 2022, 67, 135011. [Google Scholar] [CrossRef]
- Moya-Sáez, E.; Navarro-González, R.; Cepeda, S.; Pérez-Núñez, Á.; de Luis-García, R.; Aja-Fernández, S.; Alberola-López, C. Synthetic MRI Improves Radiomics-Based Glioblastoma Survival Prediction. NMR Biomed. 2022, 35, e4754. [Google Scholar] [CrossRef]
- Li, Z.C.; Yan, J.; Zhang, S.; Liang, C.; Lv, X.; Zou, Y.; Zhang, H.; Liang, D.; Zhang, Z.; Chen, Y. Glioma Survival Prediction from Whole-Brain MRI without Tumor Segmentation Using Deep Attention Network: A Multicenter Study. Eur. Radiol. 2022, 32, 5719–5729. [Google Scholar] [CrossRef] [PubMed]
- Ben Ahmed, K.; Hall, L.O.; Goldgof, D.B.; Gatenby, R. Ensembles of Convolutional Neural Networks for Survival Time Estimation of High-Grade Glioma Patients from Multimodal MRI. Diagnostics 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Chen, C.; Li, D. Survival Prediction of Patients Suffering from Glioblastoma Based on Two-Branch DenseNet Using Multi-Channel Features. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cong, C.; Zhang, J.; Qiao, J.; Guo, H.; Wu, H.; Sang, Z.; Kang, H.; Fang, J.; Zhang, W. Multimodel Habitats Constructed by Perfusion and/or Diffusion MRI Predict Isocitrate Dehydrogenase Mutation Status and Prognosis in High-Grade Gliomas. Clin. Radiol. 2024, 79, e127–e136. [Google Scholar] [CrossRef]
- Li, X.; Strasser, B.; Neuberger, U.; Vollmuth, P.; Bendszus, M.; Wick, W.; Dietrich, J.; Batchelor, T.T.; Cahill, D.P.; Andronesi, O.C. Deep Learning Super-Resolution Magnetic Resonance Spectroscopic Imaging of Brain Metabolism and Mutant Isocitrate Dehydrogenase Glioma. Neuro-Oncol. Adv. 2022, 4, vdac071. [Google Scholar] [CrossRef]
- Kamble, A.N.; Agrawal, N.K.; Koundal, S.; Bhargava, S.; Kamble, A.N.; Joyner, D.A.; Kalelioglu, T.; Patel, S.H.; Jain, R. Imaging-Based Stratification of Adult Gliomas Prognosticates Survival and Correlates with the 2021 WHO Classification. Neuroradiology 2023, 65, 41–54. [Google Scholar] [CrossRef]
- Ali, M.B.; Gu, I.Y.-H.; Lidemar, A.; Berger, M.S.; Widhalm, G.; Jakola, A.S. Prediction of Glioma-Subtypes: Comparison of Performance on a DL Classifier Using Bounding Box Areas versus Annotated Tumors. BMC Biomed. Eng. 2022, 4, 4. [Google Scholar] [CrossRef]
- Van Der Voort, S.R.; Incekara, F.; Wijnenga, M.M.J.; Kapsas, G.; Gahrmann, R.; Schouten, J.W.; Nandoe Tewarie, R.; Lycklama, G.J.; De Witt Hamer, P.C.; Eijgelaar, R.S.; et al. Combined Molecular Subtyping, Grading, and Segmentation of Glioma Using Multi-Task Deep Learning. Neuro. Oncol. 2023, 25, 279–289. [Google Scholar] [CrossRef]
- Hsu, D.G.; Ballangrud, Å.; Shamseddine, A.; Deasy, J.O.; Veeraraghavan, H.; Cervino, L.; Beal, K.; Aristophanous, M. Automatic Segmentation of Brain Metastases Using T1 Magnetic Resonance and Computed Tomography Images. Phys. Med. Biol. 2021, 66, 175014. [Google Scholar] [CrossRef]
- Chartrand, G.; Emiliani, R.D.; Pawlowski, S.A.; Markel, D.A.; Bahig, H.; Cengarle-Samak, A.; Rajakesari, S.; Lavoie, J.; Ducharme, S.; Roberge, D. Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy. J. Magn. Reson. Imaging 2022, 56, 1885–1898. [Google Scholar] [CrossRef]
- Amemiya, S.; Takao, H.; Kato, S.; Yamashita, H.; Sakamoto, N.; Abe, O. Feature-Fusion Improves MRI Single-Shot Deep Learning Detection of Small Brain Metastases. J. Neuroimaging 2022, 32, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Jun, Y.; Lee, Y.; Han, K.; An, C.; Ahn, S.S.; Hwang, D.; Lee, S.K. Robust Performance of Deep Learning for Automatic Detection and Segmentation of Brain Metastases Using Three-Dimensional Black-Blood and Three-Dimensional Gradient Echo Imaging. Eur. Radiol. 2021, 31, 6686–6695. [Google Scholar] [CrossRef] [PubMed]
- Dikici, E.; Ryu, J.L.; Demirer, M.; Bigelow, M.; White, R.D.; Slone, W.; Erdal, B.S.; Prevedello, L.M. Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI. IEEE J. Biomed. Health Inform. 2020, 24, 2883–2893. [Google Scholar] [CrossRef]
- Jiao, T.; Li, F.; Cui, Y.; Wang, X.; Li, B.; Shi, F.; Xia, Y.; Zhou, Q.; Zeng, Q. Deep Learning with an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR Images. J. Magn. Reson. Imaging 2023, 58, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Namjoshi, S.V.; McTyre, E.; Topaloglu, U.; Barcus, R.; Chan, M.D.; Cramer, C.K.; Debinski, W.; Gurcan, M.N.; Lesser, G.J.; et al. A Transformer-Based Deep-Learning Approach for Classifying Brain Metastases into Primary Organ Sites Using Clinical Whole-Brain MRI Images. Patterns 2022, 3, 100613. [Google Scholar] [CrossRef]
- Jalalifar, A.; Soliman, H.; Sahgal, A.; Sadeghi-Naini, A. A Cascaded Deep-Learning Framework for Segmentation of Metastatic Brain Tumors Before and After Stereotactic Radiation Therapy. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1063–1066. [Google Scholar] [CrossRef]
- Wang, J.Y.; Qu, V.; Hui, C.; Sandhu, N.; Mendoza, M.G.; Panjwani, N.; Chang, Y.C.; Liang, C.H.; Lu, J.T.; Wang, L.; et al. Stratified Assessment of an FDA-Cleared Deep Learning Algorithm for Automated Detection and Contouring of Metastatic Brain Tumors in Stereotactic Radiosurgery. Radiat. Oncol. 2023, 18, 61. [Google Scholar] [CrossRef]
- Liu, Y.; Stojadinovic, S.; Hrycushko, B.; Wardak, Z.; Lau, S.; Lu, W.; Yan, Y.; Jiang, S.B.; Zhen, X.; Timmerman, R.; et al. A Deep Convolutional Neural Network-Based Automatic Delineation Strategy for Multiple Brain Metastases Stereotactic Radiosurgery. PLoS ONE 2017, 12, e0185844. [Google Scholar] [CrossRef]
- Hsu, D.G.; Ballangrud, Å.; Prezelski, K.; Swinburne, N.C.; Young, R.; Beal, K.; Deasy, J.O.; Cerviño, L.; Aristophanous, M. Automatically Tracking Brain Metastases after Stereotactic Radiosurgery. Phys. Imaging Radiat. Oncol. 2023, 27, 100452. [Google Scholar] [CrossRef]
- Xue, J.; Wang, B.; Ming, Y.; Liu, X.; Jiang, Z.; Wang, C.; Liu, X.; Chen, L.; Qu, J.; Xu, S.; et al. Deep Learning-Based Detection and Segmentation-Assisted Management of Brain Metastases. Neuro. Oncol. 2020, 22, 505–514. [Google Scholar] [CrossRef]
- Wang, T.W.; Chao, H.S.; Chiu, H.Y.; Lu, C.F.; Liao, C.Y.; Lee, Y.; Chen, J.R.; Shiao, T.H.; Chen, Y.M.; Wu, Y. Te Radiomics of Metastatic Brain Tumor as a Predictive Image Biomarker of Progression-Free Survival in Patients with Non-Small-Cell Lung Cancer with Brain Metastasis Receiving Tyrosine Kinase Inhibitors. Transl. Oncol. 2024, 39, 101826. [Google Scholar] [CrossRef]
- Grossman, R.; Haim, O.; Abramov, S.; Shofty, B.; Artzi, M. Differentiating Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Brain Metastases Based on MRI Using Efficientnet and Transfer Learning Approach. Technol. Cancer Res. Treat. 2021, 20, 15330338211004919. [Google Scholar] [CrossRef]
- Li, Y.; Lv, X.; Chen, C.; Yu, R.; Wang, B.; Wang, D.; Hou, D. A Deep Learning Model Integrating Multisequence MRI to Predict EGFR Mutation Subtype in Brain Metastases from Non-Small Cell Lung Cancer. Eur. Radiol. Exp. 2024, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Y.; Lee, C.C.; Yang, H.C.; Chen, C.J.; Chung, W.Y.; Wu, H.M.; Guo, W.Y.; Liu, R.S.; Lu, C.F. Predicting Survival after Radiosurgery in Patients with Lung Cancer Brain Metastases Using Deep Learning of Radiomics and EGFR Status. Phys. Eng. Sci. Med. 2023, 46, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Jünger, S.T.; Hoyer, U.C.I.; Schaufler, D.; Laukamp, K.R.; Goertz, L.; Thiele, F.; Grunz, J.P.; Schlamann, M.; Perkuhn, M.; Kabbasch, C.; et al. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-Small Cell Lung Cancer Using Deep Learning. J. Magn. Reson. Imaging 2021, 54, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Tulum, G. Novel Radiomic Features versus Deep Learning: Differentiating Brain Metastases from Pathological Lung Cancer Types in Small Datasets. Br. J. Radiol. 2023, 96, 20220841. [Google Scholar] [CrossRef]
- Sui, L.; Chang, S.; Xue, L.; Wang, J.; Zhang, Y.; Yang, K.; Gao, B.-L.; Yin, X. Deep Learning Based on Enhanced MRI T1 Imaging to Differentiate Small-Cell and Non-Small-Cell Primary Lung Cancers in Patients with Brain Metastases. Curr. Med. Imaging 2023, 19, 1541–1548. [Google Scholar] [CrossRef]
- Haim, O.; Abramov, S.; Shofty, B.; Fanizzi, C.; DiMeco, F.; Avisdris, N.; Ram, Z.; Artzi, M.; Grossman, R. Predicting EGFR Mutation Status by a Deep Learning Approach in Patients with Non-Small Cell Lung Cancer Brain Metastases. J. Neurooncol. 2022, 157, 63–69. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Ide, S.; Watanabe, K.; Oyu, K.; Kasai, S.; Umemura, Y.; Sasaki, M.; Nagaya, H.; Tatsuo, S.; Nozaki, A.; et al. Usefulness of Pituitary High-Resolution 3D MRI with Deep-Learning-Based Reconstruction for Perioperative Evaluation of Pituitary Adenomas. Neuroradiology 2024, 66, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, W.; Li, S.; Fan, Y.; Feng, M.; Wang, R. Development and Evaluation of Deep Learning-Based Automated Segmentation of Pituitary Adenoma in Clinical Task. J. Clin. Endocrinol. Metab. 2021, 106, 2535–2546. [Google Scholar] [CrossRef]
- Yan, X.; Lin, B.; Fu, J.; Li, S.; Wang, H.; Fan, W.; Fan, Y.; Feng, M.; Wang, R.; Fan, J.; et al. Deep-Learning-Based Automatic Segmentation and Classification for Craniopharyngiomas. Front. Oncol. 2023, 13, 1048841. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Q.; Huang, Y.; Xu, K. Semi-Supervised Method for Image Texture Classification of Pituitary Tumors via CycleGAN and Optimized Feature Extraction. BMC Med. Inform. Decis. Mak. 2020, 20, 215. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, L.; Hu, W.; Chen, H.; Li, H.; Wei, S.; Chen, X.; Ma, X. A Multi-Task Two-Path Deep Learning System for Predicting the Invasiveness of Craniopharyngioma. Comput. Methods Programs Biomed. 2022, 216, 106651. [Google Scholar] [CrossRef]
- Park, H.; Nam, Y.K.; Kim, H.S.; Park, J.E.; Lee, D.H.; Lee, J.; Kim, S.; Kim, Y.H. Deep Learning-Based Image Reconstruction Improves Radiologic Evaluation of Pituitary Axis and Cavernous Sinus Invasion in Pituitary Adenoma. Eur. J. Radiol. 2023, 158, 110647. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, H.; Cao, D.; Cai, S.; Qian, C.; Feng, M.; Zhang, W.; Cao, L.; Chen, H.; Wei, L.; et al. Multi-Center Application of a Convolutional Neural Network for Preoperative Detection of Cavernous Sinus Invasion in Pituitary Adenomas. Neuroradiology 2024, 66, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Staartjes, V.E.; Serra, C.; Muscas, G.; Maldaner, N.; Akeret, K.; van Niftrik, C.H.B.; Fierstra, J.; Holzmann, D.; Regli, L. Utility of Deep Neural Networks in Predicting Gross-Total Resection after Transsphenoidal Surgery for Pituitary Adenoma: A Pilot Study. Neurosurg. Focus 2018, 45, E12. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tateishi, K.; Murata, H.; Kin, T.; Suenaga, J.; Takase, H.; Yoneyama, T.; Nishii, T.; Tateishi, U.; Yamamoto, T.; et al. Three-Dimensional Multimodality Fusion Imaging as an Educational and Planning Tool for Deep-Seated Meningiomas. Br. J. Neurosurg. 2018, 32, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.; Park, Y.W.; Shin, H.; Shin, Y.; Lee, J.R.; Han, K.; Ahn, S.S.; Lim, S.M.; Hwang, D.; Lee, S.K. Intelligent Noninvasive Meningioma Grading with a Fully Automatic Segmentation Using Interpretable Multiparametric Deep Learning. Eur. Radiol. 2023, 33, 6124–6133. [Google Scholar] [CrossRef]
- Chen, J.; Xue, Y.; Ren, L.; Lv, K.; Du, P.; Cheng, H.; Sun, S.; Hua, L.; Xie, Q.; Wu, R.; et al. Predicting Meningioma Grades and Pathologic Marker Expression via Deep Learning. Eur. Radiol. 2023, 34, 2997–3008. [Google Scholar] [CrossRef]
- Azamat, S.; Buz-Yalug, B.; Dindar, S.S.; Yilmaz Tan, K.; Ozcan, A.; Can, O.; Ersen Danyeli, A.; Pamir, M.N.; Dincer, A.; Ozduman, K.; et al. Susceptibility-Weighted MRI for Predicting NF-2 Mutations and S100 Protein Expression in Meningiomas. Diagnostics 2024, 14, 748. [Google Scholar] [CrossRef]
- She, Z.; Marzullo, A.; Destito, M.; Spadea, M.F.; Leone, R.; Anzalone, N.; Steffanoni, S.; Erbella, F.; Ferreri, A.J.M.; Ferrigno, G.; et al. Deep Learning-Based Overall Survival Prediction Model in Patients with Rare Cancer: A Case Study for Primary Central Nervous System Lymphoma. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1849–1856. [Google Scholar] [CrossRef]
- Quon, J.L.; Bala, W.; Chen, L.C.; Wright, J.; Kim, L.H.; Han, M.; Shpanskaya, K.; Lee, E.H.; Tong, E.; Iv, M.; et al. Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. AJNR Am. J. Neuroradiol. 2020, 41, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Zhuo, Z.; Du, J.; Weng, J.; Zhang, C.; Duan, Y.; Sun, T.; Wu, M.; Guo, M.; Hua, T.; et al. A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images. Clin. Cancer Res. 2024, 30, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, A.; Dorent, R.; Connor, S.; Oviedova, A.; Okasha, M.; Grishchuk, D.; Ourselin, S.; Paddick, I.; Kitchen, N.; Vercauteren, T.; et al. Automated Koos Classification of Vestibular Schwannoma. Front. Radiol. 2022, 2, 837191. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, W.K.; Wu, C.C.; Lu, C.F.; Yang, H.C.; Chen, Y.W.; Chung, W.Y.; Hu, Y.S.; Wu, H.M.; Wu, Y.T.; et al. Applying Artificial Intelligence to Longitudinal Imaging Analysis of Vestibular Schwannoma Following Radiosurgery. Sci. Rep. 2021, 11, 3106. [Google Scholar] [CrossRef]
- Yu, Y.; Song, G.; Zhao, Y.; Liang, J.; Liu, Q. Prediction of Vestibular Schwannoma Surgical Outcome Using Deep Neural Network. World Neurosurg. 2023, 176, e60–e67. [Google Scholar] [CrossRef]
- Lee, W.K.; Wu, C.C.; Lee, C.C.; Lu, C.F.; Yang, H.C.; Huang, T.H.; Lin, C.Y.; Chung, W.Y.; Wang, P.S.; Wu, H.M.; et al. Combining Analysis of Multi-Parametric MR Images into a Convolutional Neural Network: Precise Target Delineation for Vestibular Schwannoma Treatment Planning. Artif. Intell. Med. 2020, 107, 101911. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran Preetha, C.; Meredig, H.; Brugnara, G.; Mahmutoglu, M.A.; Foltyn, M.; Isensee, F.; Kessler, T.; Pflüger, I.; Schell, M.; Neuberger, U.; et al. Deep-Learning-Based Synthesis of Post-Contrast T1-Weighted MRI for Tumour Response Assessment in Neuro-Oncology: A Multicentre, Retrospective Cohort Study. Lancet. Digit. Health 2021, 3, e784–e794. [Google Scholar] [CrossRef]
- Tang, S.; Liao, J.; Long, Y. Comparative Assessment of the Efficacy of Gross Total versus Subtotal Total Resection in Patients with Glioma: A Meta-Analysis. Int. J. Surg. 2019, 63, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Hoshide, R.; Jandial, R. Human Cerebral Cortex Map 2.0. Neurosurgery 2016, 79, N16–N17. [Google Scholar] [CrossRef]
- Rajdeo, P.; Aronow, B.; Surya Prasath, V.B. Deep Learning-Based Multimodal Spatial Transcriptomics Analysis for Cancer. Adv. Cancer Res. 2024, 163, 1–38. [Google Scholar] [CrossRef]
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection with Survival in Glioblastoma: A Systematic Review and Meta-Analysis. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef]
- Bjorland, L.S.; Mahesparan, R.; Fluge, Ø.; Gilje, B.; Kurz, K.D.; Farbu, E. Impact of Extent of Resection on Outcome from Glioblastoma Using the RANO Resect Group Classification System: A Retrospective, Population-Based Cohort Study. Neuro-Oncol. Adv. 2023, 5, vdad126. [Google Scholar] [CrossRef]
- Huang, J.; Shlobin, N.A.; Decuypere, M.; Lam, S.K. Deep Learning for Outcome Prediction in Neurosurgery: A Systematic Review of Design, Reporting, and Reproducibility. Neurosurgery 2022, 90, 16–38. [Google Scholar] [CrossRef]
- Ho, D.J.; Agaram, N.P.; Jean, M.H.; Suser, S.D.; Chu, C.; Vanderbilt, C.M.; Meyers, P.A.; Wexler, L.H.; Healey, J.H.; Fuchs, T.J.; et al. Deep Learning–Based Objective and Reproducible Osteosarcoma Chemotherapy Response Assessment and Outcome Prediction. Am. J. Pathol. 2023, 193, 341–349. [Google Scholar] [CrossRef]
- Obata, Y.; Parkinson, D.Y.; Pelt, D.M.; Acevedo, C. Enhancing Synchrotron Radiation Micro-CT Images Using Deep Learning: An Application of Noise2Inverse on Bone Imaging. J. Synchrotron Radiat. 2025, 32, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Minnema, J.; Wolff, J.; Koivisto, J.; Lucka, F.; Batenburg, K.J.; Forouzanfar, T.; van Eijnatten, M. Comparison of Convolutional Neural Network Training Strategies for Cone-Beam CT Image Segmentation. Comput. Methods Programs Biomed. 2021, 207, 106192. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; More, B.; Rege, I.; Ranade, D. Clinical Diagnosis and Management of Multiple Cerebral Ring-Enhancing Lesions-Study of 50 Patients at a Tertiary Healthcare Center. J. Cancer Res. Ther. 2024, 20, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Peker, E.; Ünal, S.; Uludağ, S.B.; Zorlu, N.S.Y. Ring-Enhancing Lesions-Differentiation with MRI. Br. J. Hosp. Med. 2024, 85, 1–20. [Google Scholar] [CrossRef]
- Waqas, A.; Tripathi, A.; Ramachandran, R.P.; Stewart, P.; Rasool, G. Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review. Front. Artif. Intell. 2023, 7, 1408843. [Google Scholar] [CrossRef] [PubMed]
- Boehringer, A.S.; Sanaat, A.; Arabi, H.; Zaidi, H. An Active Learning Approach to Train a Deep Learning Algorithm for Tumor Segmentation from Brain MR Images. Insights Imaging 2023, 14, 141. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, C.; Zhong, Z.; Jiao, Z.; Gao, X. Quality-Driven Deep Active Learning Method for 3D Brain MRI Segmentation. Neurocomputing 2021, 446, 106–117. [Google Scholar] [CrossRef]
- Liu, X.; Shih, H.A.; Xing, F.; Santarnecchi, E.; El Fakhri, G.; Woo, J. Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2023; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; pp. 46–56. [Google Scholar] [CrossRef]
- Li, R.; Ye, J.; Huang, Y.; Jin, W.; Xu, P.; Guo, L. A Continuous Learning Approach to Brain Tumor Segmentation: Integrating Multi-Scale Spatial Distillation and Pseudo-Labeling Strategies. Front. Oncol. 2023, 13, 1247603. [Google Scholar] [CrossRef] [PubMed]
- Kordnoori, S.; Sabeti, M.; Shakoor, M.H.; Moradi, E. Deep Multi-Task Learning Structure for Segmentation and Classification of Supratentorial Brain Tumors in MR Images. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2024, 36, 101931. [Google Scholar] [CrossRef]
- Huang, H.; Yang, G.; Zhang, W.; Xu, X.; Yang, W.; Jiang, W.; Lai, X. A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Front. Oncol. 2021, 11, 690244. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A Nested u-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Huang, S.Y.; Hsu, W.L.; Hsu, R.J.; Liu, D.W. Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey. Diagnostics 2022, 12, 2765. [Google Scholar] [CrossRef]
- Vedpathak, S.; Soni, P.; Gaikwad, S.; Parmar, M. 2D Brain MRI Segmentation: U-Nets Versus Optimized DeepLab Models. In Proceedings of the 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), Bangalore, India, 28–29 June 2024. [Google Scholar] [CrossRef]
- Yamanakkanavar, N.; Choi, J.Y.; Lee, B. SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans. Sensors 2022, 22, 5148. [Google Scholar] [CrossRef]
- Chen, J.; Mei, J.; Li, X.; Lu, Y.; Yu, Q.; Wei, Q.; Luo, X.; Xie, Y.; Adeli, E.; Wang, Y.; et al. TransUNet: Rethinking the U-Net Architecture Design for Medical Image Segmentation through the Lens of Transformers. Med. Image Anal. 2024, 97, 103280. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.; Ding, M.; Yu, H.; Zha, S.; Li, J. TransBTS: Multimodal Brain Tumor Segmentation Using Transformer. Lect. Notes Comput. Sci. 2021, 12901 LNCS, 109–119. [Google Scholar] [CrossRef]
- Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3D Medical Image Segmentation. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 1748–1758. [Google Scholar] [CrossRef]
- Amri, Y.; Ben Slama, A.; Mbarki, Z.; Selmi, R.; Trabelsi, H. Automatic Glioma Segmentation Based on Efficient U-Net Model Using MRI Images. Intell. Med. 2025, 11, 100216. [Google Scholar] [CrossRef]
- Gi, Y.; Oh, G.; Jo, Y.; Lim, H.; Ko, Y.; Hong, J.; Lee, E.; Park, S.; Kwak, T.; Kim, S.; et al. Study of Multistep Dense U-Net-Based Automatic Segmentation for Head MRI Scans. Med. Phys. 2024, 51, 2230–2238. [Google Scholar] [CrossRef]
- Shaheema, S.B.; Suganya Devi, K.; Muppalaneni, N.B. Explainability Based Panoptic Brain Tumor Segmentation Using a Hybrid PA-NET with GCNN-ResNet50. Biomed. Signal Process. Control 2024, 94, 106334. [Google Scholar] [CrossRef]
- Hossain, S.; Chakrabarty, A.; Gadekallu, T.R.; Alazab, M.; Piran, M.J. Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification. IEEE J. Biomed. Health Inform. 2024, 28, 1261–1272. [Google Scholar] [CrossRef]
- Mertes, S.; Huber, T.; Weitz, K.; Heimerl, A.; André, E. GANterfactual—Counterfactual Explanations for Medical Non-Experts Using Generative Adversarial Learning. Front. Artif. Intell. 2022, 5, 825565. [Google Scholar] [CrossRef]
- Singla, S.; Eslami, M.; Pollack, B.; Wallace, S.; Batmanghelich, K. Explaining the Black-Box Smoothly—A Counterfactual Approach. Med. Image Anal. 2023, 84, 102721. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, Q.; He, Z.; Yuan, Y. Vision Transformers in Multi-Modal Brain Tumor MRI Segmentation: A Review. Meta-Radiology 2023, 1, 100004. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.Y.; Wang, S.H.; Zhang, Y.D. RanMerFormer: Randomized Vision Transformer with Token Merging for Brain Tumor Classification. Neurocomputing 2024, 573, 127216. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Tian, G.; Liu, Y. ViG-UNet: Vision Graph Neural Networks for Medical Image Segmentation. In Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia, 18–21 April 2023. [Google Scholar] [CrossRef]
- Puzio, T.; Matera, K.; Karwowski, J.; Piwnik, J.; Białkowski, S.; Podyma, M.; Dunikowski, K.; Siger, M.; Stasiołek, M.; Grzelak, P.; et al. Deep Learning-Based Automatic Segmentation of Brain Structures on MRI: A Test-Retest Reproducibility Analysis. Comput. Struct. Biotechnol. J. 2025, 28, 128–140. [Google Scholar] [CrossRef] [PubMed]
“Main” Topic | Examples |
---|---|
Differentiation between specific types of lesions | Glioblastoma from solitary metastatic tumors |
Gliomas from lymphomas | |
Glioblastoma, solitary metastases, or CNS lymphomas | |
Others | |
Gliomas | Molecular assessment |
Detection and grading | |
Survival prediction | |
Pseudoprogression vs. progression | |
Combined outcomes | |
Others | |
Metastases | Detection and segmentation |
Lung cancer metastases (differentiation/survival) | |
Radiotherapy support/monitoring | |
Primary site identification | |
Others | |
Others | Sellar region tumors |
Meningiomas | |
Others |
Criterion | General-to-Specific | Specific-to-General |
---|---|---|
Approach Description | Learning starts with general concepts, rules, or structures, followed by specific cases and exceptions. | Learning begins with concrete examples or observations, from which general patterns or rules are derived. |
Advantages |
|
|
Disadvantages |
|
|
Application in Medicine |
|
|
Transparency/Interpretability | High—reasoning and decision-making can be traced | Low—model may work, but its logic is unclear (black box effect) |
Bias/Error Risk | Lower—less susceptible to noise or irrelevant patterns in the data | Higher—may learn shortcuts or superficial features (e.g., “long hair = female”) |
Best Use Cases |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmyd, B.; Podstawka, M.; Wiśniewski, K.; Zaczkowski, K.; Puzio, T.; Tomczyk, A.; Wojciechowski, A.; Jaskólski, D.J.; Bobeff, E.J. AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions. Cancers 2025, 17, 2625. https://doi.org/10.3390/cancers17162625
Szmyd B, Podstawka M, Wiśniewski K, Zaczkowski K, Puzio T, Tomczyk A, Wojciechowski A, Jaskólski DJ, Bobeff EJ. AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions. Cancers. 2025; 17(16):2625. https://doi.org/10.3390/cancers17162625
Chicago/Turabian StyleSzmyd, Bartosz, Małgorzata Podstawka, Karol Wiśniewski, Karol Zaczkowski, Tomasz Puzio, Arkadiusz Tomczyk, Adam Wojciechowski, Dariusz J. Jaskólski, and Ernest J. Bobeff. 2025. "AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions" Cancers 17, no. 16: 2625. https://doi.org/10.3390/cancers17162625
APA StyleSzmyd, B., Podstawka, M., Wiśniewski, K., Zaczkowski, K., Puzio, T., Tomczyk, A., Wojciechowski, A., Jaskólski, D. J., & Bobeff, E. J. (2025). AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions. Cancers, 17(16), 2625. https://doi.org/10.3390/cancers17162625