Management of Hepatocellular Carcinoma in Decompensated Cirrhotic Patients: A Comprehensive Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Search
3. Systemic Treatments
3.1. Multikinase Inhibitors (MKIs) (Table 1)
3.1.1. Sorafenib
3.1.2. Lenvatinib
Systemic Treatment | Type of Study | Total Patients, n | CP B Patients, n | CP C Patients, n | Mean OS, Months | ORR, % | DCR, % | AEs, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | ||||||
Lencioni 2014 [20] | Sorafenib | Prospective | 3213 | 361 | 35 | 13.6 | 5.2 | 2.6 | n/a | n/a | n/a | n/a | n/a | n/a | 82 | 89 | 86 |
Leal 2018 [22] | Sorafenib | Prospective | 130 | 65 | 0 | 12 | 6 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 93.8 | 76.9 | n/a |
Huynh 2022 [25] | Lenvatinib vs. Sorafenib | Post hoc analysis | 478 476 | 60 47 | 0 0 | 13.3 12 | 6.8 4.5 | 42.9 12.9 | 28.3 8.5 | - | n/a | n/a | - | 10.4 * 11.6 * | 18.4 * 19.9 * | - | |
Ogushi 2020 [26] | Lenvatinib | Retrospective | 181 | 55 | 0 | 1-year 66% | 1-year 30% | n/a | 36.5 | 16.3 | - | n/a | n/a | - | 98.4 | 94.5 | - |
Tsuchiya 2021 [29] | Lenvatinib | Retrospective | 343 | 67 | 0 | 21 | 9 | - | n/a | n/a | - | n/a | n/a | - | n/a | n/a | - |
Cosma 2021 [32] | Lenvatinib | Retrospective | 28 | 14 | 2 | 1-year 59.3% | 1-year 26.9% | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
El-Khoueiry 2022 [31] | Cabozantinib vs. placebo | Retrospective | 51 22 | 51 22 | 0 | - | 8.5 3.8 | - | - | 0 0 | - | - | 57 23 | - | - | 100 100 | - |
Bang 2022 [33] | Cabozantinib | Retrospective | 110 | 22 | 0 | 9 | 3.8 | - | 4.5 | 0 | - | 71.5 | 45.5 | - | 76.1 | 72.7 | - |
Finkelmeier 2021 [34] | Cabozantinib | Retrospective | 88 | 22 | 0 | 9.7 | 3.4 | - | n/a | n/a | - | n/a | n/a | - | 43.3 | 72.7 | - |
3.1.3. Cabozantinib
3.2. Immunotherapy (Table 2)
Systemic Treatment | Type of Study | Total Patients, n | CP B Patients, n | CP C Patients, n | Mean OS, Months | ORR, % | DCR, % | AEs, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | ||||||
Kudo 2021 [36] | Nivolumab | I/II phase | 49 | 49 | 0 | - | 7.6 | - | - | 12 | - | - | 55 | - | - | 51 | - |
Chapin 2022 [38] | Sorafenib vs. Nivolumab | Retrospective | 439 79 | 439 79 | 0 | - | 4 5 | - | - | n/a | - | - | n/a | - | - | n/a | - |
Choi 2020 [39] | Nivolumab | Retrospective | 203 | 71 | 0 | 10 | 3.6 | - | 15.9 | 2.8 | - | 42.4 | 22.5 | - | n/a | n/a | - |
Scheiner 2019 [40] | Nivolumab vs. Pembrolizumab | Retrospective | 65 | 28 | 5 | 16.7 | 8.6 | n/a | 9 | 14 | n/a | 56 | 46 | n/a | 31 | 43 | n/a |
D’Alessio 2022 [42] | Atezolizumab/bevacizumab | Retrospective | 216 | 48 | 0 | 16.8 | 6.7 | - | 26 | 21 | - | 74 | 68 | - | 48 | 46 | - |
de Castro 2022 [43] | Atezolizumab/bevacizumab | Retrospective | 147 | 35 | 6 | 12 | 6.8 | 1 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Persano 2022 [47] | Atezolizumab/bevacizumab vs. lenvatinib | Retrospective | 823 1312 | n/a | n/a | n/a | n/a | n/a | 27.7 38.8 | 22.2 36.3 | - | n/a | n/a | n/a | n/a | n/a | n/a |
4. Locoregional Treatments (Table 3)
4.1. Local Ablation Treatments (LAT)
4.2. TACE
4.3. TARE
Treatment | Type of Study | Total Patients, n | CP B Patients, n | CP C Patients, n | Mean OS, Months | ORR, % | DCR, % | AE % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | CP A | CP B | CP C | ||||||
Kim et al. [53] | RFA | Retrospective | 19 | 0 | 19 | - | - | 12 | - | - | 88.5% | - | - | n/a | - | - | n/a |
Nouso et al. [54] | LAT | Retrospective | 23 | 0 | 23 | - | - | 1-year 69.1% | - | - | n/a | - | - | n/a | - | - | n/a |
Kudo et al. [55] | RFA | Retrospective | 60 | 0 | 60 | - | - | 1-year 67% | - | - | n/a | - | - | n/a | - | - | n/a |
Takayasu et al. [60] | TACE | Prospective | 4966 | 1296 | 167 | 1-year 61% | 1-year 43% | 1-year 23% | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Dorn et al. [61] | TACE | Retrospective | 190 | 90 | 21.9 | 13.7 | 79% | 84% | n/a | n/a | n/a | n/a | n/a | ||||
Piscaglia et al. [51] | TACE | Retrospective | 86 | 86 | 0 | - | 21 | - | - | n/a | - | - | n/a | - | - | n/a | - |
Nouso et al. [54] | TACE | Retrospective | 27 | 0 | 27 | - | - | 1-year 62.5% | - | - | n/a | - | - | n/a | - | - | n/a |
Kudo et al. [55] | TACE | Retrospective | 79 | 0 | 79 | - | - | 1-year 69% | - | - | n/a | - | - | n/a | - | - | n/a |
Zu et al. [66] | TARE | Retrospective | 106 | 27 | 0 | 20.2 | 5.5–6 | - | - | - | n/a | - | - | n/a | - | - | n/a |
Abouchaleh et al. [67] | TARE | Retrospective | 185 | 60 | 32 | 13.3 | 6.9 | 3.9 | n/a | n/a | n/a | n/a | n/a | n/a | 8% | 8% | 32% |
Memon et al. [68] | TARE | Retrospective | 63 | 35 | 0 | 13.8 | 6.5 | - | 37% | 32% | - | 37% | 57% | - | n/a | n/a | - |
5. Surgical Treatments and Liver Transplantation
6. Palliative Care
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749. [Google Scholar] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012: Global Cancer Statistics, 2012. CA A Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Martinelli, E.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J.-C.; Neumann, U.; Ricke, J.; et al. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann. Oncol. 2021, 32, 801–805. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma: Heimbach. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Chen, B.H.; Huang, C.H.; Jeng, W.J.; Hsieh, Y.C.; Teng, W.; Chen, Y.C.; Ho, Y.P.; Sheen, I.S.; Lin, C.Y. Integrated model for end-stage liver disease maybe superior to some other model for end-stage liver disease-based systems in addition to Child-Turcotte-Pugh and albumin-bilirubin scores in patients with hepatitis B virus-related liver cirrhosis and spontaneous bacterial peritonitis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1256–1263. [Google Scholar]
- Wan, S.Z.; Nie, Y.; Zhang, Y.; Liu, C.; Zhu, X. Assessing the Prognostic Performance of the Child-Pugh, Model for End-Stage Liver Disease, and Albumin-Bilirubin Scores in Patients with Decompensated Cirrhosis: A Large Asian Cohort from Gastroenterology Department. Dis. Markers 2020, 2020, 5193028. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.C.; Jung, H.Y.; Sinn, D.H.; Choi, M.S.; Koh, K.C.; Paik, S.W.; Yoo, B.C.; Kim, S.W.; Lee, J.H. Mortality after surgery in patients with liver cirrhosis: Comparison of Child–Turcotte–Pugh, MELD and MELDNa score. Eur. J. Gastroenterol. Hepatol. 2011, 23, 51–59. [Google Scholar] [CrossRef]
- Wang, J.; Pillai, A. Systemic Therapy for Hepatocellular Carcinoma. Clin. Liver Dis. 2021, 17, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Su, G.L.; Altayar, O.; O’Shea, R.; Shah, R.; Estfan, B.; Wenzell, C.; Sultan, S.; Falck-Ytter, Y. AGA Clinical Practice Guideline on Systemic Therapy for Hepatocellular Carcinoma. Gastroenterology 2022, 162, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.M. Management of patients with decompensated cirrhosis. Clin. Med. 2015, 15, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Nouso, K.; Kokudo, N.; Tanaka, M.; Kuromatsu, R.; Nishikawa, H.; Toyoda, H.; Oishi, N.; Kuwaki, K.; Kusanaga, M.; Sakaguchi, T.; et al. Treatment of Hepatocellular Carcinoma with Child-Pugh C Cirrhosis. Oncology 2014, 87, 99–103. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Jiang, L.; Chen, Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res. 2022, 10, 3. [Google Scholar] [CrossRef]
- Pelizzaro, F.; Ramadori, G.; Farinati, F. Systemic Therapies for Hepatocellular Carcinoma: An Evolving Landscape. HR.2021. Available online: https://hrjournal.net/article/view/4021 (accessed on 6 November 2022).
- Shimose, S.; Hiraoka, A.; Tanaka, M.; Iwamoto, H.; Tanaka, T.; Noguchi, K.; Aino, H.; Yamaguchi, T.; Itano, S.; Suga, H.; et al. Deterioration of liver function and aging disturb sequential systemic therapy for unresectable hepatocellular carcinoma. Sci. Rep. 2022, 12, 17018. [Google Scholar] [CrossRef]
- Graziadei, I. Systemic therapy in advanced-stage hepatocellular carcinoma. Memo-Mag. Eur. Med. Oncol. 2020, 13, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Marisi, G.; Cucchetti, A.; Ulivi, P.; Canale, M.; Cabibbo, G.; Solaini, L.; Foschi, F.G.; De Matteis, S.; Ercolani, G.; Valgiusti, M.; et al. Ten years of sorafenib in hepatocellular carcinoma: Are there any predictive and/or prognostic markers? WJG 2018, 24, 4152–4163. [Google Scholar] [CrossRef]
- “Nexavar EPAR”. European Medicines Agency (EMA). Archived from the original on 14 October 2021. Retrieved 18 September 2022. Available online: www.ema.europa.eu/en/medicines/human/EPAR/nexavar (accessed on 18 June 2014).
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, R.; Kudo, M.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.F.; de Guevara, L.L.; Papandreou, C.; et al. GIDEON (Global Investigation of therapeutic DE cisions in hepatocellular carcinoma and Of its treatment with sorafeNib): Second interim analysis. Int. J. Clin. Pract. 2014, 68, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.Y.; Heo, J.; Yoon, K.T.; Kim, G.H.; Kang, D.H.; Song, G.A.; Cho, M. Clinical course of sorafenib treatment in patients with hepatocellular carcinoma. Scand. J. Gastroenterol. 2012, 47, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.R.G.; Magalhães, C.; Barbosa, D.; Aquino, D.; Carvalho, B.; Balbi, E.; Pacheco, L.; Perez, R.; de Tarso Pinto, P.; Setubal, S. Survival and tolerance to sorafenib in Child-Pugh B patients with hepatocellular carcinoma: A prospective study. Investig. New Drugs 2018, 36, 911–918. [Google Scholar] [CrossRef] [PubMed]
- McNamara, M.G.; Slagter, A.E.; Nuttall, C.; Frizziero, M.; Pihlak, R.; Lamarca, A.; Tariq, N.; Valle, J.W.; Hubner, R.A.; Knox, J.J.; et al. Sorafenib as first-line therapy in patients with advanced Child-Pugh B hepatocellular carcinoma—A meta-analysis. Eur. J. Cancer 2018, 105, 1–9. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Huynh, J.; Cho, M.T.; Kim, E.J.H.; Ren, M.; Ramji, Z.; Vogel, A. Lenvatinib in patients with unresectable hepatocellular carcinoma who progressed to Child-Pugh B liver function. Ther. Adv. Med. Oncol. 2022, 14, 175883592211166. [Google Scholar] [CrossRef] [PubMed]
- Ogushi, K.; Chuma, M.; Uojima, H.; Hidaka, H.; Numata, K.; Kobayashi, S.; Hirose, S.; Hattori, N.; Fujikawa, T.; Nakazawa, T.; et al. Safety and Efficacy of Lenvatinib Treatment in Child–Pugh A and B Patients with Unresectable Hepatocellular Carcinoma in Clinical Practice: A Multicenter Analysis. CEG 2020, 13, 385–396. [Google Scholar] [CrossRef]
- Park, M.K.; Lee, Y.B.; Moon, H.; Choi, N.R.; Kim, M.A.; Jang, H.; Nam, J.Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; et al. Effectiveness of Lenvatinib Versus Sorafenib for Unresectable Hepatocellular Carcinoma in Patients with Hepatic Decompensation. Dig. Dis. Sci. 2022. Available online: https://link.springer.com/10.1007/s10620-021-07365-9 (accessed on 20 September 2022). [CrossRef]
- Singal, A.G.; Nagar, S.P.; Hitchens, A.; Davis, K.L.; Iyer, S. REAL-WORLD effectiveness of lenvatinib monotherapy in previously treated unresectable hepatocellular carcinoma in US clinical practice. Cancer Rep. 2021, 17, 2759–2768. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kurosaki, M.; Sakamoto, A.; Marusawa, H.; Kojima, Y.; Hasebe, C.; Arai, H.; Joko, K.; Kondo, M.; Tsuji, K.; et al. The Real-World Data in Japanese Patients with Unresectable Hepatocellular Carcinoma Treated with Lenvatinib from a Nationwide Multicenter Study. Cancers 2021, 13, 2608. [Google Scholar] [CrossRef]
- Cosma, L.S.; Weigand, K.; Müller-Schilling, M.; Kandulski, A. Lenvatinib as First-line Treatment of Hepatocellular Carcinoma in Patients with Impaired Liver Function in Advanced Liver Cirrhosis: Real World Data and Experience of a Tertiary Hepatobiliary Center. J. Gastrointest. Liver Dis. 2021, 30, 247–253. Available online: https://www.jgld.ro/jgld/index.php/jgld/article/view/3345 (accessed on 21 December 2022). [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Meyer, T.; Cheng, A.L.; Rimassa, L.; Sen, S.; Milwee, S.; Kelley, R.K.; Abou-Alfa, G.K. Safety and efficacy of cabozantinib for patients with advanced hepatocellular carcinoma who advanced to Child–Pugh B liver function at study week 8: A retrospective analysis of the CELESTIAL randomised controlled trial. BMC Cancer 2022, 22, 377. [Google Scholar] [CrossRef]
- Kelley, R.K.; Miksad, R.; Cicin, I.; Chen, Y.; Klümpen, H.J.; Kim, S.; Lin, Z.Z.; Youkstetter, J.; Hazra, S.; Sen, S.; et al. Efficacy and safety of cabozantinib for patients with advanced hepatocellular carcinoma based on albumin-bilirubin grade. Br. J. Cancer 2022, 26, 569–575. [Google Scholar] [CrossRef]
- Bang, Y.H.; Lee, C.K.; Yoo, C.; Chon, H.J.; Hong, M.; Kang, B.; Kim, H.D.; Park, S.R.; Choi, W.M.; Choi, J.; et al. Real-world efficacy and safety of cabozantinib in Korean patients with advanced hepatocellular carcinoma: A multicenter retrospective analysis. Ther. Adv. Med. Oncol. 2022, 14, 175883592210979. [Google Scholar] [CrossRef]
- Finkelmeier, F.; Scheiner, B.; Leyh, C.; Best, J.; Fründt, T.W.; Czauderna, C.; Beutel, A.; Bettinger, D.; Weiß, J.; Meischl, T.; et al. Cabozantinib in Advanced Hepatocellular Carcinoma: Efficacy and Safety Data from an International Multicenter Real-Life Cohort. Liver Cancer 2021, 10, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracián, A.C.; Acosta-Rivera, M.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.; et al. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J. Hepatol. 2021, 75, 600–609. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Chapin, W.J.; Hwang, W.; Karasic, T.B.; McCarthy, A.M.; Kaplan, D.E. Comparison of nivolumab and sorafenib for first systemic therapy in patients with hepatocellular carcinoma and Child-Pugh B cirrhosis. Cancer Med. 2022, 1, 189–199. [Google Scholar] [CrossRef]
- Choi, W.M.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.S.; Lee, H.C.; Yoo, C.; Park, S.R.; Ryu, M.H.; Ryoo, B.Y.; et al. Effectiveness and Safety of Nivolumab in Child–Pugh B Patients with Hepatocellular Carcinoma: A Real-World Cohort Study. Cancers 2020, 12, 1968. [Google Scholar] [CrossRef]
- Scheiner, B.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Schulze, K.; von Felden, J.; Koch, S.; Schwabl, P.; Hinrichs, J.B.; Waneck, F.; et al. Programmed cell death protein-1 (PD-1)-targeted immunotherapy in advanced hepatocellular carcinoma: Efficacy and safety data from an international multicentre real-world cohort. Aliment. Pharmacol. Ther. 2019, 49, 1323–1333. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- D’Alessio, A.; Fulgenzi, C.A.M.; Nishida, N.; Schönlein, M.; von Felden, J.; Schulze, K.; Wege, H.; Gaillard, V.E.; Saeed, A.; Wietharn, B.; et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology 2022, 4, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Feng, Y.H.; Yen, C.J.; Chen, S.C.; Lin, Y.T.; Lu, L.C.; Hsu, C.H.; Cheng, A.L.; Shao, Y.Y. Prognosis and treatment pattern of advanced hepatocellular carcinoma after failure of first-line atezolizumab and bevacizumab treatment. Hepatol. Int. 2022, 16, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Persano, M.; Rimini, M.; Tada, T.; Suda, G.; Shimose, S.; Kudo, M.; Cheon, J.; Finkelmeier, F.; Lim, H.Y.; Rimassa, L.; et al. Clinical outcomes with atezolizumab plus bevacizumab or lenvatinib in patients with hepatocellular carcinoma: A multicenter real-world study. J. Cancer Res. Clin. Oncol. J. 2022. ahead of print. [Google Scholar] [CrossRef]
- de Castro, T.; Jochheim, L.S.; Bathon, M.; Welland, S.; Scheiner, B.; Shmanko, K.; Roessler, D.; Ben Khaled, N.; Jeschke, M.; Ludwig, J.M.; et al. Atezolizumab and bevacizumab in patients with advanced hepatocellular carcinoma with impaired liver function and prior systemic therapy: A real-world experience. Ther. Adv. Med. Oncol. 2022, 14, 175883592210802. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.K.; Dao, T.V.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Piscaglia, F.; Terzi, E.; Cucchetti, A.; Trimarchi, C.; Granito, A.; Leoni, S.; Marinelli, S.; Pini, P.; Bolondi, L. Treatment of hepatocellular carcinoma in Child-Pugh B patients. Dig. Liver Dis. 2013, 45, 852–858. [Google Scholar] [CrossRef] [PubMed]
- CasadeiGardini, A.; Marisi, G.; Canale, M.; Foschi, F.G.; Donati, G.; Ercolani, G.; Valgiusti, M.; Passardi, A.; Frassineti, G.L.; Scarpi, E. Radiofrequency Ablation of hepatocellular carcinoma: A meta-analysis of overall survival and recurrence-free survival. OTT 2018, 11, 6555–6567. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Kim, C.S.; Chung, G.H.; Han, Y.M.; Lee, S.Y.; Jin, G.Y.; Lee, J.M. Radiofrequency Ablation of Hepatocellular Carcinoma in Patients with Decompensated Cirrhosis: Evaluation of Therapeutic Efficacy and Safety. Am. J. Roentgenol. 2006, 186, 261–268. [Google Scholar] [CrossRef]
- Nouso, K.; Ito, Y.M.; Kuwaki, K.; Kobayashi, Y.; Nakamura, S.; Ohashi, Y.; Yamamoto, K. Prognostic factors and treatment effects for hepatocellular carcinoma in Child C cirrhosis. Br. J. Cancer 2008, 98, 1161–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Osaki, Y.; Matsunaga, T.; Kasugai, H.; Oka, H.; Seki, T. Hepatocellular Carcinoma in Child-Pugh C Cirrhosis: Prognostic Factors and Survival Benefit of Nontransplant Treatments. Dig. Dis. 2013, 31, 490–498. [Google Scholar] [CrossRef]
- Garwood, E.R.; Fidelman, N.; Hoch, S.E.; Kerlan, R.K.; Yao, F.Y. Morbidity and mortality following transarterial liver chemoembolization in patients with hepatocellular carcinoma and synthetic hepatic dysfunction: High-Risk Transarterial Chemoembolization Outcomes. Liver Transpl. 2013, 19, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Miksad, R.A.; Ogasawara, S.; Xia, F.; Fellous, M.; Piscaglia, F. Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: The LiverT study. BMC Cancer 2019, 19, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Xia, D.; Bai, W.; Wang, E.; Sun, J.; Huang, M.; Mu, W.; Yin, G.; Li, H.; Zhao, H.; et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. J. Hepatol. 2019, 70, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.F.; Wang, H.; Yu, C.L.; Yin, W.L.; Zhang, X.D.; Wang, F.; Sun, C.; Shen, W. ASARA, a prediction model based on Child-Pugh class in hepatocellular carcinoma patients undergoing transarterial chemoembolization. Hepatobiliary Pancreat. Dis. Int. 2022, 22, S1499387222000157. [Google Scholar] [CrossRef] [PubMed]
- Takayasu, K.; Arii, S.; Kudo, M.; Ichida, T.; Matsui, O.; Izumi, N.; Izumi, N.; Matsuyama, Y.; Sakamoto, M.; Nakashima, O.; et al. Superselectivetransarterial chemoembolization for hepatocellular carcinoma. Validation of treatment algorithm proposed by Japanese guidelines. J. Hepatol. 2012, 56, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Dorn, D.P.; Bryant, M.K.; Zarzour, J.; Smith, J.K.; Redden, D.T.; Saddekni, S.; Abdel Aal, A.K.; Gray, S.; White, J.; Eckhoff, D.E.; et al. Chemoembolization outcomes for hepatocellular carcinoma in cirrhotic patients with compromised liver function. HPB 2014, 16, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Kitai, S.; Kudo, M.; Nishida, N.; Izumi, N.; Sakamoto, M.; Matsuyama, Y.; Ichida, T.; Nakashima, O.; Matsui, O.; Ku, Y.; et al. Survival Benefit of Locoregional Treatment for Hepatocellular Carcinoma with Advanced Liver Cirrhosis. Liver Cancer 2016, 5, 175–189. [Google Scholar] [CrossRef]
- Sacco, R.; Mismas, V.; Marceglia, S.; Romano, A.; Giacomelli, L.; Bertini, M.; Federici, G.; Metrangolo, S.; Parisi, G.; Tumino, E.; et al. Transarterial radioembolization for hepatocellular carcinoma: An update and perspectives. World J. Gastroenterol. 2015, 21, 6518–6525. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.I.; Nunez-Herrero, L.; Berkes, J.L. Position 2: Transarterial Radioembolization Should Be the Primary Locoregional Therapy for Unresectable Hepatocellular Carcinoma. Clin. Liver Dis. (Hoboken) 2020, 15, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.Y.; Lee, M.; Kim, H.C.; Chung, J.W.; Kim, Y.H.; Gwak, G.Y.; Bae, S.H.; do Kim, Y.; Heo, J.; Kim, Y.J. Radioembolization Is a Safe and Effective Treatment for Hepatocellular Carcinoma with Portal Vein Thrombosis: A Propensity Score Analysis. PLoS ONE 2016, 11, e0154986. [Google Scholar] [CrossRef] [PubMed]
- Zu, Q.; Schenning, R.C.; Jahangiri, Y.; Tomozawa, Y.; Kolbeck, K.J.; Kaufman, J.A.; Al-Hakim, R.; Naugler, W.E.; Nabavizadeh, N.; Kardosh, A. Yttrium-90 Radioembolization for BCLC Stage C Hepatocellular Carcinoma Comparing Child-Pugh A Versus B7 Patients: Are the Outcomes Equivalent? Cardiovasc. Interv. Radiol. 2020, 43, 721–731. [Google Scholar] [CrossRef]
- Abouchaleh, N.; Gabr, A.; Ali, R.; Al Asadi, A.; Mora, R.A.; Kallini, J.R.; Mouli, S.; Riaz, A.; Lewandowski, R.J.; Salem, R. 90Y Radioembolization for Locally Advanced Hepatocellular Carcinoma with Portal Vein Thrombosis: Long-Term Outcomes in a 185-Patient Cohort. J. Nucl. Med. 2018, 59, 1042–1048. [Google Scholar] [CrossRef] [Green Version]
- Memon, K.; Kulik, L.; Lewandowski, R.J.; Mulcahy, M.F.; Benson, A.B.; Ganger, D.; Riaz, A.; Gupta, R.; Vouche, M.; Gates, V.L.; et al. Radioembolization for hepatocellular carcinoma with portal vein thrombosis: Impact of liver function on systemic treatment options at disease progression. J. Hepatol. 2013, 58, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Fuster, J.; Bruix, J.; Barcelona Clinic Liver Cancer (BCLC) Group. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: Resection versus transplantation. Hepatology 1999, 30, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Utsunomiya, T.; Shimada, M.; Kudo, M.; Ichida, T.; Matsui, O.; Izumi, N.; Matsuyama, Y.; Sakamoto, M.; Nakashima, O.; Ku, Y.; et al. A Comparison of the Surgical Outcomes Among Patients With HBV-positive, HCV-positive, and Non-B Non-C Hepatocellular Carcinoma: A Nationwide Study of 11,950 Patients. Ann. Surg. 2015, 261, 513–520. [Google Scholar] [CrossRef]
- Krenzien, F.; Schmelzle, M.; Struecker, B.; Raschzok, N.; Benzing, C.; Jara, M.; Bahra, M.; Öllinger, R.; Sauer, I.M.; Pascher, A.; et al. Liver Transplantation and Liver Resection for Cirrhotic Patients with Hepatocellular Carcinoma: Comparison of Long-Term Survivals. J. Gastrointest. Surg. 2018, 22, 840–848. [Google Scholar] [CrossRef]
- Sugawara, Y.; Hibi, T. Surgical treatment of hepatocellular carcinoma. BST 2021, 15, 138–141. [Google Scholar] [CrossRef]
- Bruix, J.; Castells, A.; Bosch, J.; Feu, F.; Fuster, J.; Garcia-Pagan, J.; Visa, J.; Bru, C.; Rodés, J. Surgical resection of hepatocellular carcinoma in cirrhotic patients: Prognostic value of preoperative portal pressure. Gastroenterology 1996, 111, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, D.; Ramos, E.; Casellas-Robert, M.; Salloum, C.; Lladó, L.; Nadler, R.; Caula-Freixa, C.; Mils, K.; Lopez-Ben, S.; Figueras, J.; et al. Liver resection for hepatocellular carcinoma in patients with clinically significant portal hypertension. JHEP Rep. 2021, 3, 100190. [Google Scholar] [CrossRef]
- Leyh, C.; Heucke, N.; Schotten, C.; Büchter, M.; Bechmann, L.P.; Wichert, M.; Dechêne, A.; Herrmann, K.; Heider, D.; Sydor, S.; et al. LiMAx Prior to Radioembolization for Hepatocellular Carcinoma as an Additional Tool for Patient Selection in Patients with Liver Cirrhosis. Cancers 2022, 14, 4584. [Google Scholar] [CrossRef] [PubMed]
- Citterio, D.; Facciorusso, A.; Sposito, C.; Rota, R.; Bhoori, S.; Mazzaferro, V. Hierarchic Interaction of Factors Associated With Liver Decompensation After Resection for Hepatocellular Carcinoma. JAMA Surg. 2016, 15, 846. [Google Scholar] [CrossRef]
- Han, H.S.; Shehta, A.; Ahn, S.; Yoon, Y.S.; Cho, J.Y.; Choi, Y. Laparoscopic versus open liver resection for hepatocellular carcinoma: Case-matched study with propensity score matching. J. Hepatol. 2015, 63, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ciria, R.; Ocaña, S.; Gomez-Luque, I.; Cipriani, F.; Halls, M.; Fretland, Å.A.; Okuda, Y.; Aroori, S.; Briceño, J.; Aldrighetti, L.; et al. A systematic review and meta-analysis comparing the short- and long-term outcomes for laparoscopic and open liver resections for liver metastases from colorectal cancer. Surg. Endosc. 2020, 34, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.D.; Yopp, A.; Singal, A.G. Controversies in criteria for liver transplantation in hepatocellular carcinoma. Curr. Opin. Gastroenterol. 2016, 32, 182–188. [Google Scholar] [CrossRef]
- Llovet, J.M.; Burroughs, A.; Bruix, J. Hepatocellular carcinoma. Lancet 2003, 36, 1907–1917. [Google Scholar] [CrossRef] [Green Version]
- Durand, F.; Antoine, C.; Soubrane, O. Liver Transplantation in France. Liver Transpl. 2019, 25, 763–770. [Google Scholar] [CrossRef]
- Yao, F.Y.; Bass, N.M.; Nikolai, B.; Davern, T.J.; Kerlan, R.; Wu, V.; Ascher, N.L.; Roberts, J.P. Liver transplantation for hepatocellular carcinoma: Analysis of survival according to the intention-to-treat principle and dropout from the waiting list. Liver Transplant. 2002, 8, 873–883. [Google Scholar] [CrossRef]
- Crocetti, L.; Bozzi, E.; Scalise, P.; Bargellini, I.; Lorenzoni, G.; Ghinolfi, D.; Campani, D.; Balzano, E.; De Simone, P.; Cioni, R. Locoregional Treatments for Bridging and Downstaging HCC to Liver Transplantation. Cancers 2021, 13, 5558. [Google Scholar] [CrossRef]
- Hibi, T.; Sugawara, Y. Locoregional therapy as a bridge to liver transplantation for hepatocellular carcinoma within Milan criteria: From a transplant oncology viewpoint. Hepatobiliary Surg. Nutr. 2018, 7, 134–135. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, H.; Fritze, D.; Mais, D.; Kadaba, V.; Arora, S.P. Neoadjuvant Therapy With Cabozantinib as a Bridge to Liver Transplantation in Patients With Hepatocellular Carcinoma (HCC): A Case Report. Front Transplant. 2022, 1, 863086. [Google Scholar] [CrossRef]
- Coletta, M.; Nicolini, D.; Cacciaguerra, A.B.; Mazzocato, S.; Rossi, R.; Vivarelli, M. Bridging patients with hepatocellular cancer waiting for liver transplant: All the patients are the same? Transl. Gastroenterol. Hepatol. 2017, 2, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnickel, G.T.; Fabbri, K.; Hosseini, M.; Misel, M.; Berumen, J.; Parekh, J.; Mekeel, K.; Dehghan, Y.; Kono, Y.; Ajmera, V. Liver transplantation for hepatocellular carcinoma following checkpoint inhibitor therapy with nivolumab. Am. J Transplant. 2022, 22, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Yao, F. Liver transplantation for hepatocellular carcinoma: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Santopaolo, F.; Lenci, I.; Milana, M.; Manzia, T.M.; Baiocchi, L. Liver transplantation for hepatocellular carcinoma: Where do we stand? WJG 2019, 25, 2591–2602. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Panda, D. Role of Supportive Care for Terminal Stage Hepatocellular Carcinoma. J. Clin. Exp. Hepatol. 2014, 4, S130–S139. [Google Scholar] [CrossRef] [Green Version]
- Woodrell, C.D.; Hansen, L.; Schiano, T.D.; Goldstein, N.E. Palliative Care for People With Hepatocellular Carcinoma, and Specific Benefits for Older Adults. Clin. Ther. 2018, 40, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Qi, X.; Guo, X. Child–Pugh Versus MELD Score for the Assessment of Prognosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis of Observational Studies. Medicine 2016, 95, e2877. [Google Scholar] [CrossRef]
- Scheiner, B.; Roessler, D.; Phen, S.; Lim, M.; Pomej, K.; Pressiani, T.; Cammarota, A.; Fründt, T.W.; von Felden, J.; Schulze, K.; et al. Efficacy and safety of immune checkpoint inhibitor rechallenge in individuals with hepatocellular carcinoma. JHEP Rep. 2022, 5, 100620. [Google Scholar] [CrossRef] [PubMed]
Type of Treatment | Advantages | Disadvantages |
---|---|---|
Systemic therapy |
|
|
Radiofrequency ablation |
|
|
Transarterial Chemoembolization |
|
|
Transarterial radioembolization |
|
|
Liver resection |
|
|
Liver transplantation |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tampaki, M.; Papatheodoridis, G.V.; Cholongitas, E. Management of Hepatocellular Carcinoma in Decompensated Cirrhotic Patients: A Comprehensive Overview. Cancers 2023, 15, 1310. https://doi.org/10.3390/cancers15041310
Tampaki M, Papatheodoridis GV, Cholongitas E. Management of Hepatocellular Carcinoma in Decompensated Cirrhotic Patients: A Comprehensive Overview. Cancers. 2023; 15(4):1310. https://doi.org/10.3390/cancers15041310
Chicago/Turabian StyleTampaki, Maria, George V. Papatheodoridis, and Evangelos Cholongitas. 2023. "Management of Hepatocellular Carcinoma in Decompensated Cirrhotic Patients: A Comprehensive Overview" Cancers 15, no. 4: 1310. https://doi.org/10.3390/cancers15041310
APA StyleTampaki, M., Papatheodoridis, G. V., & Cholongitas, E. (2023). Management of Hepatocellular Carcinoma in Decompensated Cirrhotic Patients: A Comprehensive Overview. Cancers, 15(4), 1310. https://doi.org/10.3390/cancers15041310