Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Trial Design and Study Population
2.2. Serum Sampling
2.3. ELISA Analysis
2.4. Statistical Analyses
3. Results
3.1. Patient Cohort in the Achilles Study
3.2. Levels of Circulating Putative Biomarkers over Time
3.3. Association of Putative Biomarkers with SRE-Free or Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, L.E. Tetracycline Inhibition of Cell-Free Protein Synthesis I. Binding of Tetracycline to Components of the System. J. Bacteriol. 1966, 91, 1917–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oehler, R.; Polacek, N.; Steiner, G.; Barta, A. Interaction of tetracycline with RNA: Photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1997, 25, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Mortison, J.D.; Schenone, M.; Myers, J.A.; Zhang, Z.; Chen, L.; Ciarlo, C.; Comer, E.; Natchiar, S.K.; Carr, S.A.; Klaholz, B.P.; et al. Tetracyclines Modify Translation by Targeting Key Human rRNA Substructures. Cell Chem. Biol. 2018, 25, 1506–1518.e1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duivenvoorden, W.C.; Popović, S.V.; Lhoták, S.; Seidlitz, E.; Hirte, H.W.; Tozer, R.G.; Singh, G. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res. 2002, 62, 1588–1591. [Google Scholar]
- Fife, R.S.; Sledge, G.W., Jr.; Roth, B.J.; Proctor, C. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett. 1998, 127, 37–41. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, S.; Qin, Y.; Zhang, H.; Wang, H.; Meng, J.; Huai, L.; Zhang, Q.; Yin, T.; Lei, Y.; et al. Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-κB/miR-17/E-cadherin pathway. Oncotarget 2017, 8, 104855–104866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Sun, B.; Zhao, X.; Zhang, D.; Gu, Q.; Dong, X.; Zhao, N.; Liu, P.; Liu, Y. Doxycycline as an Inhibitor of the Epithelial-to-Mesenchymal Transition and Vasculogenic Mimicry in Hepatocellular Carcinoma. Mol. Cancer Ther. 2014, 13, 3107–3122. [Google Scholar] [CrossRef] [Green Version]
- Fife, R.S.; Sledge, G.W., Jr. Effects of doxycycline on in vitro growth, migration, and gelatinase activity of breast carcinoma cells. J. Lab. Clin. Med. 1995, 125, 407–411. [Google Scholar]
- Ogut, D.; Reel, B.; Gonen Korkmaz, C.; Arun, M.Z.; Cilaker Micili, S.; Ergur, B.U. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells. Folia Histochem. Cytobiol. 2016, 54, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, C.; Liu, X.; He, Y.; Shen, D.; Luo, Q.; Dong, Y.; Dong, H.; Pang, Z. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines. Tumour Biol. 2017, 39, 1010428317718192. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-Q.; Zhao, B.-X.; Liu, Y.; Wang, Y.-T.; Liang, Q.-Y.; Cai, Y.; Zhang, Y.-Q.; Yang, J.-H.; Song, Z.-H.; Li, G.-F. New application of an old drug: Antitumor activity and mechanisms of doxycycline in small cell lung cancer. Int. J. Oncol. 2016, 48, 1353–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Wang, X.; Zhao, Y.Y.; Curtis, J.M.; Brindley, D.N. Doxycycline attenuates breast cancer related inflammation by decreasing plasma lysophosphatidate concentrations and inhibiting NF-κB activation. Mol. Cancer 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Zhang, F.; Vlashi, E. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle 2017, 16, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, R.; Harrison, H.; Hulit, J.; Smith, D.L.; Lisanti, M.P.; Sotgia, F. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget 2014, 5, 11029–11037. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tao, H.; Wang, H.; Yang, Y.; Yang, R.; Dai, X.; Ding, X.; Wu, H.; Chen, S.; Sun, T. Doxycycline Inhibits Cancer Stem Cell-Like Properties via PAR1/FAK/PI3K/AKT Pathway in Pancreatic Cancer. Front. Oncol. 2020, 10, 619317. [Google Scholar] [CrossRef] [PubMed]
- Lamb, R.; Ozsvari, B.; Lisanti, C.L.; Tanowitz, H.B.; Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget 2015, 6, 4569–4584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.U.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic Behavior of Breast Cancer Subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef]
- Lu, X.; Mu, E.; Wei, Y.; Riethdorf, S.; Yang, Q.; Yuan, M.; Yan, J.; Hua, Y.; Tiede, B.J.; Haffy, B.G.; et al. VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging α4β1-Positive Osteoclast Progenitors. Cancer Cell 2011, 20, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Mundy, G.R. Mechanisms of bone metastasis. Cancer 1997, 80, 1546–1556. [Google Scholar] [CrossRef]
- Trinkaus, M.; Simmons, C.; Myers, J.; Dranatisaris, G.; Clemons, M. Skeletal-related events (SREs) in breast cancer patients with bone metastases treated in the nontrial setting. Support. Care Cancer 2010, 18, 197–203. [Google Scholar] [CrossRef]
- Van Poznak, C.; Somerfield, M.R.; Barlow, W.E.; Biermann, J.S.; Bosserman, L.D.; Clemons, M.J.; Dhesy-Thind, S.K.; Dillmon, M.S.; Eisen, A.; Frank, E.S.; et al. Role of Bone-Modifying Agents in Metastatic Breast Cancer: An American Society of Clinical Oncology–Cancer Care Ontario Focused Guideline Update. J. Clin. Oncol. 2017, 35, 3978–3986. [Google Scholar] [CrossRef] [PubMed]
- von Moos, R.; Lewis, K.; Massey, L.; Marongiu, A.; Rider, A.; Seesaghur, A. Initiation of bone-targeted agents in patients with bone metastases and breast or castrate-resistant prostate cancer actively treated in routine clinical practice in Europe. Bone 2022, 154, 116243. [Google Scholar] [CrossRef] [PubMed]
- Jakob, A.; Zahn, M.-O.; Nusch, A.; Werner, T.; Schnell, R.; Frank, M.; Hamm, N.; Dassler, K.-U.; Losem, C.; Welslau, M.; et al. Real-world patient-reported outcomes of breast cancer or prostate cancer patients receiving antiresorptive therapy for bone metastases: Final results of the PROBone registry study. J. Bone Oncol. 2022, 33, 100420. [Google Scholar] [CrossRef]
- Holmes, N.E.; Charles, P.G.P. Safety and Efficacy Review of Doxycycline. Clin. Med. Ther. 2009, 1, CMT.S2035. [Google Scholar] [CrossRef] [Green Version]
- Duivenvoorden, W.C.; Vukmirović-Popović, S.; Kalina, M.; Seidlitz, E.; Singh, G. Effect of zoledronic acid on the doxycycline-induced decrease in tumour burden in a bone metastasis model of human breast cancer. Br. J. Cancer 2007, 96, 1526–1531. [Google Scholar] [CrossRef] [Green Version]
- Dhesy-Thind, S.K.; Julian, J.; Tozer, R.; Ellis, P.; Arnold, A.; Singh, G.; Levine, M. The effect of doxycycline on bone turnover and tumor markers in breast cancer (BC) patients with skeletal metastases. J. Clin. Oncol. 2005, 23, 3198. [Google Scholar] [CrossRef]
- Addison, C.L.; Simos, D.; Wang, Z.; Pond, G.; Smith, S.; Robertson, S.; Mazzarello, S.; Singh, G.; Vandermeer, L.; Fernandes, R.; et al. A phase 2 trial exploring the clinical and correlative effects of combining doxycycline with bone-targeted therapy in patients with metastatic breast cancer. J. Bone Oncol. 2016, 5, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Kuchuk, I.; Beaumont, J.L.; Clemons, M.; Amir, E.; Addison, C.L.; Cella, D. Effects of de-escalated bisphosphonate therapy on the Functional Assessment of Cancer Therapy-Bone Pain, Brief Pain Inventory and bone biomarkers. J. Bone Oncol. 2013, 2, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Cella, D.F.; Tulsky, D.S.; Gray, G.; Sarafian, B.; Linn, E.; Bonomi, A.; Silberman, M.; Yellen, S.B.; Winicour, P.; Brannon, J.; et al. The Functional Assessment of Cancer Therapy scale: Development and validation of the general measure. J. Clin. Oncol. 1993, 11, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Broom, R.; Du, H.; Clemons, M.; Eton, D.; Dranitsaris, G.; Simmons, C.; Ooi, W.; Cella, D. Switching Breast Cancer Patients with Progressive Bone Metastases to Third-Generation Bisphosphonates: Measuring Impact Using the Functional Assessment of Cancer Therapy-Bone Pain. J. Pain Symptom Manag. 2009, 38, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiang, R.; Zhang, X.; Chen, Y. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase. Mol. Med. Rep. 2015, 12, 3374–3380. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; Yang, Y.-N.; Chu, H.-R.; Huang, T.-Y.; Wang, S.-H.; Chen, H.-Y.; Li, Z.-L.; Yang, Y.-C.S.H.; Lin, H.-Y.; Hercbergs, A.; et al. Role of Integrin alphavbeta3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Front. Cell Dev. Biol. 2022, 10, 829788. [Google Scholar] [CrossRef]
- Lu, W.; Zhou, X.; Hong, B.; Liu, J.; Yue, Z. Suppression of invasion in human U87 glioma cells by adenovirus-mediated co-transfer of TIMP-2 and PTEN gene. Cancer Lett. 2004, 214, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 2007, 26, 5229–5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, G.-J.; Dong, Y.-Q.; Zhang, Q.-M.; Di, W.-Y.; Jiao, L.-Y.; Gao, Q.-Z.; Zhang, C.-G. miRNA-221 promotes proliferation, migration and invasion by targeting TIMP2 in renal cell carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 5224–5229. [Google Scholar] [PubMed]
- Liang, B.; Yin, J.-J.; Zhan, X.-R. MiR-301a promotes cell proliferation by directly targeting TIMP2 in multiple myeloma. Int. J. Clin. Exp. Pathol. 2015, 8, 9168–9174. [Google Scholar]
- Peeney, D.; Jensen, S.M.; Castro, N.P.; Kumar, S.; Noonan, S.; Handler, C.; Kuznetsov, A.; Shih, J.; Tran, A.D.; Salomon, D.S.; et al. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinog 2020, 41, 313–325. [Google Scholar] [CrossRef]
- Munshi, H.G.; Wu, Y.I.; Mukhopadhyay, S.; Ottaviano, A.J.; Sassano, A.; Koblinski, J.E.; Platanias, L.C.; Stack, M.S. Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor-β1-induced Pericellular Collagenolysis. J. Biol. Chem. 2004, 279, 39042–39050. [Google Scholar] [CrossRef] [Green Version]
- Scatena, C.; Roncella, M.; Di Paolo, A.; Aretini, P.; Menicagli, M.; Fanelli, G.; Marini, C.; Mazzanti, C.M.; Ghilli, M.; Sotgia, F.; et al. Doxycycline, an Inhibitor of Mitochondrial Biogenesis, Effectively Reduces Cancer Stem Cells (CSCs) in Early Breast Cancer Patients: A Clinical Pilot Study. Front. Oncol. 2018, 8, 452. [Google Scholar] [CrossRef]
- Addison, C.L.; Pond, G.R.; Zhao, H.; Mazzarello, S.; VanderMeer, L.; Goldstein, R.; Amir, E.; Clemons, M. Effects of de-escalated bisphosphonate therapy on bone turnover biomarkers in breast cancer patients with bone metastases. Springerplus 2014, 3, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemons, M.J.; Cochrane, B.; Pond, G.R.; Califaretti, N.; Chia, S.K.; Dent, R.A.; Song, X.; Robidoux, A.; Parpia, S.; Warr, D.; et al. Randomised, phase II, placebo-controlled, trial of fulvestrant plus vandetanib in postmenopausal women with bone only or bone predominant, hormone-receptor-positive metastatic breast cancer (MBC): The OCOG ZAMBONEY study. Breast Cancer Res. Treat. 2014, 146, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Teronen, O.; Laitinen, M.; Salo, T.; Hanemaaijer, R.; Heikkilä, P.; Konttinen, Y.T.; Sorsa, T. Inhibition of matrix metalloproteinases by bisphosphonates may in part explain their effects in the treatment of multiple myeloma. Blood 2000, 96, 4006–4007. [Google Scholar] [CrossRef] [PubMed]
- Valleala, H.; Hanemaaijer, R.; Mandelin, J.; Salminen, A.; Teronen, O.; Mönkkönen, J.; Konttinen, Y.T. Regulation of MMP-9 (gelatinase B) in activated human monocyte/macrophages by two different types of bisphosphonates. Life Sci. 2003, 73, 2413–2420. [Google Scholar] [CrossRef]
- Nilsson, U.W.; Garvin, S.; Dabrosin, C. MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells. Breast Cancer Res. Treat. 2007, 102, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Lymperatou, D.; Giannopoulou, E.; Koutras, A.K.; Kalofonos, H.P. The Exposure of Breast Cancer Cells to Fulvestrant and Tamoxifen Modulates Cell Migration Differently. BioMed Res. Int. 2013, 2013, 147514. [Google Scholar] [CrossRef]
Characteristics or Outcome | N | All Patients | |
---|---|---|---|
N | 37 | ||
Demographics | |||
Age | 37 | Median (IQR), Range | 59 (54–65), 41–88 |
Mean (std dev) | 60.1 (10.1) | ||
ECOG Status at Baseline | 37 | N (%) | |
1 | 22 (59.5) | ||
2 | 14 (37.8) | ||
3 | 1 (2.7) | ||
Duration of Bone Metastasis (months) | 35 | Median (IQR), Range | 13 (8–22), 4–67 |
Time from Primary to Metastases (months) | 37 | Median (IQR), Range | 3 (0–108), 0–312 |
Bone Therapy Duration (months) | 37 | Median (IQR), Range | 10 (7–20), 3–67 |
Vitamin D at baseline | 37 | Median (IQR), Range | 91 (72–120), 48-185 |
PTH at baseline | 37 | Median (IQR), Range | 5.0 (3.4–7.1), 1.7–18.3 |
Therapy Type | 36 | N (%) | |
Chemotherapy | 15 (41.7) | ||
Chemotherapy + Trastuzumab | 2 (5.6) | ||
Endocrine Therapy | 19 (52.8) | ||
Previous SRE Radiation for Bone Pain | 37 | (number of occurrences) | N (%) |
0 | 18 (48.7) | ||
1 | 15 (40.5) | ||
2 | 1 (2.7) | ||
3 | 2 (5.4) | ||
4 | 0 | ||
5 | 1 (2.7) | ||
Previous SRE Radiotherapy Preventative | 37 | N (%) | 15 (40.5) |
Past SRE Bone Surgery | 37 | N (%) | 6 (16.2) |
Past SRE Hypercalcaemia | 37 | N (%) | 3 (8.1) |
Past SRE Spinal Cord Compression | 37 | N (%) | 6 (16.2) |
Past SRE Path Fracture | 37 | (number of occurrences) | N (%) |
0 | 26 (70.3) | ||
1 | 8 (21.6) | ||
2 | 3 (8.1) | ||
Previous SRE Total | 37 | (number of occurrences) | N (%) |
0 | 17 (46.0) | ||
1 | 3 (8.1) | ||
2 | 3 (8.1) | ||
3 | 3 (8.1) | ||
4 | 5 (13.5) | ||
5 | 4 (10.8) | ||
6 | 0 | ||
7 | 2 (5.4) | ||
Outcomes | |||
Study Completion Status | 37 | Completed Study | 28 (75.7) |
Withdrew due to PD | 3 (8.1) | ||
Withdrew due to AE | 5 (13.5) | ||
Unknown | 1 (2.7) | ||
SRE Type | 19 | Fracture | 3 |
Radiation | 16 | ||
Time to SRE or Death | 37 | N (%) Events | 33 (89.2) |
Median (95% CI) | 16.8 (10.5, 27.2) | ||
1-Year SRE-Free Rate (95% CI) | 62.2 (44.6, 75.6) | ||
2-Year SRE-Free Rate (95% CI) | 43.2 (27.2, 58.3) | ||
5-Year SRE-Free Rate (95% CI) | 16.2 (6.6, 29.6) | ||
Time to SRE or Death | 37 | N (%) Events | 32 (86.5) |
Median (95% CI) OS | 33.8 (21.5, 43.9) | ||
1-Year OS (95% CI) | 81.1 (64.4, 90.5) | ||
2-Year OS (95% CI) | 59.5 (42.0, 73.2) | ||
5-Year OS (95% CI) | 27.0 (14.1, 41.8) |
Absolute Circulating Levels | |||
Biomarker | N | Timepoint | Median ng/mL (Range) |
MMP2 | 34 | Baseline | 262 (125–401) |
31 | Week 4 | 256 (139–359) | |
29 | Week 8 | 263 (128–477) | |
26 | Week 12 | 274 (157–384) | |
MMP9 | 33 | Baseline | 237 (33–801) |
30 | Week 4 | 276 (39–931) | |
29 | Week 8 | 261 (108–665) | |
25 | Week 12 | 262 (72–593) | |
TIMP2 | 34 | Baseline | 120 (86–178) |
31 | Week 4 | 122 (85–165) | |
29 | Week 8 | 117 (80–174) | |
26 | Week 12 | 128 (87–226) | |
Change in Circulating Levels from Baseline | |||
Biomarker | N | Baseline to Time point | Percentage Change (Range) |
MMP2 | 31 | Week 4 | −3.8 (−38.7, 77.6) |
29 | Week 8 | −3.5 (−29.4, 76.5) | |
26 | Week 12 | 0.9 (−23.6, 90.9) | |
MMP9 | 29 | Week 4 | 4.9 (−75.0, 851.1) |
28 | Week 8 | −4.0 (−66.4, 682.0) | |
25 | Week 12 | −6.4 (−64.5, 950.4) | |
TIMP2 | 31 | Week 4 | −0.3 (−19.5, 32.1) |
29 | Week 8 | −0.5 (−26.2, 24.8) | |
26 | Week 12 | 4.1 (−32.4, 87.9) |
Markers | MMP9 | TIMP2 |
---|---|---|
Baseline | ||
MMP2 | −0.48 ** | 0.77 ** |
MMP9 | −0.60 ** | |
Week 4 | ||
MMP2 | −0.12 | 0.81 ** |
MMP9 | −0.16 | |
Week 8 | ||
MMP2 | 0.27 | 0.80 ** |
MMP9 | 0.32 | |
Week 12 | ||
MMP2 | 0.38 | 0.61 ** |
MMP9 | −0.18 |
Markers | MMP9 | NTx | TIMP2 | Week 4 | Week 8 | Week 12 |
---|---|---|---|---|---|---|
At Week 4 | Baseline with Later Values | |||||
MMP2 | 0.21 | −0.07 | 0.46 ** | 0.75 ** | 0.73 ** | 0.50 ** |
MMP9 | −0.04 | 0.19 | 0.44 * | 0.47 * | 0.45 * | |
TIMP2 | 0.71 ** | 0.74 ** | 0.59 ** | |||
At Week 8 | ||||||
MMP2 | 0.39 * | −0.16 | 0.67 ** | |||
MMP9 | −0.35 | 0.42 * | ||||
At Week 12 | ||||||
MMP2 | 0.43 * | 0.02 | 0.42 * | |||
MMP9 | −0.05 | 0.05 |
Factor | N | Comparator | HR (95% CI) | p-Value |
---|---|---|---|---|
Age | 37 | /year | 1.01 (0.98, 1.05) | 0.48 |
ECOG Status at Baseline | 37 | 2/3 vs. 1 | 2.52 (1.23, 5.17) | 0.012 * |
Duration of Bone Mets | 35 | /month | 1.00 (0.98, 1.02) | 0.94 |
Time from Primary to Metastases | 37 | /month | 1.00 (1.00, 1.01) | 0.70 |
Bone Therapy Duration (months) | 37 | /month | 1.00 (0.97, 1.02) | 0.68 |
Vitamin D at baseline | 37 | /unit | 0.99 (0.98, 1.00) | 0.12 |
PTH at baseline | 37 | /unit | 1.06 (0.95, 1.19) | 0.28 |
Past SRE Total | 37 | ≥1 vs. 0 | 2.21 (1.10, 4.45) | 0.026 * |
Baseline MMP2 | 34 | /100 unit | 1.50 (0.86, 2.64) | 0.16 |
Baseline MMP9 | 33 | /100 unit | 0.91 (0.73, 1.14) | 0.42 |
Baseline TIMP2 | 34 | /100 unit | 4.48 (0.80, 25.25) | 0.089 |
% Change in MMP2 | 31 | To week 4 | 1.01 (0.99, 1.02) | 0.33 |
29 | To week 8 | 6.19 (0.74, 51.92) | 0.093 | |
26 | To week 12 | 1.00 (0.99, 1.02) | 0.74 | |
% Change in MMP9 | 29 | To week 4 | 1.00 (1.00, 1.00) | 0.47 |
28 | To week 8 | 1.00 (1.00, 1.00) | 0.44 | |
25 | To week 12 | 1.00 (1.00, 1.00) | 0.61 | |
% Change in TIMP2 | 31 | To week 4 | 0.99 (0.96, 1.03) | 0.59 |
29 | To week 8 | 1.01 (0.97, 1.05) | 0.68 | |
26 | To week 12 | 0.98 (0.96, 1.01) | 0.17 |
Factor | N | Comparator | HR (95% CI) | p Value |
---|---|---|---|---|
Age | 37 | /year | 1.01 (0.98, 1.05) | 0.54 |
ECOG Status at Baseline | 37 | 2/3 vs. 1 | 2.91 (1.34, 6.33) | 0.007 ** |
Duration of Bone Mets | 35 | /month | 1.00 (0.97, 1.02) | 0.74 |
Time from Primary to Metastases | 37 | /month | 1.00 (1.00, 1.01) | 0.76 |
Bone Therapy Duration (months) | 37 | /month | 0.99 (0.97, 1.02) | 0.53 |
Vitamin D at baseline | 37 | /unit | 0.99 (0.98, 1.00) | 0.10 |
PTH at baseline | 37 | /unit | 1.09 (0.96, 1.22) | 0.17 |
Past SRE Total | 37 | ≥1 vs. 0 | 1.40 (0.69, 2.83) | 0.35 |
Baseline MMP2 | 34 | /100 unit | 1.34 (0.74, 2.41) | 0.33 |
Baseline MMP9 | 33 | /100 unit | 0.95 (0.75, 1.21) | 0.67 |
Baseline TIMP2 | 34 | /100 unit | 2.95 (0.54, 16.12) | 0.21 |
% Change in MMP2 | 31 | To week 4 | 1.01 (0.99, 1.02) | 0.39 |
29 | To week 8 | 5.89 (0.55, 63.31) | 0.14 | |
26 | To week 12 | 1.00 (0.98, 1.02) | 0.85 | |
% Change in MMP9 | 29 | To week 4 | 1.00 (1.00, 1.00) | 0.57 |
28 | To week 8 | 1.00 (1.00, 1.00) | 0.60 | |
25 | To week 12 | 1.00 (1.00, 1.00) | 0.79 | |
% Change in TIMP2 | 31 | To week 4 | 0.98 (0.95, 1.02) | 0.31 |
29 | To week 8 | 1.01 (0.96, 1.06) | 0.73 | |
26 | To week 12 | 0.98 (0.96, 1.01) | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Pond, G.; Simos, D.; Wang, Z.; Robertson, S.; Singh, G.; Vandermeer, L.; Clemons, M.; Addison, C.L. Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer. Cancers 2023, 15, 571. https://doi.org/10.3390/cancers15030571
Zhao H, Pond G, Simos D, Wang Z, Robertson S, Singh G, Vandermeer L, Clemons M, Addison CL. Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer. Cancers. 2023; 15(3):571. https://doi.org/10.3390/cancers15030571
Chicago/Turabian StyleZhao, Huijun, Gregory Pond, Demetrios Simos, Zhou Wang, Susan Robertson, Gurmit Singh, Lisa Vandermeer, Mark Clemons, and Christina Lynn Addison. 2023. "Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer" Cancers 15, no. 3: 571. https://doi.org/10.3390/cancers15030571
APA StyleZhao, H., Pond, G., Simos, D., Wang, Z., Robertson, S., Singh, G., Vandermeer, L., Clemons, M., & Addison, C. L. (2023). Doxycycline-Induced Changes in Circulating MMP or TIMP2 Levels Are Not Associated with Skeletal-Related Event-Free or Overall Survival in Patients with Bone Metastases from Breast Cancer. Cancers, 15(3), 571. https://doi.org/10.3390/cancers15030571