The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Artificial Intelligence in Colonoscopy
3. Polyp Detection
3.1. Criticisms of CADe
3.2. Cost Effectiveness
3.3. Summary
4. Polyp Characterisation
4.1. Diminutive Polyps
4.2. Larger Polyps
4.3. Summary
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Cardoso, R.; Guo, F.; Heisser, T.; Hackl, M.; Ihle, P.; De Schutter, H.; Van Damme, N.; Valerianova, Z.; Atanasov, T.; Májek, O.; et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: An international population-based study. Lancet Oncol. 2021, 22, 1002–1013. [Google Scholar] [CrossRef]
- Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; Lee, J.K.; Doubeni, C.A.; Zauber, A.G.; de Boer, J.; Fireman, B.H.; Schottinger, J.E.; et al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med. 2014, 370, 1298–1306. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, S.; Pan, P.; Xia, T.; Chang, X.; Yang, X.; Guo, L.; Meng, Q.; Yang, F.; Qian, W.; et al. Magnitude, Risk Factors, and Factors Associated with Adenoma Miss Rate of Tandem Colonoscopy: A Systematic Review and Meta-analysis. Gastroenterology 2019, 156, 1661–1674.e11. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar]
- Min, J.K.; Kwak, M.S.; Cha, J.M. Overview of Deep Learning in Gastrointestinal Endoscopy. Gut Liver 2019, 13, 388–393. [Google Scholar] [CrossRef]
- Fernández-Esparrach, G.; Bernal, J.; López-Cerón, M.; Córdova, H.; Sánchez-Montes, C.; Rodríguez de Miguel, C.; Sánchez, F.J. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 2016, 48, 837–842. [Google Scholar] [CrossRef]
- Wang, P.; Berzin, T.M.; Glissen Brown, J.R.; Bharadwaj, S.; Becq, A.; Xiao, X.; Liu, P.; Li, L.; Song, Y.; Zhang, D.; et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 2019, 68, 1813–1819. [Google Scholar] [CrossRef]
- Nakashima, H.; Kitazawa, N.; Fukuyama, C.; Kawachi, H.; Kawahira, H.; Momma, K.; Sakaki, N. Clinical Evaluation of Computer-Aided Colorectal Neoplasia Detection Using a Novel Endoscopic Artificial Intelligence: A Single-Center Randomized Controlled Trial. Digestion 2023, 104, 193–201. [Google Scholar] [CrossRef]
- Xu, H.; Tang, R.S.Y.; Lam, T.Y.T.; Zhao, G.; Lau, J.Y.W.; Liu, Y.; Wu, Q.; Rong, L.; Xu, W.; Li, X.; et al. Artificial Intelligence-Assisted Colonoscopy for Colorectal Cancer Screening: A Multicenter Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2023, 21, 337–346.e3. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.G.; Kang, M.; Peng, X.; Shu, M.L.; Zhou, G.Y.; Liu, P.X.; Xiong, F.; Deng, M.M.; Xia, H.F.; et al. Artificial intelligence empowers the second-observer strategy for colonoscopy: A randomized clinical trial. Gastroenterol. Rep. 2023, 11, goac081. [Google Scholar] [CrossRef]
- Wei, M.T.; Shankar, U.; Parvin, R.; Hasan Abbas, S.; Chaudhary, S.; Friedlander, Y.; Friedland, S. Evaluation of computer aided detection during colonoscopy in the community (AI-SEE): A multicenter randomized clinical trial. Am. J. Gastroenterol. 2023, 118, 1841–1847. [Google Scholar] [CrossRef]
- Ahmad, A.; Wilson, A.; Haycock, A.; Humphries, A.; Monahan, K.; Suzuki, N.; Thomas-Gibson, S.; Vance, M.; Bassett, P.; Thiruvilangam, K.; et al. Evaluation of a real-time computer-aided polyp detection system during screening colonoscopy: AI-DETECT study. Endoscopy 2022, 55, 313–319. [Google Scholar] [CrossRef]
- Gimeno-García, A.Z.; Hernández Negrin, D.; Hernández, A.; Nicolás-Pérez, D.; Rodríguez, E.; Montesdeoca, C.; Alarcon, O.; Romero, R.; Baute Dorta, J.L.; Cedrés, Y.; et al. Usefulness of a novel computer-aided detection system for colorectal neoplasia: A randomized controlled trial. Gastrointest. Endosc. 2022, 97, 528–536. [Google Scholar] [CrossRef]
- Repici, A.; Spadaccini, M.; Antonelli, G.; Correale, L.; Maselli, R.; Galtieri, P.A.; Pellegatta, G.; Capogreco, A.; Milluzzo, S.M.; Lollo, G.; et al. Artificial intelligence and colonoscopy experience: Lessons from two randomised trials. Gut 2022, 71, 757–765. [Google Scholar] [CrossRef]
- Rondonotti, E.; Di Paolo, D.; Rizzotto, E.R.; Alvisi, C.; Buscarini, E.; Spadaccini, M.; Tamanini, G.; Paggi, S.; Amato, A.; Scardino, G.; et al. Efficacy of a computer-aided detection system in a fecal immunochemical test-based organized colorectal cancer screening program: A randomized controlled trial (AIFIT study). Endoscopy 2022, 54, 1171–1179. [Google Scholar] [CrossRef]
- Shaukat, A.; Lichtenstein, D.R.; Somers, S.C.; Chung, D.C.; Perdue, D.G.; Gopal, M.; Colucci, D.R.; Phillips, S.A.; Marka, N.A.; Church, T.R.; et al. Computer-Aided Detection Improves Adenomas per Colonoscopy for Screening and Surveillance Colonoscopy: A Randomized Trial. Gastroenterology 2022, 163, 732–741. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Liu, M.; Lai, Y.; Liu, P.; Wang, Z.; Xing, T.; Huang, Y.; Li, Y.; Li, A.; et al. Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: A Prospective, Randomized Cohort Study. J. Gastrointest. Surg. 2021, 25, 2011–2018. [Google Scholar] [CrossRef]
- Xu, L.; He, X.; Zhou, J.; Zhang, J.; Mao, X.; Ye, G.; Chen, Q.; Xu, F.; Sang, J.; Wang, J.; et al. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. Cancer Med. 2021, 10, 7184–7193. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P.; Glissen Brown, J.R.; Berzin, T.M.; Zhou, G.; Liu, W.; Xiao, X.; Chen, Z.; Zhang, Z.; Zhou, C.; et al. The single-monitor trial: An embedded CADe system increased adenoma detection during colonoscopy: A prospective randomized study. Therap Adv. Gastroenterol. 2020, 13, 1756284820979165. [Google Scholar] [CrossRef]
- Liu, W.N.; Zhang, Y.Y.; Bian, X.Q.; Wang, L.J.; Yang, Q.; Zhang, X.D.; Huang, J. Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J. Gastroenterol. 2020, 26, 13–19. [Google Scholar] [CrossRef]
- Repici, A.; Badalamenti, M.; Maselli, R.; Correale, L.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; Fugazza, A.; et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology 2020, 159, 512–520.e7. [Google Scholar] [CrossRef]
- Huang, D.; Shen, J.; Hong, J.; Zhang, Y.; Dai, S.; Du, N.; Zhang, M.; Guo, D. Effect of artificial intelligence-aided colonoscopy for adenoma and polyp detection: A meta-analysis of randomized clinical trials. Int. J. Colorectal Dis. 2022, 37, 495–506. [Google Scholar] [CrossRef]
- Sivananthan, A.; Nazarian, S.; Ayaru, L.; Patel, K.; Ashrafian, H.; Darzi, A.; Patel, N. Does computer-aided diagnostic endoscopy improve the detection of commonly missed polyps? A meta-analysis. Clin. Endosc. 2022, 55, 355–364. [Google Scholar] [CrossRef]
- Ashat, M.; Klair, J.S.; Singh, D.; Murali, A.R.; Krishnamoorthi, R. Impact of real-time use of artificial intelligence in improving adenoma detection during colonoscopy: A systematic review and meta-analysis. Endosc. Int. Open 2021, 9, e513–e521. [Google Scholar] [CrossRef]
- Barua, I.; Vinsard, D.G.; Jodal, H.C.; Løberg, M.; Kalager, M.; Holme, Ø.; Misawa, M.; Bretthauer, M.; Mori, Y. Artificial intelligence for polyp detection during colonoscopy: A systematic review and meta-analysis. Endoscopy 2021, 53, 277–284. [Google Scholar] [CrossRef]
- Deliwala, S.S.; Hamid, K.; Barbarawi, M.; Lakshman, H.; Zayed, Y.; Kandel, P.; Malladi, S.; Singh, A.; Bachuwa, G.; Gurvits, G.E.; et al. Artificial intelligence (AI) real-time detection vs. routine colonoscopy for colorectal neoplasia: A meta-analysis and trial sequential analysis. Int. J. Colorectal Dis. 2021, 36, 2291–2303. [Google Scholar] [CrossRef]
- Hassan, C.; Spadaccini, M.; Iannone, A.; Maselli, R.; Jovani, M.; Chandrasekar, V.T.; Antonelli, G.; Yu, H.; Areia, M.; Dinis-Ribeiro, M.; et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 93, 77–85.e6. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Yan, J.; Tan, Y.; Liu, D. Artificial intelligence can increase the detection rate of colorectal polyps and adenomas: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 1041–1048. [Google Scholar] [CrossRef]
- Nazarian, S.; Glover, B.; Ashrafian, H.; Darzi, A.; Teare, J. Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis. J. Med. Internet Res. 2021, 23, e27370. [Google Scholar] [CrossRef]
- Spadaccini, M.; Iannone, A.; Maselli, R.; Badalamenti, M.; Desai, M.; Chandrasekar, V.T.; Patel, H.K.; Fugazza, A.; Pellegatta, G.; Galtieri, P.A.; et al. Computer-aided detection versus advanced imaging for detection of colorectal neoplasia: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 793–802. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Wu, Q.; Gu, C.; Wang, Z. Artificial Intelligence-Aided Colonoscopy for Polyp Detection: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Laparoendosc. Adv. Surg. Tech. A 2021, 31, 1143–1149. [Google Scholar] [CrossRef]
- Aziz, M.; Fatima, R.; Dong, C.; Lee-Smith, W.; Nawras, A. The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis. J. Gastroenterol. Hepatol. 2020, 35, 1676–1683. [Google Scholar] [CrossRef]
- Ladabaum, U.; Shepard, J.; Weng, Y.; Desai, M.; Singer, S.J.; Mannalithara, A. Computer-aided Detection of Polyps Does Not Improve Colonoscopist Performance in a Pragmatic Implementation Trial. Gastroenterology 2023, 164, 481–483.e6. [Google Scholar] [CrossRef]
- Levy, I.; Bruckmayer, L.; Klang, E.; Ben-Horin, S.; Kopylov, U. Artificial Intelligence-Aided Colonoscopy Does Not Increase Adenoma Detection Rate in Routine Clinical Practice. Am. J. Gastroenterol. 2022, 117, 1871–1873. [Google Scholar] [CrossRef]
- Ishiyama, M.; Kudo, S.E.; Misawa, M.; Mori, Y.; Maeda, Y.; Ichimasa, K.; Kudo, T.; Hayashi, T.; Wakamura, K.; Miyachi, H.; et al. Impact of the clinical use of artificial intelligence-assisted neoplasia detection for colonoscopy: A large-scale prospective, propensity score-matched study (with video). Gastrointest. Endosc. 2022, 95, 155–163. [Google Scholar] [CrossRef]
- Schauer, C.; Chieng, M.; Wang, M.; Neave, M.; Watson, S.; Van Rijnsoever, M.; Walmsley, R.; Jafer, A. Artificial intelligence improves adenoma detection rate during colonoscopy. N. Z. Med. J. 2022, 135, 22–30. [Google Scholar]
- Biscaglia, G.; Cocomazzi, F.; Gentile, M.; Loconte, I.; Mileti, A.; Paolillo, R.; Marra, A.; Castellana, S.; Mazza, T.; Di Leo, A.; et al. Real-time, computer-aided, detection-assisted colonoscopy eliminates differences in adenoma detection rate between trainee and experienced endoscopists. Endosc. Int. Open 2022, 10, e616–e621. [Google Scholar] [CrossRef]
- Glissen Brown, J.R.; Mansour, N.M.; Wang, P.; Chuchuca, M.A.; Minchenberg, S.B.; Chandnani, M.; Liu, L.; Gross, S.A.; Sengupta, N.; Berzin, T.M. Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial). Clin. Gastroenterol. Hepatol. 2022, 20, 1499–1507.e4. [Google Scholar] [CrossRef]
- Wallace, M.B.; Sharma, P.; Bhandari, P.; East, J.; Antonelli, G.; Lorenzetti, R.; Vieth, M.; Speranza, I.; Spadaccini, M.; Desai, M.; et al. Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022, 163, 295–304.e5. [Google Scholar] [CrossRef]
- Kamba, S.; Tamai, N.; Saitoh, I.; Matsui, H.; Horiuchi, H.; Kobayashi, M.; Sakamoto, T.; Ego, M.; Fukuda, A.; Tonouchi, A.; et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: A multicenter randomized controlled trial. J. Gastroenterol. 2021, 56, 746–757. [Google Scholar] [CrossRef]
- Sanaka, M.R.; Deepinder, F.; Thota, P.N.; Lopez, R.; Burke, C.A. Adenomas are detected more often in morning than in afternoon colonoscopy. Am. J. Gastroenterol. 2009, 104, 1659–1664. [Google Scholar] [CrossRef]
- Chan, M.Y.; Cohen, H.; Spiegel, B.M. Fewer polyps detected by colonoscopy as the day progresses at a Veteran’s Administration teaching hospital. Clin. Gastroenterol. Hepatol. 2009, 7, 1217–1223. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, L.; Yao, L.; Gong, D.; Wu, L.; Xia, M.; Zhang, J.; Zhou, W.; Huang, X.; He, C.; et al. Assessment of the Role of Artificial Intelligence in the Association Between Time of Day and Colonoscopy Quality. JAMA Netw. Open 2023, 6, e2253840. [Google Scholar] [CrossRef]
- Richter, R.; Bruns, J.; Obst, W.; Keitel-Anselmino, V.; Weigt, J. Influence of artificial intelligence on the adenoma detection rate throughout the day. Dig. Dis. 2022, 41, 615–619. [Google Scholar] [CrossRef]
- Messmann, H.; Bisschops, R.; Antonelli, G.; Libânio, D.; Sinonquel, P.; Abdelrahim, M.; Ahmad, O.F.; Areia, M.; Bergman, J.; Bhandari, P.; et al. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022, 54, 1211–1231. [Google Scholar] [CrossRef]
- Holzwanger, E.A.; Bilal, M.; Glissen Brown, J.R.; Singh, S.; Becq, A.; Ernest-Suarez, K.; Berzin, T.M. Benchmarking definitions of false-positive alerts during computer-aided polyp detection in colonoscopy. Endoscopy 2021, 53, 937–940. [Google Scholar] [CrossRef]
- Hassan, C.; Badalamenti, M.; Maselli, R.; Correale, L.; Iannone, A.; Radaelli, F.; Rondonotti, E.; Ferrara, E.; Spadaccini, M.; Alkandari, A.; et al. Computer-aided detection-assisted colonoscopy: Classification and relevance of false positives. Gastrointest. Endosc. 2020, 92, 900–904.e4. [Google Scholar] [CrossRef]
- Nehme, F.; Coronel, E.; Barringer, D.A.; Romero, L.; Shafi, M.A.; Ross, W.A.; Ge, P.S. Performance and Attitudes Toward Real-time Computer-aided Polyp Detection during Colonoscopy in a Large Tertiary Referral Center in the United States. Gastrointest. Endosc. 2023, 98, 100–109. [Google Scholar] [CrossRef]
- Tang, C.P.; Lin, T.L.; Hsieh, Y.H.; Hsieh, C.H.; Tseng, C.W.; Leung, F.W. Polyp detection and false-positive rates by computer-aided analysis of withdrawal-phase videos of colonoscopy of the right-sided colon segment in a randomized controlled trial comparing water exchange and air insufflation. Gastrointest. Endosc. 2022, 95, 1198–1206.e6. [Google Scholar] [CrossRef]
- Mori, Y.; Wang, P.; Løberg, M.; Misawa, M.; Repici, A.; Spadaccini, M.; Correale, L.; Antonelli, G.; Yu, H.; Gong, D.; et al. Impact of Artificial Intelligence on Colonoscopy Surveillance After Polyp Removal: A Pooled Analysis of Randomized Trials. Clin. Gastroenterol. Hepatol. 2023, 21, 949–959. [Google Scholar] [CrossRef]
- Areia, M.; Mori, Y.; Correale, L.; Repici, A.; Bretthauer, M.; Sharma, P.; Taveira, F.; Spadaccini, M.; Antonelli, G.; Ebigbo, A.; et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: A modelling study. Lancet Digit. Health 2022, 4, e436–e444. [Google Scholar] [CrossRef]
- Mori, Y.; East, J.E.; Hassan, C.; Halvorsen, N.; Berzin, T.M.; Byrne, M.; von Renteln, D.; Hewett, D.; Repici, A.; Ramchandani, M.; et al. Benefits and Challenges in Implementation of Artificial Intelligence in Colonoscopy: World Endoscopy Organization Position Statement. Dig. Endosc. 2023, 35, 422–429. [Google Scholar] [CrossRef]
- Young, E.J.; Rajandran, A.; Philpott, H.L.; Sathananthan, D.; Hoile, S.F.; Singh, R. Mucosal imaging in colon polyps: New advances and what the future may hold. World J. Gastroenterol. 2022, 28, 6632–6661. [Google Scholar] [CrossRef]
- Rex, D.K.; Kahi, C.; O’Brien, M.; Levin, T.R.; Pohl, H.; Rastogi, A.; Burgart, L.; Imperiale, T.; Ladabaum, U.; Cohen, J.; et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest. Endosc. 2011, 73, 419–422. [Google Scholar] [CrossRef]
- Li, M.D.; Huang, Z.R.; Shan, Q.Y.; Chen, S.L.; Zhang, N.; Hu, H.T.; Wang, W. Performance and comparison of artificial intelligence and human experts in the detection and classification of colonic polyps. BMC Gastroenterol. 2022, 22, 517. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, W.; Wang, Y.; Tan, Y.; Xi, C.; Ye, N.; Wu, D.; Xu, X. Comparison of diagnostic performance between convolutional neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246892. [Google Scholar] [CrossRef]
- Lui, T.K.L.; Guo, C.G.; Leung, W.K. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: A systematic review and meta-analysis. Gastrointest. Endosc. 2020, 92, 11–22.e6. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, E.S.; Choi, K. Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms. Sci. Rep. 2021, 11, 5311. [Google Scholar] [CrossRef]
- Meng, S.; Zheng, Y.; Wang, W.; Su, R.; Zhang, Y.; Zhang, Y.; Guo, B.; Han, Z.; Zhang, W.; Qin, W.; et al. A computer-aided diagnosis system using white-light endoscopy for the prediction of conventional adenoma with high grade dysplasia. Dig. Liver Dis. 2022, 54, 1202–1208. [Google Scholar] [CrossRef]
- Hossain, E.; Abdelrahim, M.; Tanasescu, A.; Yamada, M.; Kondo, H.; Yamada, S.; Hamamoto, R.; Marugame, A.; Saito, Y.; Bhandari, P. Performance of a novel computer-aided diagnosis system in the characterization of colorectal polyps, and its role in meeting Preservation and Incorporation of Valuable Endoscopic Innovations standards set by the American Society of Gastrointestinal Endoscopy. DEN Open 2023, 3, e178. [Google Scholar] [CrossRef]
- Jin, E.H.; Lee, D.; Bae, J.H.; Kang, H.Y.; Kwak, M.S.; Seo, J.Y.; Yang, J.I.; Yang, S.Y.; Lim, S.H.; Yim, J.Y.; et al. Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations. Gastroenterology 2020, 158, 2169–2179.e8. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Kumagai, Y.; Shichijo, S.; Tada, T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Therap Adv. Gastroenterol. 2020, 13, 1756284820910659. [Google Scholar] [CrossRef]
- Song, E.M.; Park, B.; Ha, C.A.; Hwang, S.W.; Park, S.H.; Yang, D.H.; Ye, B.D.; Myung, S.J.; Yang, S.K.; Kim, N.; et al. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci. Rep. 2020, 10, 30. [Google Scholar] [CrossRef]
- Yang, Y.J.; Cho, B.J.; Lee, M.J.; Kim, J.H.; Lim, H.; Bang, C.S.; Jeong, H.M.; Hong, J.T.; Baik, G.H. Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning. J. Clin. Med. 2020, 9, 1593. [Google Scholar] [CrossRef]
- Yamada, M.; Shino, R.; Kondo, H.; Yamada, S.; Takamaru, H.; Sakamoto, T.; Bhandari, P.; Imaoka, H.; Kuchiba, A.; Shibata, T.; et al. Robust automated prediction of the revised Vienna Classification in colonoscopy using deep learning: Development and initial external validation. J. Gastroenterol. 2022, 57, 879–889. [Google Scholar] [CrossRef]
- Barua, I.; Wieszczy, P.; Kudo, S.-E.; Misawa, M.; Holme, Ø.; Gulati, S.; Williams, S.; Mori, K.; Itoh, H.; Takishima, K.; et al. Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy. NEJM Evid. 2022, 1, EVIDoa2200003. [Google Scholar] [CrossRef]
- Li, J.W.; Wu, C.C.H.; Lee, J.W.J.; Liang, R.; Soon, G.S.T.; Wang, L.M.; Koh, X.H.; Koh, C.J.; Chew, W.D.; Lin, K.W.; et al. Real-World Validation of a Computer-Aided Diagnosis System for Prediction of Polyp Histology in Colonoscopy: A Prospective Multicenter Study. Am. J. Gastroenterol. 2023, 118, 1353–1364. [Google Scholar] [CrossRef]
- Yoshida, N.; Inoue, K.; Tomita, Y.; Kobayashi, R.; Hashimoto, H.; Sugino, S.; Hirose, R.; Dohi, O.; Yasuda, H.; Morinaga, Y.; et al. An analysis about the function of a new artificial intelligence, CAD EYE with the lesion recognition and diagnosis for colorectal polyps in clinical practice. Int. J. Colorectal Dis. 2021, 36, 2237–2245. [Google Scholar] [CrossRef]
- Byrne, M.F.; Chapados, N.; Soudan, F.; Oertel, C.; Linares Pérez, M.; Kelly, R.; Iqbal, N.; Chandelier, F.; Rex, D.K. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019, 68, 94–100. [Google Scholar] [CrossRef]
- Mori, Y.; Kudo, S.E.; Misawa, M.; Saito, Y.; Ikematsu, H.; Hotta, K.; Ohtsuka, K.; Urushibara, F.; Kataoka, S.; Ogawa, Y.; et al. Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study. Ann. Intern. Med. 2018, 169, 357–366. [Google Scholar] [CrossRef]
- Mori, Y.; Kudo, S.E.; Misawa, M.; Mori, K. Simultaneous detection and characterization of diminutive polyps with the use of artificial intelligence during colonoscopy. VideoGIE 2019, 4, 7–10. [Google Scholar] [CrossRef]
- Zachariah, R.; Samarasena, J.; Luba, D.; Duh, E.; Dao, T.; Requa, J.; Ninh, A.; Karnes, W. Prediction of Polyp Pathology Using Convolutional Neural Networks Achieves "Resect and Discard" Thresholds. Am. J. Gastroenterol. 2020, 115, 138–144. [Google Scholar] [CrossRef]
- Rondonotti, E.; Hassan, C.; Tamanini, G.; Antonelli, G.; Andrisani, G.; Leonetti, G.; Paggi, S.; Amato, A.; Scardino, G.; Di Paolo, D.; et al. Artificial intelligence-assisted optical diagnosis for the resect-and-discard strategy in clinical practice: The Artificial intelligence BLI Characterization (ABC) study. Endoscopy 2023, 55, 14–22. [Google Scholar] [CrossRef]
- Ponugoti, P.; Rastogi, A.; Kaltenbach, T.; MacPhail, M.E.; Sullivan, A.W.; Thygesen, J.C.; Broadley, H.M.; Rex, D.K. Disagreement between high confidence endoscopic adenoma prediction and histopathological diagnosis in colonic lesions ≤3 mm in size. Endoscopy 2019, 51, 221–226. [Google Scholar] [CrossRef]
- Shahidi, N.; Rex, D.K.; Kaltenbach, T.; Rastogi, A.; Ghalehjegh, S.H.; Byrne, M.F. Use of Endoscopic Impression, Artificial Intelligence, and Pathologist Interpretation to Resolve Discrepancies Between Endoscopy and Pathology Analyses of Diminutive Colorectal Polyps. Gastroenterology 2020, 158, 783–785.e1. [Google Scholar] [CrossRef]
- Hassan, C.; Sharma, P.; Mori, Y.; Bretthauer, M.; Rex, D.K.; Repici, A. Comparative Performance of Artificial Intelligence Optical Diagnosis Systems for Leaving in Situ Colorectal Polyps. Gastroenterology 2023, 164, 467–469.e4. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Han, Z.; Yu, Y.; Chen, Z.; Huang, F.; Xu, Y.; Cai, J.; Zhang, Q.; Qiao, W.; et al. Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest. Endosc. 2021, 94, 627–638.e1. [Google Scholar] [CrossRef]
- Nemoto, D.; Guo, Z.; Katsuki, S.; Takezawa, T.; Maemoto, R.; Kawasaki, K.; Inoue, K.; Akutagawa, T.; Tanaka, H.; Sato, K.; et al. Computer-Aided Diagnosis of Early-Stage Colorectal Cancer Using Non-Magnified Endoscopic White Light Images. Gastrointest. Endosc. 2023, 98, 90–99. [Google Scholar] [CrossRef]
- Yao, L.; Lu, Z.; Yang, G.; Zhou, W.; Xu, Y.; Guo, M.; Huang, X.; He, C.; Zhou, R.; Deng, Y.; et al. Development and validation of an artificial intelligence-based system for predicting colorectal cancer invasion depth using multi-modal data. Dig. Endosc. 2023, 35, 625–635. [Google Scholar] [CrossRef]
- Kuroha, M.; Shiga, H.; Kanazawa, Y.; Nagai, H.; Handa, T.; Ichikawa, R.; Onodera, M.; Naito, T.; Moroi, R.; Kimura, T.; et al. Factors Associated with Fibrosis during Colorectal Endoscopic Submucosal Dissection: Does Pretreatment Biopsy Potentially Elicit Submucosal Fibrosis and Affect Endoscopic Submucosal Dissection Outcomes? Digestion 2021, 102, 590–598. [Google Scholar] [CrossRef]
- Singh, R.; Sathananthan, D.; Tam, W.; Ruszkiewicz, A. Endocytoscopy for diagnosis of gastrointestinal Neoplasia: The expert’s approach. Video J. Encycl. GI Endosc. 2013, 1, 18–19. [Google Scholar] [CrossRef]
- Kudo, T.; Kudo, S.E.; Mori, Y.; Wakamura, K.; Misawa, M.; Hayashi, T.; Miyachi, H.; Katagiri, A.; Ishida, F.; Inoue, H. Classification of nuclear morphology in endocytoscopy of colorectal neoplasms. Gastrointest. Endosc. 2017, 85, 628–638. [Google Scholar] [CrossRef]
- Nakamura, H.; Kudo, S.E.; Misawa, M.; Kataoka, S.; Wakamura, K.; Hayashi, T.; Kudo, T.; Mori, Y.; Takeda, K.; Ichimasa, K.; et al. Evaluation of microvascular findings of deeply invasive colorectal cancer by endocytoscopy with narrow-band imaging. Endosc. Int. Open 2016, 4, E1280–E1285. [Google Scholar] [CrossRef]
- Kudo, S.E.; Mori, Y.; Wakamura, K.; Ikehara, N.; Ichimasa, K.; Wada, Y.; Kutsukawa, M.; Misawa, M.; Kudo, T.; Hayashi, T.; et al. Endocytoscopy can provide additional diagnostic ability to magnifying chromoendoscopy for colorectal neoplasms. J. Gastroenterol. Hepatol. 2014, 29, 83–90. [Google Scholar] [CrossRef]
- Kudo, T.; Kudo, S.-E.; Wakamura, K.; Mori, Y.; Misawa, M.; Hayashi, T.; Kutsukawa, M.; Ichimasa, K.; Miyachi, H.; Ishida, F.; et al. Diagnostic performance of endocytoscopy for evaluating the invasion depth of different morphological types of colorectal tumors. Dig. Endosc. 2015, 27, 755–762. [Google Scholar] [CrossRef]
- Mori, Y.; Kudo, S.E.; Misawa, M.; Hotta, K.; Kazuo, O.; Saito, S.; Ikematsu, H.; Saito, Y.; Matsuda, T.; Kenichi, T.; et al. Artificial intelligence-assisted colonic endocytoscopy for cancer recognition: A multicenter study. Endosc. Int. Open 2021, 9, E1004–E1011. [Google Scholar] [CrossRef]
- Takeda, K.; Kudo, S.E.; Mori, Y.; Misawa, M.; Kudo, T.; Wakamura, K.; Katagiri, A.; Baba, T.; Hidaka, E.; Ishida, F.; et al. Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy 2017, 49, 798–802. [Google Scholar] [CrossRef]
- Kudo, S.E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakamura, H.; Ichimasa, K.; et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881.e2. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Barberio, M.; Chalopin, C.; Schierle, K.; Diana, M.; Köhler, H.; Gockel, I.; Maktabi, M. Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy. Cancers 2021, 13, 967. [Google Scholar] [CrossRef]
Name | Company | Technique | Commercial Approval |
---|---|---|---|
EndoBRAIN | Cybernet Systems Corporation (Tokyo, Japan) | CADx | 2018 |
GI Genius | Medtronic (Dublin, Ireland) | CADe | 2019 |
EndoBRAIN-EYE | Cybernet Systems Corporation (Tokyo, Japan) | CADe | 2020 |
DISCOVERY | Pentax Medical Company (Tokyo, Japan) | CADe | 2020 |
ENDO-AID | Olympus Corporation (Tokyo, Japan) | CADe | 2020 |
CAD EYE | Fujifilm (Tokyo, Japan) | CADe, CADx | 2020 |
Wise Vision | NEC Corporation (Tokyo, Japan) | CADe | 2020 |
EndoScreener | Wision A.I. (Shanghai, China) | CADe | 2021 |
Author, Year | CADe System | Control | Patients (n) | ADR (AI vs. Control) | Advanced ADR (AI vs. Control) |
---|---|---|---|---|---|
Nakashima et al., 2023 [11] | CAD EYE | HD-WLI | 415 | 59.4% vs. 47.6% (p = 0.018) | 7.2% vs. 7.7% (p = 1) |
Xu et al., 2023 [12] | Eagle-Eye | HD-WLI | 3059 | 39.9% vs. 32.4% (p < 0.001) | 6.6% vs. 4.9% (p = 0.041) |
Wang et al., 2023 [13] | EndoScreener | HD-WLI with second observer | 1261 | 25.8% vs. 24.0% (p = 0.464) | 0.314% vs. 0.39% (p = 0.562) |
Wei et al., 2023 [14] | EndoVigilant | HD-WLI | 769 | 35.9% vs. 37.2% (p = 0.774) | N/A |
Ahmad et al., 2022 [15] | GI Genius | HD-WLI | 658 | 71.4% vs. 65.4% (p = 0.09) | N/A |
Gimeno-Garcia et al., 2022 [16] | ENDO-AID | HD-WLI | 370 | 55.1% vs. 43.8% (p = 0.029) | 11.6% vs. 12.1% (p = 0.89) |
Repici et al., 2022 [17] | GI Genius | HD-WLI | 660 | 53.3% vs. 44.5% (p < 0.02) | 12.7% vs. 12.7% (p = 0.956) |
Rondonotti et al., 2022 [18] | CAD EYE | HD-WLI | 800 | 53.6% vs. 45.3% (RR 1.18, 95% CI 1.03–1.36) | 18.5% vs. 15.9% (RR 1.03, 95% CI 0.96–1.09) |
Shaukat et al., 2022 [19] | SKOUT | HD-WLI | 1359 | 47.8% vs. 43.9% (p = 0.065) | N/A |
Luo et al., 2021 [20] | Xiamen Innovision | HD-WLI | 150 | PDR 38.7% vs. 34.0% (p < 0.001) | N/A |
Xu et al., 2021 [21] | N/A | HD-WLI | 2352 | PDR 38.8% vs. 36.2% (p = 0.183) | N/A |
Liu P et al., 2020 [22] | EndoScreener | HD-WLI | 790 | 29.01% vs. 20.91% (p = 0.009) | 1.43% vs. 3.92% (p = 0.607) |
Liu W et al., 2020 [23] | Henan Xuanweitang Medical Information Technology Co. | HD-WLI | 1026 | 39.1% vs. 23.89% (p < 0.001) | 2.88% vs. 6.45% (p = 0.821) |
Repici et al., 2020 [24] | GI-Genius | HD-WLI | 685 | 54.8% vs. 40.4% (RR 1.30, 95% 1.14–1.45) | 10.3% vs. 7.3% (p = 0.769) |
Wang et al., 2019 [10] | EndoScreener | HD-WLI | 1058 | 29.12% vs. 20.34% (p < 0.001) | 3.41% vs. 5.95% (p = 0.803) |
Author, Year | Studies (n) | Patients (n) | ADR (AI vs. Control) | ≤5 mm Adenomas | ≥10 mm Adenomas | Notes |
---|---|---|---|---|---|---|
Huang et al., 2022 [25] | 10 | 6629 | RR 1.43, p < 0.001 | RR 1.71, p < 0.001 | RR 1.73, p < 0.001 | SSL per colonoscopy RR 1.53, p < 0.001 |
Sivananthan et al., 2022 [26] | 7 | 5217 | 33.65% vs. 22.85% | 0.691 adenomas per colonoscopy vs. 0.373 (pooled effect size 0.3, 95% CI 0.19–0.42) | N/A | 91.7% higher detection of non-pedunculated adenomas |
Ashat et al., 2021 [27] | 6 | 5058 | 33.7% vs. 22.9% (OR 1.76, 95% CI 1.55–2.00) | OR 2.07, 95% CI 1.81–2.36, p < 0.001 | OR 1.79, 95% CI 1.27–2.53, p < 0.001 | |
Barua et al., 2021 [28] | 5 | 4311 | 29.6% vs. 19.3% (RR 1.52, 95% CI 1.31–1.77) | Mean difference, 0.15 (95% CI 0.12–0.28) | Mean difference 0.01, 95% CI 0.00–0.02) | |
Deliwala et al., 2021 [29] | 6 | 4996 | OR 1.77 (95% CI 1.57–2.08) | OR 1.33 (95% CI 1.12–1.59) | OR 1.24 (95% CI 0.87–1.78) | |
Hassan et al., 2021 [30] | 5 | 4354 | 36.6% vs. 25.2%, RR 1.44 (95% CI 1.27–1.62) | RR 1.69 (95% CI 1.48–1.84) | RR 1.46 (95% CI 1.04–2.06) | SSL per colonoscopy RR 1.52 (95% CI 1.14–2.02) |
Li et al., 2021 [31] | 5 | 4311 | OR 1.75 (95% CI 1.52–2.01) | N/A | N/A | |
Nazarian et al., 2021 [32] | 8 | 5577 | OR 1.53 (95% CI 1.32–1.77) | N/A | N/A | |
Spadaccini et al., 2021 [33] | 6 | 4996 | OR 1.78 (95% CI 1.44–2.18) | N/A | OR 1.69 (95% CI 1.10–2.60) | No difference in SSL detection, OR 1.37 (95% CI 0.65–2.88) |
Zhang et al., 2021 [34] | 7 | 5427 | OR 1.72 (95% CI 1.52–1.95) | OR 1.42 (95% CI 1.18–1.72) | OR 0.71 (95% CI 0.46–1.10) | Less advanced adenomas (OR 0.70, 95% CI 0.50–0.97) SSL OR 0.87 (95% CI 0.61–1.23) |
Aziz et al., 2020 [35] | 3 | 2815 | 32.9% vs. 20.8%, RR 1.58 (95% CI 1.39–1.80) | N/A | N/A |
Author, Year | Patients (n) | Adenoma Miss Rate (CADe vs. HD-WLI) | SSL Miss Rate (CADe vs. HD-WLI) | Non-Polypoid Adenoma Miss Rate | Right Colon Adenoma Miss Rate |
---|---|---|---|---|---|
Glissen-Brown et al., 2022 [41] | 234 | 20.12% vs. 31.25% (p = 0.0247) | 7.14% vs. 42.11% (p = 0.0482) | 17.65% for CADe vs. 22.22% for HD-WLI (p = 0.5872) | Higher miss rate for HD-WLI in the right colon on multivariable analysis (OR 1.7865, p = 0.0436) |
Wallace et al., 2022 [42] | 230 | 15.5% vs. 32.4% (p < 0.001) | 0% vs. 33.33% (p = 0.455) | Lower miss rate with CADe for nonpolypoid adenomas (OR 0.34, p < 0.001) | 18.3% with CADe vs. 32.53% with HD-WLI (p = 0.004) |
Kamba et al., 2021 [43] | 346 | 13.8% vs. 36.7% (p < 0.001) | 13% vs. 38.5% (p = 0.0332) | 13.38% for CADe vs. 45.26% for HD-WLI (p < 0.001) | 9.23% for CADe vs. 44.05% for HD-WLI (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, E.; Edwards, L.; Singh, R. The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization. Cancers 2023, 15, 5126. https://doi.org/10.3390/cancers15215126
Young E, Edwards L, Singh R. The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization. Cancers. 2023; 15(21):5126. https://doi.org/10.3390/cancers15215126
Chicago/Turabian StyleYoung, Edward, Louisa Edwards, and Rajvinder Singh. 2023. "The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization" Cancers 15, no. 21: 5126. https://doi.org/10.3390/cancers15215126
APA StyleYoung, E., Edwards, L., & Singh, R. (2023). The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization. Cancers, 15(21), 5126. https://doi.org/10.3390/cancers15215126