Impact of Waiting Response Evaluation to First-Line Systemic Therapy before Considering Local Ablative Therapy in Metastatic Non-Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Treatment Sequences
2.3. Outcomes
2.4. Subgroup Analysis
2.5. Statistical Analyses
3. Results
3.1. Population Description
3.2. Overall Survival
3.3. Progression-Free Survival
3.4. Time to First Subsequent Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Méndez Romero, A.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.M.G.; Li, X.; Gomez, D.R. Local Consolidative Therapy for Oligometastatic Non-Small Cell Lung Cancer. Cancers 2022, 14, 3977. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; de Souza, N.M.; Dingemans, A.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.C.; Hendriks, L.E.L.; Berghmans, T.; Levy, A.; Hasan, B.; Faivre-Finn, C.; Giaj-Levra, M.; Giaj-Levra, N.; Girard, N.; Greillier, L.; et al. Definition of Synchronous Oligometastatic Non-Small Cell Lung Cancer-A Consensus Report. J. Thorac. Oncol. 2019, 14, 2109–2119. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SRT-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef]
- Harrow, S.; Palma, D.A.; Olson, R.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SRT-COMET): Extended Long-Term Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Gomez, D.R.; Blumenschein, G.R.; Lee, J.J.; Hernandez, M.; Ye, R.; Camidge, D.R.; Doebele, R.C.; Skoulidis, F.; Gaspar, L.E.; Gibbons, D.L.; et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: A multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016, 17, 1672–1682. [Google Scholar] [CrossRef]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.J.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients with Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 20, 1558–1565. [Google Scholar] [CrossRef]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Wanders, R.; Hendriks, L.E.; van Baardwijk, A.; Reymen, B.; Houben, R.; Bootsma, G.; Pitz, C.; van Eijsden, L.; Dingemans, A.M.C.; et al. Progression-Free Survival and Overall Survival Beyond 5 Years of NSCLC Patients with Synchronous Oligometastases Treated in a Prospective Phase II Trial (NCT 01282450). J. Thorac. Oncol. 2018, 13, 1958–1961. [Google Scholar] [CrossRef]
- Wang, X.S.; Bai, Y.F.; Verma, V.; Yu, R.L.; Tian, W.; Ao, R.; Deng, Y.; Xia, J.L.; Zhu, X.Q.; Liu, H.; et al. Randomized Trial of First-Line Tyrosine Kinase Inhibitor with or Without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated NSCLC. J. Natl. Cancer Inst. 2022, 115, djac015. [Google Scholar] [CrossRef]
- Tsai, C.J.; Yang, J.T.; Guttmann, D.M.; Shaverdian, N.; Eng, J.; Yeh, R.; Girshman, J.; Das, J.; Gelblum, D.; Xu, A.J.; et al. Final Analysis of Consolidative Use of Radiotherapy to Block (CURB) Oligoprogression Trial—A Randomized Study of Stereotactic Body Radiotherapy for Oligoprogressive Metastatic Lung and Breast Cancers. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 1061–1070. [Google Scholar] [CrossRef]
- Zhu, Z.; Ni, J.; Cai, X.; Su, S.; Zhuang, H.; Yang, Z.; Chen, M.; Ma, S.; Xie, C.; Xu, Y.; et al. International consensus on radiotherapy in metastatic non-small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 1763–1795. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.S.; Opitz, I. Patient Selection for Local Aggressive Treatment in Oligometastatic Non-Small Cell Lung Cancer. Cancers 2021, 13, 6374. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.S.M.E.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.U.; Aerts, J.G.J.V.; Bahce, I.; Niemeijer, A.N.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir. Med. 2021, 9, 467–475. [Google Scholar] [CrossRef]
- Bauml, J.M.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Miller, L.; Patel, P.; Alley, E.; et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019, 5, 1283–1290. [Google Scholar] [CrossRef]
- Wei, J.; Montalvo-Ortiz, W.; Yu, L.; Krasco, A.; Ebstein, S.; Cortez, C.; Lowy, I.; Murphy, A.J.; Sleeman, M.A.; Skokos, D. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci. Immunol. 2021, 6, eabg0117. [Google Scholar] [CrossRef]
- Buchwald, Z.S.; Wynne, J.; Nasti, T.H.; Zhu, S.; Mourad, W.F.; Yan, W.; Gupta, S.; Khleif, S.N.; Khan, M.K. Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation. Front. Oncol. 2018, 8, 612. [Google Scholar] [CrossRef]
- Wen, L.; Tong, F.; Zhang, R.; Chen, L.; Huang, Y.; Dong, X. The Research Progress of PD-1/PD-L1 Inhibitors Enhancing Radiotherapy Efficacy. Front. Oncol. 2021, 11, 799957. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Q.; Cai, F.; Li, H.; Zhou, Y. Local therapy treatment conditions for oligometastatic non-small cell lung cancer. Front. Oncol. 2022, 12, 1028132. [Google Scholar] [CrossRef]
- Tonse, R.; Tom, M.C.; Mehta, M.P.; Ahluwalia, M.S.; Kotecha, R. Integration of Systemic Therapy and Stereotactic Radiosurgery for Brain Metastases. Cancers 2021, 13, 3682. [Google Scholar] [CrossRef] [PubMed]
- Rajeev-Kumar, G.; Pitroda, S.P. Synergizing radiotherapy and immunotherapy: Current challenges and strategies for optimization. Neoplasia 2023, 36, 100867. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.M.; Martin, A.M.; Martin, K.; Hammoudeh, L.; Catalano, P.J.; Hodi, F.S.; Cagney, D.N.; Haas-Kogan, D.A.; Schoenfeld, J.D.; Aizer, A.A. Response rate and local recurrence after concurrent immune checkpoint therapy and radiotherapy for non-small cell lung cancer and melanoma brain metastases. Cancer 2020, 126, 5274–5282. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Kim, S.; Arrington, J.; Naghavi, A.O.; Dilling, T.J.; Creelan, B.C.; Antonia, S.J.; Caudell, J.J.; Harrison, L.B.; Sahebjam, S.; et al. Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases. J. Neurooncol. 2017, 133, 331–338. [Google Scholar] [CrossRef]
- Schapira, E.; Hubbeling, H.; Yeap, B.Y.; Mehan, W.A., Jr.; Shaw, A.T.; Oh, K.; Gainor, J.F.; Shih, H.A. Improved Overall Survival and Locoregional Disease Control with Concurrent PD-1 Pathway Inhibitors and Stereotactic Radiosurgery for Lung Cancer Patients with Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, B.G.L.; Van Limbergen, E.J.; Reynders, K.; De Ruysscher, D. An overview of the published and running randomized phase 3 clinical results of radiotherapy in combination with immunotherapy. Transl. Lung Cancer Res. 2021, 10, 2048–2058. [Google Scholar] [CrossRef]
- Vanneste, B.G.L.; Van Limbergen, E.J.; Dubois, L.; Samarska, I.V.; Wieten, L.; Aarts, M.J.B.; Marcelissen, T.; De Ruysscher, D. Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 2020, 30, 1832760. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, Y.; Zhao, X.; Pan, J.; Xu, Z.; Zhang, L. Optimizing the Treatment Schedule of Radiotherapy Combined with Anti-PD-1/PD-L1 Immunotherapy in Metastatic Cancers. Front. Oncol. 2021, 30, 638873. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lin, S.H.; Dong, W.; Liao, Z.; Gandhi, S.J.; Gay, C.M.; Zhang, J.; Chun, S.G.; Elamin, Y.Y.; Fossella, F.V.; et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: An open-label, randomised, phase 2 trial. Lancet 2023, 402, 871–881. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer. 2018, 18, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Janopaul-Naylor, J.R.; Shen, Y.; Qian, D.C.; Buchwald, Z.S. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int. J. Mol. Sci. 2021, 22, 11061. [Google Scholar] [CrossRef] [PubMed]
- Abuodeh, Y.; Venkat, P.; Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 2016, 40, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Akanda, Z.Z.; Neeson, P.J.; John, T.; Barnett, S.; Hanna, G.G.; Miller, A.; Jennens, R.; Siva, S. A narrative review of combined stereotactic ablative radiotherapy and immunotherapy in metastatic non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 2766–2778. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, X.; Soh, H.; Seyedin, S.; Cortez, M.A.; Krishnan, S.; Massarelli, E.; Hong, D.; Naing, A.; Diab, A.; et al. Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol. Res. 2014, 2, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.S.; de Jong, M.C.; Baas, P. Synergizing systemic responses by combining immunotherapy with radiotherapy in metastatic non-small cell lung cancer: The potential of the abscopal effect. Lung Cancer 2020, 142, 106–113. [Google Scholar] [CrossRef]
Late SRT (49) | Early SRT (50) | ||
---|---|---|---|
Age [Min–1st Qu–Median–Mean 3rd Qu–Max] | [42.8–56.2–62.7–62.1–69.1–84.6] | [35.7–54.1–64.7–63.0–72.6–84.1] | |
PS | 0 | 15 (31%) | 17 (34%) |
1 | 34 (69%) | 30 (60%) | |
2 | 0 (0%) | 3 (6%) | |
Sex | Male | 27 (55%) | 31 (62%) |
Female | 22 (45%) | 19 (38%) | |
Tumor histology | Adenocarcinoma | 33 (69%) | 37 (74%) |
SCC | 6 (13%) | 6 (12%) | |
Others | 9 (18%) | 7 (14%) | |
T stage | 0–1 | 9 (26%) | 9 (17%) |
2 | 6 (17%) | 11 (23%) | |
3 | 9 (25%) | 12 (26%) | |
4 | 11 (32%) | 16 (34%) | |
N stage | 0 | 9 (22%) | 16 (33%) |
1 | 1 (3%) | 4 (8%) | |
2 | 14 (34%) | 15 (30%) | |
3 | 17 (41%) | 14 (29%) | |
M stage | 1a | 13 (27%) | 3 (6%) |
1b | 11 (22%) | 13 (27%) | |
1c | 25 (51%) | 33 (67%) | |
No. of metastases at diagnosis | 1–3 | 37 (76%) | 32 (64%) |
4–5 | 2 (4%) | 10 (20%) | |
>5 | 10 (20%) | 8 (16%) | |
CNS metastases at diagnosis | 23 (47%) | 47 (94%) | |
Metastasis chronology | Synchronous (<90 days) | 37 (76%) | 37 (74%) |
Metachronous (>90 days) | 12 (24%) | 13 (26%) | |
Symptomatic metastasis at diagnosis | 26 (53%) | 25 (50%) | |
PDL1 | 0 | 19 (58%) | 21 (51%) |
1–49 | 10 (29%) | 8 (19%) | |
50–100 | 5 (13%) | 13 (30%) | |
Number of metastases treated with SRT | 1 | 27 (55%) | 23 (46%) |
2 | 13 (27%) | 12 (24%) | |
3 | 3 (6%) | 8 (16%) | |
4 or more | 6 (12%) | 7 (14%) | |
Radical treatment of the primary tumor | Surgery | 8 (17%) | 20 (40%) |
Radiotherapy | 9 (18%) | 5 (10%) | |
No treatment | 32 (65%) | 25 (50%) | |
Number of progressive lesions after FLST | 0 | 30 (61%) | 34 (68%) |
1–3 | 19 (39%) | 9 (18%) | |
4–5 | 0 (0%) | 2 (4%) | |
>5 | 0 (0%) | 5 (10%) | |
Systemic treatment | Chemotherapy | 39 (80%) | 29 (58%) |
ICI +/− Chemotherapy | 9 (18%) | 21 (42%) | |
NR | 1 (2%) | 0 (0%) | |
No ICI as 1st-line (68) | ICI as 1st-line (30) | ||
Age [Min–1st Qu–Median–Mean 3rd Qu–Max] | [37.9–56.1–63.0–62.4–70.4–84.6] | [35.7–54.6–64.3–63.1–69.8–84.1] | |
PS | 0 | 23 (34%) | 9 (30%) |
1 | 43 (63%) | 20 (67%) | |
2 | 2 (3%) | 1 (3%) | |
Sex | Male | 37 (54%) | 20 (67%) |
Female | 31 (46%) | 10 (33%) | |
Tumor histology | Adenocarcinoma | 45 (67%) | 37 (80%) |
SCC | 11 (16%) | 24 (3%) | |
Other | 11 (7%) | 1 (17%) | |
T stage | 0–1 | 12 (22%) | 5 (18%) |
2 | 13 (24%) | 4 (14%) | |
3 | 12 (22%) | 9 (32%) | |
4 | 17 (32%) | 10 (36%) | |
N stage | 0 | 18 (29%) | 7 (24%) |
1 | 3 (5%) | 2 (7%) | |
2 | 18 (30%) | 11 (38%) | |
3 | 22 (36%) | 9 (31%) | |
M stage | 1a | 12 (18%) | 4 (14%) |
1b | 17 (25%) | 7 (23%) | |
1c | 38 (57%) | 19 (63%) | |
No. of metastases at diagnosis | 1–3 | 47 (69%) | 32 (70%) |
4–5 | 9 (13%) | 10 (10%) | |
>5 | 12 (18%) | 8 (20%) | |
CNS metastases at diagnosis | 45 (66%) | 24 (80%) | |
Metastasis chronology | Synchronous (<90 days) | 52 (76%) | 16 (70%) |
Metachronous (>90 days) | 16 (24%) | 9 (30%) | |
Symptomatic metastasis at diagnosis | 37 (54%) | 13 (43%) | |
PDL1 | 0 | 30 (65%) | 10 (33%) |
1–49 | 10 (22%) | 8 (27%) | |
50–100 | 6 (13%) | 12 (40%) | |
Number of metastases treated with SRT | 1 | 35 (52%) | 15 (50%) |
2 | 17 (25%) | 7 (23%) | |
3 | 5 (7%) | 6 (20%) | |
4 or more | 11 (16%) | 2 (7%) | |
Radical treatment of the primary tumor | Surgery | 17 (25%) | 11 (36%) |
Radiotherapy | 9 (13%) | 5 (17%) | |
No treatment | 42 (62%) | 14 (47%) | |
Number of progressive lesions after FLST | 0 | 45 (66%) | 18 (60%) |
1–3 | 20 (30%) | 9 (30%) | |
4–5 | 0 (0%) | 1 (3%) | |
>5 | 3 (4%) | 2 (7%) |
Factor | HR (95% CI) | p |
---|---|---|
PS at diagnosis | 3.61 [1.69–7.70] | <0.001 |
>3 metastases | 2.07 [1.13–3.81] | 0.02 |
CNS metastasis at diagnosis | 1.29 [0.69–2.40] | 0.4 |
Metachronous disease | 0.49 [0.22–1.05] | 0.05 |
N at diagnosis | 2.36 [1.08–5.13] | 0.02 |
T 3 at diagnosis | 1.19 [0.94–1.49] | 0.1 |
Early SRT | 1.99 [1.08–3.66] | 0.02 |
Factor | HR | p |
---|---|---|
Early SRT | 1.97 [1.01–3.82] | 0.046 |
Metachronous disease | 0.46 [0.19–1.11] | 0.085 |
N at diagnosis | 2.21 [0.96–5.07] | 0.063 |
PS at diagnosis | 2.27 [1.02–5.05] | 0.04 |
>3 metastases | 1.33 [0.67–2.62] | 0.42 |
PFS | TFST | |||
---|---|---|---|---|
Factor | HR | p | HR | p |
PS | 2.28 [1.09–4.77] | 0.01 | 2.37 [1.14–4.91] | 0.009 |
>3 metastases | 2.24 [1.37–3.67] | 0.001 | 2.97 [1.76–4.99] | <0.001 |
CNS metastasis at diagnosis | 1.19 [0.75–1.87] | 0.5 | 1.2 [0.73–1.97] | 0.5 |
Metachronous disease | 1.06 [0.65–1.73] | 0.8 | 0.86 [0.50–1.50] | 0.6 |
N at diagnosis | 1.55 [0.92–2.62] | 0.09 | 1.79 [1.00–3.19] | 0.04 |
T 3 at diagnosis | 1.05 [0.89–1.24] | 0.5 | 1.07 [0.90–1.27] | 0.4 |
Early SRT | 1.09 [0.70–1.68] | 0.7 | 1.35 [0.84–2.17] | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belaidi, L.; Wang, P.; Quintin, K.; Durdux, C.; Giroux-Leprieur, E.; Giraud, P. Impact of Waiting Response Evaluation to First-Line Systemic Therapy before Considering Local Ablative Therapy in Metastatic Non-Small-Cell Lung Cancer. Cancers 2023, 15, 5127. https://doi.org/10.3390/cancers15215127
Belaidi L, Wang P, Quintin K, Durdux C, Giroux-Leprieur E, Giraud P. Impact of Waiting Response Evaluation to First-Line Systemic Therapy before Considering Local Ablative Therapy in Metastatic Non-Small-Cell Lung Cancer. Cancers. 2023; 15(21):5127. https://doi.org/10.3390/cancers15215127
Chicago/Turabian StyleBelaidi, Lahcene, Pascal Wang, Kevin Quintin, Catherine Durdux, Etienne Giroux-Leprieur, and Philippe Giraud. 2023. "Impact of Waiting Response Evaluation to First-Line Systemic Therapy before Considering Local Ablative Therapy in Metastatic Non-Small-Cell Lung Cancer" Cancers 15, no. 21: 5127. https://doi.org/10.3390/cancers15215127
APA StyleBelaidi, L., Wang, P., Quintin, K., Durdux, C., Giroux-Leprieur, E., & Giraud, P. (2023). Impact of Waiting Response Evaluation to First-Line Systemic Therapy before Considering Local Ablative Therapy in Metastatic Non-Small-Cell Lung Cancer. Cancers, 15(21), 5127. https://doi.org/10.3390/cancers15215127