Papillary Thyroid Microcarcinoma in Thyroid Surgical Practice: Incidental vs. Non-Incidental: A Ten-Year Comparative Study
Abstract
:Highlights
- PTCs comprised 86.7% of all thyroid malignancies, and 36.2% were PTMCs.
- IPTMC occurred in 79.6% of patients and NIPTMC in 20.4%.
- NIPTMC was defined as carcinoma presenting as a thyroid nodule and/or abnormal lymph nodes occurring within normal thyroid tissue, without associated pathology.
- NIPTMCs were significantly associated with aggressive features, younger age, larger size, and multifocality.
- Management strategy includes the following:
- a.
- Aggressive treatment is required for PTMCs associated with high-risk features.
- b.
- The extent of surgery in IPTMC is governed by the associated thyroid pathology.
- c.
- Physician-patient-shared decision-making in low-risk PTMCs can avoid overtreatment with TL or AS as options for management.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- High-risk PTMCs: PTMCs with high-risk features such as ETE, lymph node metastasis, aggressive histologic subtype, and proximity to the trachea or recurrent laryngeal nerve require aggressive surgical management [49], including total thyroidectomy, lymph node dissection for clinical or US-positive nodes, and radioactive iodine ablation.
- Benign thyroid disease: Patients with presumed benign thyroid disease are referred for surgery based on specific indications related to the thyroid pathology. Total thyroidectomy is often required for associated conditions like MNG, toxic nodular goiter, Graves’ disease, and Hashimoto thyroiditis (HT). PTMC diagnosis in these cases is typically made postoperatively through the pathological examination of thyroidectomy specimens.
- Low-risk PTMCs: For preoperatively diagnosed low-risk PTMCs, including unifocal intrathyroidal tumors with clinically negative nodes, management is determined through a physician–patient shared decision-making process, considering clinical evidence, patient preferences, beliefs, comorbidities, and available resources [45,50,51]. AS or TL are viable options.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PTC | Papillary thyroid carcinoma |
PTMC | Papillary thyroid microcarcinoma |
IPTMC | Incidental PTMC |
NIPTMC | Non-incidental PTMC |
AS | Active surveillance |
TL | Total lobectomy |
TT | Total thyroidectomy |
FNAC | Fine needle aspiration cytology |
FNA | Fine needle aspiration |
US | Ultrasonography |
ETE | Extra-thyroidal extension |
US-FNAC | ultrasound-guided FNAC |
ATA | American Thyroid Association |
WHO | World Health Organization |
HT | Hashimoto thyroiditis |
MNG | Multinodular goiter |
References
- Nimri, O.; Arqoub, K.; Jemal, A. Jordan Cancer Registry; Ministry of Health (MOH): Amman, Jordan, 2015. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics 2020 CA cancer. J. Elin 2020, 70, 7–50. [Google Scholar]
- Rovira, A.; Nition, I.J.; Simo, R. Papillary microcarcinoma of the thyroid gland: Current controversies and management. Curr. Opin. Otolaryngol. Head Neck Surg. 2019, 27, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Stefanova, D.I.; Bose, A.; Ullmann, T.M.; Limberg, J.N.; Finnerty, B.M.; Zarnegar, R.; Fahey, T.J., III; Beninato, T. Does the ATA Risk Stratification Apply to Patients with Papillary Thyroid Microcarcinoma? World J. Surg. 2020, 44, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Sosa, J.A.; Hanna, J.W.; Robinson, K.A.; Lanman, R.B. Does the ATA Risk Stratification Apply to Patients with Papillary Thyroid Microcarcinoma? Surgery 2013, 154, 1420–1426, discussion 1426–1427. [Google Scholar] [CrossRef]
- Haugen, B.R. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed? Cancer 2017, 123, 372–381. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Sinclair, C.F.; Baek, J.H.; Hands, K.E.; Hodak, S.P.; Huber, T.C.; Hussain, I.; Lang, B.H.; Noel, J.E.; Papaleontiou, M.; Patel, K.N.; et al. General Principles for the Safe Performance, Training, and Adoption of Ablation Techniques for Benign Thyroid Nodules: An American Thyroid Association Statement. Thyroid 2023, 33, 1150–1170. [Google Scholar] [CrossRef]
- Miyauchi, A.; Ito, Y.; Oda, H. Insights into the Management of Papillary Microcarcinoma of the Thyroid. Thyroid 2018, 28, 23–31. [Google Scholar] [CrossRef]
- Takebe, K.; Date, M.; Yamamoto, Y. Mass screening for thyroid cancer with ultrasonography. Karkinos 1994, 7, 309–317. (In Japanese) [Google Scholar]
- Bondeson, L.; Ljungberg, O. Occult thyroid carcinoma at autopsy in Malmö, Sweden. Cancer 1981, 47, 319–323. [Google Scholar] [CrossRef]
- Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs WHO Classification of Tumours, 4th ed.; IARC Publications: Lyon, France, 2017; Volume 10, ISBN 978-92-832-4493-6. [Google Scholar]
- Jung, C.K.; Bychkov, A.; Kakudo, K. Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol. Metab. 2022, 37, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.I.; Kutlu, O.; Khan, Z.F.; Picado, O.; Lew, J.I. Margin Positivity and Survival in Papillary Thyroid Microcarcinoma: A National Cancer Database Analysis. J. Am. Coll. Surg. 2021, 233, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Kim, Y.A.; Lee, Y.J.; Kim, S.H.; Park, S.Y.; Kim, K.W.; Chung, J.K.; Youn, Y.K.; Kim, K.H.; Park, D.J.; et al. Papillary microcarcinoma in comparison with larger papillary thyroid carcinoma in BRAF(V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck 2010, 32, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Blanco, J.; Reddy, V.; Al-Khudari, S.; Tajudeen, B.; Gattuso, P. Clinicopathological features of papillary thyroid microcarcinoma with a diameter less than or equal to 5 mm. Am. J. Otolaryngol. 2019, 40, 560–563. [Google Scholar] [CrossRef]
- Elliott, M.S.; Gao, K.; Gupta, R.; Chua, E.L.; Gargya, A.; Clark, J. Management of incidental and non-incidental papillary thyroid microcarcinoma. J. Laryngol. Otol. 2013, 127 (Suppl. 2), S17–S23. [Google Scholar] [CrossRef]
- Kaliszewski, K.; Wojtczak, B.; Strutyńska-Karpińska, M.; Łukieńczuk, T.; Forkasiewicz, Z.; Domosławski, P. Incidental and non-incidental thyroid microcarcinoma. Oncol. Lett. 2016, 12, 734–740. [Google Scholar] [CrossRef]
- Mehanna, H.; Al-Maqbili, T.; Carter, B.; Martin, E.; Campain, N.; Watkinson, J.; McCabe, C.; Boelaert, K.; Franklyn, J.A. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: A systematic review and meta-analysis of 21 329 person-years of follow-up. J. Clin. Endocrinol. Metab. 2013, 99, 2834–2843. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009, 19, 1159–1165. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Kaliszewski, K.; Zubkiewicz-Kucharska, A.; Kiełb, P.; Maksymowicz, J.; Krawczyk, A.; Krawiec, O. Comparison of the prevalence of incidental and non-incidental papillary thyroid microcarcinoma during 2008–2016: A single-center experience. World J. Surg. Oncol. 2018, 16, 202. [Google Scholar] [CrossRef]
- Lombardi, C.P.; Bellantone, R.; De Crea, C.; Paladino, N.C.; Fadda, G.; Salvatori, M.; Raffaelli, M. Papillary thyroid microcarcinoma: Extrathyroidal extension, lymph node metastases, and risk factors for recurrence in a high prevalence of goiter area. World J. Surg. 2010, 34, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Attard, M.; Torlontano, M.; Ronga, G.; Monzani, F.; Constante, G.; Ferdeghini, M.; Tumino, S.; Meringolo, D.; Bruno, R.; et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J. Clin. Endocrinol. Metab. 2010, 95, 4882–4888. [Google Scholar] [CrossRef] [PubMed]
- Miccoli, P.; Minuto, M.N.; Galleri, D.; D’Agostino, J.; Basolo, F.; Antonangeli, L.; Aghini-Lombardi, F.; Berti, P. Incidental thyroid carcinoma in a large series of consecutive patients operated on for benign thyroid disease. ANZ J. Surg. 2006, 76, 123–126. [Google Scholar] [CrossRef] [PubMed]
- de Carlos, J.; Ernaga, A.; Irigaray, A. Incidentally discovered papillary thyroid microcarcinoma in patients undergoing thyroid surgery for benign disease. Endocrine 2022, 77, 325–332. [Google Scholar] [CrossRef]
- Slijepcevic, N.; Zivaljevic, V.; Marinkovic, J.; Sipetic, S.; Diklic, A.; Paunovic, I. Retrospective evaluation of the incidental finding of 403 papillary thyroid microcarcinomas in 2466 patients undergoing thyroid surgery for presumed benign thyroid disease. BMC Cancer 2015, 15, 330. [Google Scholar] [CrossRef]
- Smith, J.J.; Chen, X.; Schneider, D.F.; Broome, J.T.; Sippel, R.S.; Chen, H.; Solorzano, C.C. Cancer after thyroidectomy: A multi-institutional experience with 1,523 patients. J. Am. Coll. Surg. 2013, 216, 571–577, discussion 577–579. [Google Scholar] [CrossRef]
- Bircan, H.Y.; Koc, B.; Akarsu, C.; Demiralay, E.; Demirag, A.; Adas, M.; Alis, H.; Kemik, O. Is Hashimoto’s thyroiditis a prognostic factor for thyroid papillary microcarcinoma? Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1910–1915. [Google Scholar]
- Graceffa, G.; Patrone, R.; Vieni, S.; Campanella, S.; Calamia, S.; Laise, I.; Conzo, G.; Latteri, M.; Cipolla, C. Association between Hashimoto’s thyroiditis and papillary thyroid carcinoma: A retrospective analysis of 305 patients. BMC Endocr. Disord. 2019, 19 (Suppl. 1), 26. [Google Scholar] [CrossRef]
- Anderson, L.; Middleton, W.D.; Teefey, S.A.; Reading, C.C.; Langer, J.E.; Desser, T.; Szabunio, M.M.; Mandel, S.J.; Hildebolt, C.F.; Cronan, J.J. Hashimoto thyroiditis: Part 2, sonographic analysis of benign and malignant nodules in patients with diffuse Hashimoto thyroiditis. AJR Am. J. Roentgenol. 2010, 195, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Paparodis, R.; Imam, S.; Todorova-Koteva, K.; Staii, A.; Jaume, J.C. Hashimoto’s thyroiditis pathology and risk for thyroid cancer. Thyroid 2014, 24, 1107–1114. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Nilubol, N.; Tufano, R.P.; Kandil, E. Wolf in Sheep’s Clothing: Papillary Thyroid Microcarcinoma in the US. J. Am. Coll. Surg. 2020, 230, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Ghossein, R.; Ganly, I.; Biagini, A.; Robenshtok, E.; Rivera, M.; Tuttle, R.M. Prognostic factors in papillary microcarcinoma with emphasis on histologic subtyping: A clinicopathologic study of 148 cases. Thyroid 2014, 24, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.M.; Nilo, F.; Martínez, M.T.; Massardo, J.M.; Munoz, S.; Contreras, T.; Carmona, R.; Jerez, J.; Gonzalez, H.; Droppelmann, N.; et al. Papillary thyroid microcarcinoma: Characteristics at presentation, and evaluation of clinical and histological features associated with a worse prognosis in a Latin American cohort. Arch. Endocrinol. Metab. 2018, 62, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, Y.; Yan, S.; Chen, H.; Qin, S.; Gong, R. Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: A systematic review and meta-analysis. Endocrine 2020, 67, 44–57. [Google Scholar] [CrossRef]
- Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 2014, 32, 2718–2726. [Google Scholar] [CrossRef]
- Liu, R.; Bishop, J.; Zhu, G.; Zhang, T.; Ladenson, P.W.; Xing, M. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol. 2017, 3, 202–208. [Google Scholar] [CrossRef]
- Melo, M.; da Rocha, A.G.; Vinagre, J.; Batista, R.; Peixoto, J.; Tavares, C.; Celestino, R.; Almeida, A.; Salgado, C.; Eloy, C.; et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 2014, 99, E754–E765. [Google Scholar] [CrossRef]
- Patel, K.N.; Yip, L.; Lubitz, C.C.; Grubbs, E.G.; Miller, B.S.; Shen, W.; Angelos, P.; Chen, H.; Doherty, G.M.; Fahey, T.J., 3rd; et al. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults. Ann. Surg. 2020, 271, e21–e93. [Google Scholar] [CrossRef]
- So, Y.K.; Kim, M.W.; Son, Y.I. Multifocality and bilaterality of papillary thyroid microcarcinoma. Clin. Exp. Otorhinolaryngol. 2015, 8, 174–178. [Google Scholar] [CrossRef]
- Elbasan, O.; Ilgın, C.; Gogas Yavuz, D. Does total tumour diameter, multifocality, number of tumour foci, or laterality predict lymph node metastasis or recurrence in differentiated thyroid cancer? Endokrynol. Pol. 2023, 74, 153–167. [Google Scholar] [CrossRef]
- Varshney, R.; Pakdaman, M.N.; Sands, N.; Hier, M.P.; Rochon, L.; Black, M.J.; Payne, R.J. Lymph node metastasis in thyroid papillary microcarcinoma: A study of 170 patients. J. Laryngol. Otol. 2014, 128, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Dirikoc, A.; Tam, A.A.; Ince, N.; Ozdemir, D.; Topaloglu, O.; Alkan, A.; Yazgan, A.K.; Ersoy, R.; Cakir, B. 1Papillary thyroid microcarcinomas that metastasize to lymph nodes. Am. J. Otolaryngol. 2021, 42, 103023. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Han, A.Y.; Kim, C.M.; Wang, M.B.; Nguyen, C.T. Is lobectomy sufficient for multifocal papillary thyroid microcarcinoma? Am. J. Otolaryngol. 2023, 44, 103881. [Google Scholar] [CrossRef] [PubMed]
- Duclos, A.; Peix, J.L.; Colin, C.; Kraimps, J.L.; Menegaux, F.; Pattou, F.; Sebag, F.; Touzet, S.; Bourdy, S.; Voirin, N.; et al. Influence of experience on performance of individual surgeons in thyroid surgery: Prospective cross sectional multicentre study. BMJ 2012, 344, d8041. [Google Scholar] [CrossRef]
- Brito, J.P.; Hay, I.D. Management of Papillary Thyroid Microcarcinoma. Endocrinol. Metab. Clin. N. Am. 2019, 48, 199–213. [Google Scholar] [CrossRef]
- Bashir, A.Y.; Alzubaidi, A.N.; Bashir, M.A.; Obed, A.H.; Zakarneh, R.K.; Ennab, H.Z.; Abu-Hijleh, O.M.; EL-Zaheri, M.M.; Bashir, A.A. The Optimal Parathyroid Hormone Cut-Off Threshold for Early and Safe Management of Hypocalcemia After Total Thyroidectomy. Endocr. Pract. 2021, 27, 925–933. [Google Scholar] [CrossRef]
- Yu, X.M.; Wan, Y.; Sippel, R.S.; Chen, H. Should all papillary thyroid microcarcinomas be aggressively treated? An analysis of 18,445 cases. Ann. Surg. 2011, 254, 653–660. [Google Scholar] [CrossRef]
- Bashir, A.Y.; El-Zaheri, M.M.; Obed, A.H.; Abufares, F.; Haddadin, M.; Annab, H.Z.; Abu-Hijleh, M.O.; Bashir, M.A.; Bashir, A.A. Patients’ preferences impact on decision-making for clinical solitary thyroid nodule in a global healthcare setting: A clinical study. Ser. Endocrinol. Diabetes Metab. 2021, 3, 48–58. [Google Scholar] [CrossRef]
- Koot, A.; Soares, P.; Robenshtok, E.; Locati, L.D.; De La Fouchardiere, C.; Luster, M.; Bongiovanni, M.; Hermens, R.; Ottevanger, P.; Geenen, F.; et al. Position paper from the Endocrine Task Force of the European Organisation for Research and Treatment of Cancer (EORTC) on the management and shared decision making in patients with low-risk micro papillary thyroid carcinoma. Eur. J. Cancer 2023, 179, 98–112. [Google Scholar] [CrossRef]
(1) Begin Thyroid Disease (1012) | IPTMC ** Incidence | |
---|---|---|
1. Nodular Goiter | 770 (76.1%) | 67 (8.7%) |
2. Hashimoto Thyroiditis (HT) | 101 (10%) | 21 (20.8%) |
3. Graves’ | 62 (6.1%) | 11 (17.74%) |
4. Adenoma | 79 (7.8%) | 10 (12.7%) |
Total | 1012 (100%) | 109 (10.8%) *** |
(2) Thyroid Malignancies (436) | ||
(1) Papillary Carcinoma (PTC) * | Number 378 (86.7%) | |
T1: T1a: < 1 cm (PTMC) | 137 (36.2%) | |
Incidental | 109 | |
Non-Incidental | 28 | |
T1b: >1–≤2 cm | 77 (20.4%) | |
T 2: >2 cm–≤4 cm | 110 (29.1%) | |
T 3: > 4 cm | 54 (14.3%) | |
Total | 378 (100%) | |
(2) Other Malignancies | Number 58 (13.3%) | |
Follicular Carcinoma | 23 | |
Oncocytic (Hurthle Cell) Carcinoma | 8 | |
Medullary Carcinoma | 12 | |
Lymphoma | 4 | |
Anaplastic Carcinoma | 2 | |
Well Differentiated Tumor of | 8 | |
Undetermined Malignant Potential | ||
Renal Metastasis | 1 | |
Total | 58 | |
All Malignancies | 436 (100%) |
Clinical Presentation. | Histologic Subtype of PTMC | |||||
---|---|---|---|---|---|---|
1. IPTMC * Associated with | Classic Subtype | Infiltrative Follicular Subtype | FVPTC *** Encapsulated (Minimally Invasive) | FVPTC Non-Encapsulated/Circumscribed (Minimally Invasive) | Oncocytic Subtype | Total Number |
Multinodular Goiter | 38 (56.7%) | 0 (0%) | 5 (7.5%) | 23 (34.3%) | 1 (1.5%) | 67 (100%) |
Hashimoto Thyroiditis | 8 (38%) | 4 (19%) | 0 (0%) | 9 (43%) | 0 (0%) | 21 (100%) |
Graves’ Disease | 6 (54.5%) | 0 (0%) | 0 (0%) | 4 (36.4%) | 1 (9.1%) | 11 (100%) |
Adenoma | 5 (50%) | 0 (0%) | 1 (10%) | 3 (30%) | 1 (10%) | 10(100%) |
1. Total: IPTMC | 57 (52.3%) | 4 (3.7%) | 6 (5.4%) | 39 (35.8%) | 3 (2.8%) | 109 (100%) |
2. NIPTMC ** | 25 (89.3%) | 1 (3.6%) | 0 (0%) | 2 (7.1%) | 0 (0%) | 28 (100%) |
p Value | 0.002 | 0.4801 | 0.1515 | 0.001 | 0.3751 | 0.0001 |
<0.05 | >0.05 | >0.05 | <0.05 | >0.05 | <0.5 |
Type | Incidental | Non-Incidental (Primary) | p Value | Status p. v | |
---|---|---|---|---|---|
Number of Cases | 109 (79.6%) | 28 (20.4%) | 0.045 | <0.05 | |
Gender | F | 85 (77.9%) | 20 (71.43%) | 0.324 | >0.05 |
M | 24 (22.1%) | 8 (28.57%) | |||
Age (Y) | (1) Average Y | 44.153 ± 11.28 y | 37.14 ± 13.43y | 0.0001 | <0.05 |
(2) <45 Y | 50 (45.9%) | 20 (71.43%) | 6.93 | <0.05 | |
>45 Y | 59 (54.1%) | 8 (28.57%) | |||
<55 Y | 86 (78.9%) | 27 (96.43%) | |||
>55 Y | 23 (21.1%) | 1 (3.57%) | |||
Associated Pathology | |||||
Multinodular Goiter | 67 (61.5%) | * | 0.0005 | <0.05 | |
Hashimoto Thyroiditis | 21 (19.3%) | * | 0.0054 | <0.05 | |
Adenoma | 10 (9.2%) | * | 0.5513 | >0.05 | |
Graves’ disease | 11 (10%) | * | 0.1174 | >0.05 | |
Nationality | |||||
Local | 60 (55%) | 16 (57.1%) | 0.35 | >0.05 | |
International | 49 (45%) | 12 (42.9%) | |||
FNAC BVI/BV * | |||||
Yes | 48 (44%) | 24 (85.71%) | 0.001 | <0.05 | |
No | 61 (56%) | 4 (14.29%) | |||
Aggressive Features | |||||
Extrathyroidal Extension | Yes | 8 (7.3%) | 6 (21.43%) | 0.0015 | <0.05 |
No | 101 (92.7%) | 22 (78.57%) | |||
Positive Central nodes | Yes | 3 (2.8%) | 6 (21.43%) | 0.0291 | <0.05 |
No | 106 (97.2%) | 22 (78.59%) | |||
Positive Lateral Nodes | Yes | 0 (0%) | 8 (28.6%) | 0.012 | <0.05 |
No | 109 (100%) | 20 (71.4%) | |||
Lymphovascular invasion | Yes | 0 (0%) | 1 (3.6%) | _ | >0.05 |
No | 109 (100%) | 27 (96.4%) | _ | ||
Aggressive FeaturesTotal | Yes | 11 (10.1%) | 21 (75%) | 0.004 | <0.05 |
No | 98 (89.9%) | 7 (25%) | |||
Total Thyroidectomy | 97 (88.1%) | 28 (100%) | 0.0303 | <0.05 | |
Total Lobectomy | 12 (11.9%) | 0 (0%) |
Type | Unifocal | Multifocal (MF) | p-Value |
---|---|---|---|
(1) Number | 100 (73%) | 37 (27%) | <0.002 |
(2) Average maximal tumoral diameter | 0.442 cm | 0.78 cm | 0.0054 |
(3) Size ≥ 5 mm | 43 (43%) | 29 (78.4%) | <0.0002 |
(4) Site | >0.1367 | ||
Unilobar (Right or Left) | 97 (97%) | Bilobar 27 (73%) | |
Isthmus | 3 (3%) | 0% | |
(5) Gender | |||
F | 76 (76%) | 27 (73%) | >0.7248 |
M | 24 (24%) | 10 (27%) | |
(6) Age: | |||
F | 43.46 ± 11.49 | 45.55 ± 13.45 | >0.6323 |
M | 42.95 ± 12.18 | 43.3 ± 17.13 | |
(7) FNA BVI or/BV | 42 (42%) | 21 (56.8%) | >0.1294 |
(8) Predictors of MF: | |||
IPTMC * | 85 (85%) | 24 (64.8%) | 0.0915 |
NIPTMC ** | 15 (15%) | 13 (35.2%) | <0.0098 |
Nodular goiter | 52 (52%) | 15 (40.5%) | >0.2319 |
Hashimoto thyroiditis | 14 (14%) | 7 (18.9%) | >0.4642 |
Graves’ disease | 10 (10%) | 1 (2.7%) | >0.1640 |
Adenoma | 9 (9%) | 1 (2.7%) | >0.2048 |
(8) Aggressive features | |||
ETE | *** | ||
Yes | 8 (8%) | 6 (16.21%) | >0.2371 |
NO | 92 (92%) | 31 (83.79%) | |
Positive Central Nodes | |||
Yes | 3 (3%) | 5 (13.5%) | >0.0768 |
No | 97 (97%) | 32 (86.5%) | |
Positive Lateral Nodes | |||
Yes | 3 (3%) | 6 (16.21%) | >0.0591 |
No | 97 (97%) | 31 (83.79%) | |
Lymphovascular invasion | |||
Yes | 0 (0%) | 1 (2.7%) | >0.5307 |
No | 0 (0%) | 36 (97.3%) | |
Aggressive features total | |||
Yes | 14 (14%) | 18 (48.6%) | <0.007 |
No | 86 (86%) | 19 (51.4%) | |
(9) Total Thyroidectomy | |||
Yes | 88 (88%) | 37 (100%) | <0.001 |
No | 12 (12%) | 0 (0%) |
Stage (Number of Cases) | Tla (137) | TIb (77) | p Value | Status p.v. | ||
---|---|---|---|---|---|---|
Gender F | 103 (76.6%) | 57 (74%) | 0.607 | >0.05 | ||
M | 34 (23.4%) | 20 (26%) | ||||
Age <45 Y | 73 (53.28%) | 57 (74.1%) | 0.0508 | >0.05 | ||
≥45 Y | 64 (46.72%) | 20 (25.9%) | ||||
≥55 Y | 25 (18.24%) | 11 (14.3%) | ||||
<55 Y | 112 (81.76%) | 66 (85.7%) | ||||
Aggressive Features | ||||||
(1) Extra thyroidal Extension | 0.00053 | <0.05 | ||||
Yes | 14 (10.2%) | 21 (27.3%) | ||||
No | 123 (90.8%) | 56 (72.7%) | ||||
(2) Positive Central Nodes Yes | 8 (5.8%) | 11 (14.3%) | 0.0281 | <0.05 | ||
No | 129 (94.2%) | 66 (85.7%) | ||||
(3) Positive Lateral Nodes Yes | 9 (6.6%) | 9 (11.69%) | 0.8524 | >0.05 | ||
No | 128 (93.4%) | 68 (88.31%) | ||||
(4) Lymphovascular invasion Yes | 1 (0.73%) | 1 (1.37%) | 0.5186 | >0.05 | ||
No | 136 (99.27%) | 76 (97.4%) | ||||
Total Yes | 34 (23.35%) | 44 (56.4%) | 0.0001 | <0.05 | ||
No | 105 (76.65%) | 34 (43.6%) | ||||
Unifocal | 0.6550 | >0.05 | ||||
Right | 55 (40.14%) | 28 (36.4%) | ||||
Left | 43 (30.66%) | 20 (26%) | ||||
Isthmus | 3 (2.2%) | 2 (2.6%) | ||||
Total | 100 (73%) | 50 (64.9%) | ||||
one lobe | two lobes | one lobe | two lobes | |||
Multifocal | 37 | 27 | 9.4880 | >0.05 | ||
2 foci | 6 (16.2%) | 12 (44.4%) | 5 (18.3%) | 7 (25.9%) | ||
≥3 foci | 4 (10.8%) | 15 (55.6%) | 6 (22.2%) | 9 (33.4%) | ||
Total | 10 (27.1) | 27 (73%) | 11 (40.7%) | 16 (59.3%) | ||
Total Thyroidectomy | 125 (91.24%) | 77 (100%) | 0.992 | >0.05 | ||
Total Lobectomy | 12 (8.76%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, A.A.; El-Zaheri, M.M.; Bashir, A.A.; Fayyad, L.; Obed, A.H.; Alkam, D.; Bashir, A.Y. Papillary Thyroid Microcarcinoma in Thyroid Surgical Practice: Incidental vs. Non-Incidental: A Ten-Year Comparative Study. Cancers 2025, 17, 2029. https://doi.org/10.3390/cancers17122029
Bashir AA, El-Zaheri MM, Bashir AA, Fayyad L, Obed AH, Alkam D, Bashir AY. Papillary Thyroid Microcarcinoma in Thyroid Surgical Practice: Incidental vs. Non-Incidental: A Ten-Year Comparative Study. Cancers. 2025; 17(12):2029. https://doi.org/10.3390/cancers17122029
Chicago/Turabian StyleBashir, Amani A., Mohamed M. El-Zaheri, Ahmad A. Bashir, Luma Fayyad, Aiman H. Obed, Dima Alkam, and Abdalla Y. Bashir. 2025. "Papillary Thyroid Microcarcinoma in Thyroid Surgical Practice: Incidental vs. Non-Incidental: A Ten-Year Comparative Study" Cancers 17, no. 12: 2029. https://doi.org/10.3390/cancers17122029
APA StyleBashir, A. A., El-Zaheri, M. M., Bashir, A. A., Fayyad, L., Obed, A. H., Alkam, D., & Bashir, A. Y. (2025). Papillary Thyroid Microcarcinoma in Thyroid Surgical Practice: Incidental vs. Non-Incidental: A Ten-Year Comparative Study. Cancers, 17(12), 2029. https://doi.org/10.3390/cancers17122029