MET in Non-Small-Cell Lung Cancer (NSCLC): Cross ‘a Long and Winding Road’ Looking for a Target
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prognostic Role of MET in NSCLC
3. MET as Predictive Biomarker
3.1. MET Exon 14 Alterations
3.2. MET Amplification
3.3. MET Overexpression
4. Targeting MET
4.1. Crizotinib
4.2. Capmatinib
4.3. Tepotinib
4.4. Savolitinib
5. Resistance Mechanisms to MET-Is
5.1. Intrinsic Resistance
5.2. Acquired Resistance
6. MET and Immunotherapy
7. Future Developments
Trial/Ref | Drug Class | Drug & Schedule | Pt N | ORR | mPFS | AEs G3/4 R | Most Common AEs % (≥3%) |
---|---|---|---|---|---|---|---|
CHRYSALIS Krebs 2022 [138] NCT02609776 | bsAb | Amivantamab Ab anti-EGFR/MET Fortnightly 1400 (>80 kg) 1050 (≤80 kg) | 46 METex14 7 tx-naïve 15 MET-I-naïve 24 pre-MET-I | 15/46 (33%) 4/7 (57%) 7/15 (45%) 4/24 (17%) | 6.7 mos NE 8.3 mos 4.2 mos | 24% Int. 21% Mod. 12% Disc. 5% | IRR 69 (5) SR 31 (2) DA 40 (0) Par. 38 (0) Fat. 31 (4) Alb. 27 (2) |
Luminosity Camidge 2022 [128,129] NCT03539536 | ADC | Teliso-V Ab antiMET-vedotin 2.7 mg/kg q3w | 136 MET IHC+ 28 Sq 44 Non-Sq 44 EGFR+ | 3/27 (11.1%) 19/52 (36.5%) 5/43 (11.6%) | NR NR NR | 48% Int. NR Mod. NR Disc. 13% | NP 25 (4) N 22 (1) Alb. 20 (1) |
SHIELD-1 Hong 2021 [131] NCT03993873 | MET-I | Elzovantinib (TPX-022) MET/SRC/CSF1R TKI RP2D TBD QD | 52 MET+ ST 11 TKI-naïve NSCLC | 36% | NR | NR * | Dizz 55 Lipase 33 Anaemia 29 |
Sym015.01 Camidge 2020 [134] NCT02648724 | Mixture of Abs | Sym015 2 abs anti MET 18 mg/kg -> 12 mg/kg q2w | 20 MET+ 12 METex14 8 MET AMP | 5/20 (25%) 3/12 (25%) 2/8 (25%) | 5.5 mos | 13.3% NR * | Fat. 15.7 Oedema 8 N 6 Anorexia 6 Pruritus 6 Abd Pain 6 |
Phase I/II Cho 2022 [135] NCT04077099 | Bp Ab | REGN5093 Bi-paratopic MET ab 2000 mg q3w | 44 MET+ 11 METex14 10 METex14 tx N 35 METAMP/OE | 0/11 3/10 (30%) 5/35 (12.5%) | NR NR NR | 25% NR * | NR * |
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montesano, R.; Matsumoto, K.; Nakamura, T.; Orci, L. Identification of fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991, 61, 901–908. [Google Scholar] [CrossRef]
- Weidner, K.M.; Behrens, J.; Vandekerckhove, J.; Birchmeier, W. Scatter factor: Molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 1990, 111, 2097–2108. [Google Scholar] [CrossRef]
- Bussolino, F.; Di Renzo, M.F.; Ziche, M.; Bocchietto, E.; Olivero, M.; Naldini, L.; Gaudino, G.; Tamagnone, L.; Coffer, A.; Comoglio, P.M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 1992, 119, 629–641. [Google Scholar] [CrossRef]
- Brinkmann, V.; Foroutan, H.; Sachs, M.; Weidner, K.M.; Birchmeier, W. Hepatocyte growth factor/scatter factor induces a variety of tissuespecific morphogenic programs in epithelial cells. J. Cell Biol. 1995, 131, 1573–1586. [Google Scholar] [CrossRef]
- Ye, X.; Weinberg, R.A. Epithelial-mesenchymal plasticity: A central regulator of cancer progression. Trends Cell Biol. 2015, 25, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Nawa, K.; Ichihara, A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 1984, 122, 1450–1459. [Google Scholar] [CrossRef]
- Stoker, M.; Gherardi, E.; Perryman, M.; Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987, 327, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Comoglio, P.M.; Trusolino, L.; Boccaccio, C. Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat. Rev. Cancer 2018, 18, 341–358. [Google Scholar] [CrossRef]
- Di Renzo, M.F.; Narsimhan, R.P.; Olivero, M.; Bretti, S.; Giordano, S.; Medico, E.; Gaglia, P.; Zara, P.; Comoglio, P.M. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 1991, 6, 1997–2003. [Google Scholar] [PubMed]
- Olivero, M.; Rizzo, M.; Madeddu, R.; Casadio, C.; Pennacchietti, S.; Nicotra, M.R.; Prat, M.; Maggi, G.; Arena, N.; Natali, P.G.; et al. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br. J. Cancer 1996, 74, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Rygaard, K.; Nakamura, T.; Spang-Thomsen, M. Expression of the protoncogens c-MET and c-kit and their ligands, hepatocyte growth factor/scatter factor, in SCLC lines and xenografts. Br. J. Cancer 1993, 67, 37–46. [Google Scholar] [CrossRef]
- Comoglio, P.M.; Giordano, S.; Trusolino, L. Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 2008, 7, 504–516. [Google Scholar] [CrossRef]
- Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande, W.G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer 2012, 12, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Corso, S.; Migliore, C.; Ghiso, E.; De Rosa, G.; Comoglio, P.M.; Giordano, S. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 2008, 27, 684–693. [Google Scholar] [CrossRef]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Turke, A.B.; Zejnullahu, K.; Wu, Y.-L.; Song, Y.; Dias-Santagata, D.; Lifshits, E.; Toschi, L.; Rogers, A.; Mok, T.; Sequist, L.; et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010, 17, 77–88. [Google Scholar] [CrossRef]
- Kwak, E.L.; Ahronian, L.G.; Siravegna, G.; Mussolin, B.; Borger, D.R.; Godfrey, J.T.; Jessop, N.A.; Clark, J.W.; Blaszkowsky, L.S.; Ryan, D.P.; et al. Molecular Heterogeneity and Receptor Coamplification Drive Resistance to Targeted Therapy in MET-Amplified Esophagogastric Cancer. Cancer Discov. 2015, 5, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Takanami, I.; Tanana, F.; Hashizume, T.; Kikuchi, K.; Yamamoto, Y.; Yamamoto, T.; Kodaira, S. Hepatocyte growth factor and c-MET/Hepatocyte growth factor receptor in pulmonary adenocarcinomas: An evaluation of their expression as prognostic markers. Oncology 1996, 53, 392–397. [Google Scholar] [CrossRef]
- Ichimura, E.; Arafumi, M.; Nakajima, T.; Nakamura, T. Expression of c-met/HGF Receptor in Human Non-small Cell Lung Carcinomas in vitro and in vivo and Its Prognostic Significance. Jpn. J. Cancer Res. 1996, 87, 1063–1069. [Google Scholar] [CrossRef]
- Siegfried, J.M.; Weissfeld, L.A.; Singh-Kaw, P.; Weyant, R.J.; Testa, J.R.; Landreneau, R.J. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res. 1997, 57, 433–439. [Google Scholar] [PubMed]
- Masuya, D.; Huang, C.; Liu, D.; Kameyama, K.; Haba, R.; Ueno, M.; Yokomise, H. The tumour-stromal interaction between intratumoral c-Met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br. J. Cancer 2004, 90, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.S.; Liu, N.; Chen, J.R.; Pappas, J.; Ho, J.; To, C.; Viallet, J.; Park, M.; Zhu, H. Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer 1998, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.L.; Chang, M.-Y.; Huang, S.-Y.; Sheu, C.-C.; Kao, E.-L.; Cheng, Y.-J.; Chong, I.W. Overexpression of Circulating c-Met Messenger RNA Is Significantly Correlated with Nodal Stage and Early Recurrence in Non-Small Cell Lung Cancer. Chest 2005, 128, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Niki, T.; Goto, A.; Morikawa, T.; Miyazawa, K.; Nakajima, J.; Fukayama, M. c-Met activation in lung adenocarcinoma tissues: An immunohistochemical analysis. Cancer Sci. 2007, 98, 1006–1013. [Google Scholar] [CrossRef]
- Beau-Faller, M.; Ruppert, A.-M.; Voegeli, A.-C.; Neuville, A.; Meyer, N.; Guerin, E.; Legrain, M.; Mennecier, B.; Wihlm, J.-M.; Massard, G.; et al. MET Gene Copy Number in Non-small Cell Lung Cancer: Molecular Analysis in a Targeted Tyrosine Kinase Inhibitor Naïve Cohort. J. Thorac. Oncol. 2008, 3, 331–339. [Google Scholar] [CrossRef]
- Okuda, K.; Sasaki, H.; Yukiue, H.; Yano, M.; Fujii, Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008, 99, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Cappuzzo, F.; Marchetti, A.; Skokan, M.; Rossi, E.; Gajapathy, S.; Felicioni, L.; Del Grammastro, M.; Sciarrotta, M.G.; Buttitta, F.; Incarbone, M.; et al. Increased MET Gene Copy Number Negatively Affects Survival of Surgically Resected Non–Small-Cell Lung Cancer Patients. J. Clin. Oncol. 2009, 27, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shin, Y.-L.; Sung, C.O.; An, J.; Seo, J.; Ahn, M.-J.; Ahn, J.S.; Park, K.; Shin, Y.K.; Erkin, O.C.; et al. High MET copy number and MET overexpression: Poor outcome in non-small cell lung cancer patients. Histol. Histopathol. 2012, 27, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.F.; Tong, J.H.M.; Law, P.P.W.; Chung, L.Y.; Lung, R.W.M.; Tong, C.Y.K.; Chow, C.; Chan, A.W.H.; Wan, I.Y.P.; Mok, T.S.K.; et al. Profiling of Oncogenic Driver Events in Lung Adenocarcinoma Revealed MET Mutation as Independent Prognostic Factor. J. Thorac. Oncol. 2015, 10, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.H.; Yeung, S.F.; Chan, A.W.H.; Chung, L.Y.; Chau, S.L.; Lung, R.W.M.; Tong, C.Y.; Chow, C.; Tin, E.K.Y.; Yu, Y.H.; et al. MET Amplification and Exon 14 Splice Site Mutation Define Unique Molecular Subgroups of Non–Small Cell Lung Carcinoma with Poor Prognosis. Clin. Cancer Res. 2016, 22, 3048–3056. [Google Scholar] [CrossRef]
- Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005, 65, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Baek, C.M.; Jeon, S.H.; Jang, J.J.; Lee, B.S.; Lee, J.H. Transforming variant of Met receptor confers serum independence and anti-apoptotic property and could be involved in the mouse thymic lymphomagenesis. Exp. Mol. Med. 2004, 36, 283–291. [Google Scholar] [CrossRef]
- Sakamoto, M.; Patil, T. MET alterations in advanced non-small cell lung cancer. Lung Cancer 2023, 178, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Kong-Beltran, M.; Seshagiri, S.; Zha, J.; Zhu, W.; Bhawe, K.; Mendoza, N.; Holcomb, T.; Pujara, K.; Stinson, J.; Fu, L.; et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006, 66, 283–289. [Google Scholar] [CrossRef]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef]
- Owad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; et al. MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Associated with Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J. Clin. Oncol. 2016, 34, 721–730. [Google Scholar] [CrossRef]
- Marks, J.A.; Gandhi, N.; Halmos, B.; Ramalingam, S.S.; Bazhenova, L.; Marmarelis, M.E.; Xiu, J.; Walker, P.; Oberley, M.J.; Ma, P.C.; et al. Updated molecular analysis of MET exon 14skippingmutations (METex14) in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41 (Suppl. 16), 9095. [Google Scholar] [CrossRef]
- Socinski, M.A.; Pennell, N.A.; Davies, K.D. MET Exon 14 Skipping Mutations in Non-Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations. JCO Precis. Oncol. 2021, 5, PO.20.00516. [Google Scholar] [CrossRef] [PubMed]
- Poirot, B.; Doucet, L.; Benhenda, S.; Champ, J.; Meignin, V.; Lehmann-Che, J. MET exon 14 alterations and new resistance mutations to tyrosine kinase inhibitors: Risk of inadequate detection with current amplicon-based NGS panels. J. Thorac. Oncol. 2017, 12, 1582–1587. [Google Scholar] [CrossRef]
- Descarpentries, C.; Leprêtre, F.; Escande, F.; Kherrouche, Z.; Figeac, M.; Sebda, S.; Baldacci, S.; Grégoire, V.; Jamme, P.; Copinet, M.-C.; et al. Optimization of routine testing for MET exon 14 splice site mutations in NSCLC patients. J. Thorac. Oncol. 2018, 13, 1873–1883. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Davies, K.D.; Lomboy, A.; Lawrence, C.A.; Yourshaw, M.; Bocsi, G.T.; Camidge, D.R.; Aisner, D.L. DNA-based versus RNA-based detection of MET exon 14 skipping events in lung cancer. J. Thorac. Oncol. 2019, 14, 737–741. [Google Scholar] [CrossRef]
- Jurkiewicz, M.; Saqi, A.; Mansukhani, M.M.; Hodel, V.; Krull, A.; Shu, C.A.; D’Silva Fernandes, H. Efficacy of DNA versus RNA NGS-based methods in MET exon 14 skipping mutation detection. J. Clin. Oncol. 2020, 38 (Suppl. 15), 9036. [Google Scholar] [CrossRef]
- Von Ahlfen, S.; Missel, A.; Bendrat, K.; Schlumpberger, M. Determinants of RNA quality from FFPE samples. PLoS ONE 2007, 2, e1261. [Google Scholar] [CrossRef] [PubMed]
- QIAGEN. Available online: https://www.illumina.com/science/technology/next-generation-sequencing.html (accessed on 6 August 2023).
- Thermofisher Scientific. Available online: https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing.html (accessed on 6 August 2023).
- Sun, R.; Wang, Z.; Zhao, J.; Ren, P.; Ma, J.; Guo, Y. Optimized Detection of Unknown MET Exon 14 Skipping Mutations in Routine Testing for Patients with Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2023, 7, e2200482. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Varella-Garcia, M.; McCoy, J.; West, H.; Xavier, A.C.; Gumerlock, P.; Bunn, P.A., Jr.; Franklin, W.A.; Crowley, J.; Gandara, D.R.; et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: A Southwest Oncology Group Study. J. Clin. Oncol. 2005, 23, 6838–6845. [Google Scholar] [CrossRef]
- Noonan, S.A.; Berry, L.; Lu, X.; Gao, D.; Barón, A.E.; Chesnut, P.; Sheren, J.; Aisner, D.L.; Merrick, D.; Doebele, R.C.; et al. Identifying the Appropriate FISH Criteria for Defining MET Copy Number–Driven Lung Adenocarcinoma through Oncogene Overlap Analysis. J. Thorac. Oncol. 2016, 11, 1293–1304. [Google Scholar] [CrossRef]
- Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A., Jr.; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; et al. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. 2019, 14, 1666–1671. [Google Scholar] [CrossRef]
- Spigel, D.R.; Edelman, M.J.; O’Byrne, K.; Paz-Ares, L.; Mocci, S.; Phan, S.; Shames, D.S.; Smith, D.; Yu, W.; Paton, V.E.; et al. Results from the Phase III trial of Onartuzumab plus Erlotinib versus Erlotinib in previously pretreated stage IIIB or IV Non-Small-Cell Lung Cancer: METLung. J. Clin. Oncol. 2017, 35, 412–420. [Google Scholar] [CrossRef]
- Scagliotti, G.; von Pawel, J.; Novello, S.; Ramlau, R.; Favaretto, A.; Barlesi, F.; Akerley, W.; Orlov, S.; Santoro, A.; Spigel, D.; et al. Phase III Multinational, Randomized, Double-Blind, Placebo-Controlled Study of Tivantinib (ARQ 197) Plus Erlotinib Versus Erlotinib Alone in Previously Treated Patients with Locally Advanced or Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2015, 33, 2667–2674. [Google Scholar] [CrossRef]
- Cui, J.J. Targeting receptor tyrosine kinase MET in cancer: Small molecule inhibitors and clinical progress. J. Med. Chem. 2014, 57, 4427–4453. [Google Scholar] [CrossRef]
- Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P.F.; Gilmore, T.; Graham, A.G.; Grob, P.M.; Hickey, E.R.; Moss, N.; Pav, S.; et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 2002, 9, 268–272. [Google Scholar] [CrossRef]
- Recondo, G.; Che, J.; Janne, P.A.; Awad, M.M. Targeting MET Dysregulation in Cancer. Cancer Discov. 2020, 10, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Kwak, E.L.; Siwak-Tapp, C.; Dy, J.; Bergethon, K.; Clark, J.W.; Camidge, D.R.; Solomon, B.J.; Maki, R.G.; Banget, Y.-J.; et al. Activity of Crizotinib (PF02341066), a Dual Mesenchymal-Epithelial Transition (MET) and Anaplastic Lymphoma Kinase (ALK) Inhibitor, in a Non-small Cell Lung Cancer Patient with De Novo MET Amplification. J. Thorac. Oncol. 2011, 6, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Schwab, R.; Petak, I.; Kollar, M.; Pinter, F.; Varkondi, E.; Kohanka, A.; Barti-Juhasz, H.; Schönleber, J.; Brauswetter, D.; Kopper, L.; et al. Major partial response to crizotinib, a dual MET/ALKinhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer 2014, 83, 109–111. [Google Scholar] [CrossRef]
- Caparica, R.; Yen, C.T.; Coudry, R.; Ou, S.-H.I.; Varella-Garcia, M.; Camidge, D.R.; de Castro, G., Jr. Responses to Crizotinib Can Occur in High-Level MET-Amplified Non–Small Cell Lung Cancer Independent of MET Exon 14 Alterations. J. Thorac. Oncol. 2017, 12, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.W.; Oxnard, G.R.; Elkin, S.; Sullivan, E.K.; Carter, J.L.; Barbie, D.A. Response to Crizotinib in a Patient with Lung Adenocarcinoma Harboring a MET Splice Site Mutation. Clin. Lung Cancer 2015, 16, e101–e104. [Google Scholar] [CrossRef]
- Waqar, S.N.; Morgensztern, D.; Sehn, J.M.D. MET Mutation Associated with Responsiveness to Crizotinib. J. Thorac. Oncol. 2015, 10, e29–e31. [Google Scholar] [CrossRef]
- Paik, P.K.; Drilon, A.; Fan, P.-D.; Yu, H.; Rekhtman, N.; Ginsberg, M.S.; Borsu, L.; Schultz, N.; Berger, M.F.; Rudin, C.M.; et al. Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping. Cancer Discov. 2015, 5, 842–849. [Google Scholar] [CrossRef]
- Davies, K.D.; TLNg Estrada-Bernal, A.; Le, A.T.; Ennever, P.R.; Camidge, D.R.; Doebele, R.C.; Aisner, D.L. Dramatic Response to Crizotinib in a Patient with Lung Cancer Positive for an HLA-DRB1-MET Gene Fusion. JCO Precis. Oncol. 2017, 2017, PO.17.00117. [Google Scholar] [CrossRef]
- Wang, S.X.Y.; Zhang, B.M.; Wakelee, H.A.; Koontz, M.Z.; Pan, M.G.; Diehn, M.; Kunder, C.A.; Neal, J.W. Case series of MET exon 14 skipping mutation-positive non-small-cell lung cancers with response to crizotinib and cabozantinib. Anti-Cancer Drugs 2019, 30, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Moro-Sibilot, D.; Cozic, N.; Pero, M.; Mazières, J.; Otto, J.; Souquet, P.J.; Bahleda, R.; Wislez, M.; Zalcman, G.; Guibert, S.D.; et al. Crizotinib in c-MET- or ROS1-positive NSCLC: Results of the AcSe phase II trial. Ann. Oncol. 2019, 30, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Landi, L.; Chiari, R.; Tiseo, M.; D’Incà, F.; Dazzi, C.; Chella, A.; Delmonte, A.; Bonanno, L.; Giannarelli, D.; Cortinovis, D.L.; et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): A phase II, prospective, multicenter, two-arms trial. Clin. Cancer Res. 2019, 25, 7312–7319. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.-H.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 2020, 26, 47–51. [Google Scholar] [CrossRef]
- Camidge, D.R.; Otterson, G.A.; Clark, J.W.; Ou, S.-H.I.; Weiss, J.; Ades, S.; Shapiro, G.I.; Socinski, M.A.; Murphy, D.A.; Conte, U.; et al. Crizotinib in Patients With MET-Amplified NSCLC. J. Thorac. Oncol. 2021, 16, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.B.; Wang, H.; Yu, Z.Y.; Lu, P.; Xu, C.; Chen, G.; Zhang, Y. De novo MET amplifcation in Chinese patients with non-small-cell lung cancer and treatment efficacy with crizotinib: A multicenter retrospective study. Clin. Lung Cancer 2019, 20, E171–E176. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Yang, G.; Marando, C.; Koblish, H.K.; Hall, L.M.; Fridman, J.S.; Behshad, E.; Wynn, R.; Li, Y.; et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin. Cancer Res. 2011, 17, 7127–7138. [Google Scholar] [CrossRef]
- Baltschukat, S.; Engstler, B.S.; Huang, A.; Hao, H.X.; Tam, A.; Wang, H.Q.; Liang, L.; Dimare, M.T.; Bhang, H.-E.C.; Wang, Y.; et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin. Cancer Res. 2019, 25, 3164–3175. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.; Berardi, R.; Lim, W.-T.; de Jonge, M.; Bauer, T.M.; Azaro, A.; Gottfried, M.; Han, J.-Y.; Lee, D.H.; Woller, M.; et al. Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: Clinical and biomarker results from a phase I trial. Ann. Oncol. 2020, 31, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14–Mutated or MET-Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.-W.; Robeva, A.; Le Mouhaer, S.; Carbini, M.; Chassot-Agostinho, A.; Heist, R.S. Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. J. Clin. Oncol. 2021, 39 (Suppl. 15), 9020. [Google Scholar] [CrossRef]
- Heist, R.S.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlovet, S.V.; et al. Capmatinib (INC280) in METΔex14-mutated advanced non-small cell lung cancer (NSCLC): Efficacy data from the phase 2 GEOMETRY mono-1 study. Neuro Oncol. 2019, 21, vi56. [Google Scholar] [CrossRef]
- Shih, K.; Falchook, G.S.; Becker, K.; Battiste, J.; Pearlman, M.; Shastry, M.; Burris, H., III. A phase Ib study evaluating the c-MET inhibitor INC280 in combination with bevacizumab in glioblastoma multiforme (GBM) patients. Neuro Oncol. 2016, 18 (Suppl. 6), vi11–vi12. [Google Scholar] [CrossRef]
- Vansteenkiste, J.; Smit, E.F.; Groen, H.J.M.; Doban, V.; Kanakamedala, H.; Wu, W.; Joshi, A.; de Jong, E.; Giovannini, M.; Baik, C.S. Capmatinib in Patients with METex14-Mutated Advanced NSCLC Who Received Prior Immunotherapy: Results from the Phase 2 GEOMETRY Mono-1 Study. Ann. Oncol. 2020, 31 (Suppl. 4), S754–S840. [Google Scholar] [CrossRef]
- Bladt, F.; Faden, B.; Friese-Hamim, M.; Knuehl, C.; Wilm, C.; Fittschen, C.; Grädler, U.; Meyring, M.; Dorsch, D.; Jaehrling, F.; et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin. Cancer Res. 2013, 19, 2941–2951. [Google Scholar] [CrossRef]
- Falchook, G.S.; Kurzrock, R.; Amin, H.M.; Xiong, W.; Fu, S.; Piha-Paul, S.A.; Janku, F.; Eskandari, G.; Catenacci, D.V.; Klevesath, M.; et al. First-in-man phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin. Cancer Res. 2020, 26, 1237–1246. [Google Scholar] [CrossRef]
- Ryoo, B.Y.; Cheng, A.-L.; Kim, T.Y.; Kim, T.-Y.; Pan, H.; Rau, K.M.; Choi, H.J.; Park, J.-W.; Kim, J.H.; Yen, C.J.; et al. Randomised Phase 1b/2 trial of tepotinib vs sorafenib in Asian patients with advanced hepatocellular carcinoma with MET overexpression. Br. J. Cancer 2021, 125, 200–208. [Google Scholar] [CrossRef]
- Decaens, T.; Barone, C.; Assenat, E.; Wermke, M.; Fasolo, A.; Merle, P.; Blanc, J.-F.; Grando, V.; Iacobellis, A.; Villa, E.; et al. Phase 1b/2 trial of tepotinib in sorafenib pretreated advanced hepatocellular carcinoma with MET overexpression. Br. J. Cancer 2021, 125, 190–199. [Google Scholar] [CrossRef]
- Wu, Y.L.; Cheng, Y.; Zhou, C.; Lu, S.; Zhang, Y.; Zhou, C. Tepotinib plus gefitinib in patients with MET overexpression and/or MET amplification, EGFR-mutant NSCLC having acquired resistance to prior EGFR inhibitor. Lancet Respir. Med. 2020, 8, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Le, X.; Sakai, H.; Felip, E.; Veillon, R.; Garassino, M.C.; Raskin, J.; Cortot, A.B.; Viteri, S.; Mazieres, J.; Smit, E.F.; et al. Tepotinib Efficacy and Safety in Patients with MET Exon 14 Skipping NSCLC: Outcomes in Patient Subgroups from the VISION Study with Relevance for Clinical Practice. Clin. Cancer Res. 2022, 28, 1117–1126. [Google Scholar] [CrossRef]
- Thomas, M.; Garassino, M.C.; Felip, E.; Sakai, H.; Le, X.; Veillon, R.; Smit, E.F.; Mazieres, J.; Cortot, A.B.; Raskin, J.; et al. Tepotinib in Patients with MET Exon 14 (METex14) Skipping NSCLC: Primary Analysis of the Confirmatory VISION Cohort C. J. Thorac. Oncol. 2022, 17, S9–S10. [Google Scholar] [CrossRef]
- Mazieres, J.; Paik, P.K.; Garassino, M.C.; Le, X.; Sakai, H.; Veillon, R.; Smit, E.F.; Cortot, A.B.; Raskin, J.; Viteri, S.; et al. Tepotinib Treatment in Patients with MET Exon 14-Skipping Non-Small Cell Lung Cancer: Long-term Follow-up of the VISION Phase 2 Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 1260–1266. [Google Scholar] [CrossRef]
- Smith, E.F.; Garassino, M.C.; Felip, E.; Sakai, H.; Le, X.; Veillon, R.; Mazieres, J.; Cortot, A.B.; Raskin, J.; Thomas, M.; et al. Tepotinib outcomes according to prior therapies in patients with MET exon 14 (METex14) skipping NSCLC. Ann. Oncol. 2022, 33 (Suppl. 7), S448–S554. [Google Scholar] [CrossRef]
- Friese-Hamim, M.; Clark, A.; Perrin, D.; Crowley, L.; Reusch, C.; Bogatyrova, O.; Zhang, H.; Crandall, T.; Lin, J.; Ma, J.; et al. Brain penetration and efficacy of tepotinib in orthotopic patient-derived xenograft models of MET-driven non-small cell lung cancer brain metastases. Lung Cancer 2022, 163, 77–86. [Google Scholar] [CrossRef]
- Le, X.; Paz-Ares, L.G.; Van Meerbeeck, J.; Ramirez, S.V.; Galvez, C.C.; Baz, D.V.; Kim, Y.-C.; Kang, J.-H.; Stroh, C.; Juraevaet, D.; et al. Clinical response to tepotinib according to circulating tumor (ct) DNA biomarkers in patients with advanced NSCLC with high-level MET amplification (METamp) detected by liquid biopsy (LBx). J. Clin. Oncol. 2022, 40 (Suppl. 16), 9121. [Google Scholar] [CrossRef]
- Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; et al. Discovery of (S)-1-(1-(Imidazo[1,2-a] pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3] triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem. 2014, 57, 7577–7589. [Google Scholar] [CrossRef]
- Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol. 2015, 9, 323–333. [Google Scholar] [CrossRef]
- Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med. 2021, 9, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Savolitinib: First approval. Drugs 2021, 81, 1665–1670. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.K.; Veillon, R.; Felip, E.; Cortot, A.; Sakai, H.; Mazieres, J.; Thomas, M.; Reinmuth, N.; Raskin, J.; Conte, P.F.; et al. METex14 ctDNA dynamics & resistance mechanisms detected in liquid biopsy (LBx) from patients (pts) with METex14 skipping NSCLC treated with tepotinib. J. Clin. Oncol. 2021, 39 (Suppl. 15), 9012. [Google Scholar] [CrossRef]
- Tiedt, R.; Degenkolbe, E.; Furet, P.; Appleton, B.A.; Wagner, S.; Schoepfer, J.; Buck, E.; Ruddy, D.A.; Monahan, J.E.; Jones, M.D.; et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011, 71, 5255–5264. [Google Scholar] [CrossRef] [PubMed]
- Fujino, T.; Kobayashi, Y.; Suda, K.; Koga, T.; Nishino, M.; Ohara, S.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; et al. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J. Thorac. Oncol. 2019, 14, 1753–1765. [Google Scholar] [CrossRef]
- Engstrom, L.D.; Aranda, R.; Lee, M.; Tovar, E.A.; Essenburg, C.J.; Madaj, Z.; Chiang, H.; Briere, D.; Hallin, J.; Lopez-Casas, P.P.; et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin. Cancer Res. 2017, 23, 6661–6672. [Google Scholar] [CrossRef] [PubMed]
- Bahcall, M.; Sim, T.; Paweletz, C.P.; Patel, J.D.; Alden, R.S.; Kuang, Y.; Sacher, A.G.; Kim, N.D.; Lydon, C.A.; Awad, M.M.; et al. Acquired METD1228V mutation and resistance to MET inhibition in lung cancer. Cancer Discov. 2016, 6, 1334–1341. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Young, L.; Schrock, A.B.; Johnson, A.; Klempner, S.J.; Zhu, V.W.; Miller, V.A.; Ali, S.M. Emergence of Preexisting MET Y1230C Mutation as a Resistance Mechanism to Crizotinib in NSCLC with MET Exon 14 Skipping. J. Thorac. Oncol. 2017, 12, 137–140. [Google Scholar] [CrossRef]
- Heist, R.S.; Sequist, L.V.; Borger, D.; Gainor, J.F.; Arellano, R.S.; Le, L.P.; Dias-Santagata, D.; Clark, J.W.; Engelman, J.A.; Shaw, A.T.; et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J. Thorac. Oncol. 2016, 11, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Recondo, G.; Bahcall, M.; Spurr, L.F.; Che, J.; Ricciuti, B.; Leonardi, G.C.; Lo, Y.-C.; Li, Y.Y.; Lamberti, G.; Nguyen, T.; et al. Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14–Mutant NSCLC. Clin. Cancer Res. 2020, 26, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yang, H.; Zhu, B.; Wang, S.; Pang, J.; Wu, X.; Xu, Y.; Zhang, J.; Zhang, J.; Ou, Q.; et al. Mutations in the MET tyrosine kinase domain and resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Respir. Res. 2023, 24, 28. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Moonsamy, P.; Gainor, J.F.; Lennerz, J.K.; Piotrowska, Z.; Lin, J.J.; Lennes, I.T.; Sequist, L.V.; Shaw, A.T.; Goodwin, K.; et al. A Phase 2 Study of Capmatinib in Patients With MET-Altered Lung Cancer Previously Treated with a MET Inhibitor. J. Thorac. Oncol. 2021, 16, 850–859. [Google Scholar] [CrossRef]
- Bahcall, M.; Awad, M.M.; Sholl, L.M.; Wilson, F.H.; Xu, M.; Wang, S.; Palakurthi, S.; Choi, J.; Ivanova, E.V.; Leonardi, G.C.; et al. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non small cell lung cancer. Clin. Cancer Res. 2018, 24, 5963–5976. [Google Scholar] [CrossRef]
- Suzawa, K.; Offin, M.; Lu, D.; Kurzatkowski, C.; Vojnic, M.; Smith, R.S.; Sabari, J.K.; Tai, H.; Mattar, M.; Khodos, I.; et al. Activation of KRAS mediates resistance to targeted therapy in MET exon 14 mutant non small cell lung cancer. Clin. Cancer Res. 2018, 25, 1248–1260. [Google Scholar] [CrossRef]
- Vokes, N.I.; Pan, K.; Le, X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231161409. [Google Scholar] [CrossRef]
- Yoshimura, K.; Inoue, Y.; Tsuchiya, K.; Karayama, M.; Yamada, H.; Iwashita, Y.; Kawase, A.; Tanahashi, M.; Ogawa, H.; Inui, N.; et al. Elucidation of the relationships of MET protein expression and gene copy number status with PD-L1 expression and the immune microenvironment in non-small cell lung cancer. Lung Cancer 2020, 141, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Inoue, Y.; Inui, N.; Karayama, M.; Yasui, H.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; et al. MET Amplification and Efficacy of Nivolumab in Patients With NSCLC. JTO Clin. Res. Rep. 2021, 2, 100239. [Google Scholar] [CrossRef]
- Kron, A.; Scheffler, M.; Heydt, C.; Ruge, L.; Schaepers, C.; Eisert, A.-K.; Merkelbach-Bruse, S.; Riedel, R.; Nogova, L.; Fischer, R.N.; et al. Genetic Heterogeneity of MET-Aberrant NSCLC and Its Impact on the Outcome of Immunotherapy. J. Thorac. Oncol. 2021, 16, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Rizvi, H.; Bandlamud, C.; Sauter, J.L.; Travis, W.D.; Rekhtman, N.; Plodkowski, A.J.; Perez-Johnston, R.; Sawan, P.; Beras, A.; et al. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann. Oncol. 2020, 31, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Wang, L. MET-mutant cancer and immune checkpoint inhibitors: A large database analysis. Lung Cancer 2020, 150, 256–258. [Google Scholar] [CrossRef]
- Sabari, J.K.; Leonardi, G.C.; Shu, C.A.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. 2018, 29, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Dudnik, E.; Bsharab, E.; Grubsteinc, A.; Fridel, L.; Shochat, T.; Roisman, L.C.; Ilouze, M.; Rozenblum, A.B.; Geva, S.; Zer, A.; et al. Rare targetable drivers (RTDs) in non-small cell lung cancer (NSCLC): Outcomes with immune check-point inhibitors (ICPi). Lung Cancer 2018, 124, 117–124. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immunecheckpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Janicot, H.; Bernardi, M.; Fournel, P.; Lamy, R.; et al. Efficacy and safety of anti–PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Leighl, N.N.; Hampe, M.; Wu, W.-H.; Kim, J.; Pretre, V.; Ye, F. Real-world treatment (tx) patterns and outcomes based on PD-L1 status in tx-naive patients (pts) with METex14 advanced non-small cell lung cancer (aNSCLC). Ann. Oncol. 2022, 33, S1059–S1060. [Google Scholar] [CrossRef]
- Ho, C.; Wong, S.; Hatswell, A.; Slater, R.; Vioix, H.; Chouaid, C. Treatment patterns and progression-free survival in MET exon 14 (METex14) skipping advanced non-small cell lung cancer (aNSCLC) in real-world clinical practice. Ann. Oncol. 2022, 33, S1087–S1088. [Google Scholar] [CrossRef]
- Griesinger, F.; Felip, E.; Smit, E.F.; Veillon, R.; Raskin, J.; Thomas, M.; Conte, P.; Kowalski, D.; Paz-Ares, L.; Garcia Ledo, G.; et al. Tepotinib in patients with MET exon 14 skipping NSCLC: Efficacy and safety by line of therapy. Ann. Oncol. 2022, 33, S40–S41. [Google Scholar] [CrossRef]
- Neijssen, J.; Cardoso, R.M.F.; Chevalier, K.M.; Wiegman, L.; Valerius, T.; Anderson, G.M.; Moores, S.I.; Schuurman, J.; Parren, P.W.H.I.; Strohl, W.R.; et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 2021, 296, 100641. [Google Scholar] [CrossRef]
- Yun, J.; Lee, S.-H.; Kim, S.-Y.; Jeong, S.-Y.; Kim, J.-H.; Pyo, K.-H.; Park, C.-W.; Heo, S.G.; Yun, M.R.; Lim, S.; et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020, 10, 1194–1209. [Google Scholar] [CrossRef]
- Krebs, G.M.; Spira, A.I.; Cho, B.C.; Besse, B.; Goldman, J.W.; Janne, P.A.; Ma, Z.; Mansfield, A.S.; Minchom, A.R.; Ou, S.-H.I.; et al. Amivantamab in NSCLC patients with MET exon 14 skipping mutation: Updated results from the CHRYSALIS study. J. Clin. Oncol. 2022, 40 (Suppl. 16), 9008. [Google Scholar] [CrossRef]
- Syed, Y.Y. Amivantamab: First Approval. Drugs 2021, 81, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.-Y.; Kim, S.-W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results from the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef]
- Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin. Cancer Res. 2017, 23, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Weekes, C.D.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; et al. First-in-human phase I, dose-escalation and expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J. Clin. Oncol. 2018, 36, 3298–3306. [Google Scholar] [CrossRef]
- Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.; Vokes, E.; Spira, A.; Angevin, E.; Su, W.-C.; Hong, D.S.; et al. Phase Ib Study of Telisotuzumab Vedotin in Combination with Erlotinib in Patients With c-Met Protein–Expressing Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Bar, J.; Horinouchi, H.; Goldman, J.W.; Moiseenko, F.V.; Filippova, E.; Cicin, I.; Bradbury, P.A.; Daaboul, N.; Tomasini, P.; et al. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40 (Suppl. 16), 9016. [Google Scholar] [CrossRef]
- Camidge, D.R.; Baijal, S.; Vasilopoulos, A.; Ratajczak, C.; Looman, J.; Li, M.; Ansell, P.J.; Lu, S. Impact of genomic alterations measured in circulating tumor DNA (ctDNA) on clinical response to telisotuzumab vedotin treatment in patients with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41 (Suppl. 16), 9032. [Google Scholar] [CrossRef]
- Horinouchi, H.; Shibata, Y.; Looman, J.; Sui, Y.; Noon, E.; Lu, S. Phase 2 study of telisotuzumab vedotin (Teliso-V) monotherapy in patients with previously untreated MET-amplified locally advanced/metastatic non-squamous non-small cell lung cancer (NSQ NSCLC). J. Clin. Oncol. 2023, 41 (Suppl. 16), TPS9149. [Google Scholar] [CrossRef]
- Hong, D.S.; Catenacci, D.; Bazhenova, L.; Cho, B.C.; Ponz-Sarvise, M.; Heist, R.; Moreno, V.; Falchook, G.; Zhu, V.W.; Swalduz, A.; et al. Preliminary interim data of elzovantinib (TPX-0022), a novel inhibitor of MET/SRC/CSF1R, in patients with advanced solid tumors harboring genetic alterations in MET: Update from the Phase 1 SHIELD-1 trial [abstract]. In Proceedings of the AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics, Philadelphia, PA, USA, 7–10 October 2021; Volume 20, p. P225. [Google Scholar]
- Poulsen, T.T.; Grandal, M.M.; Østergaard Skartved, N.J.; Hald, R.; Alifrangis, L.; Koefoed, K.; Lindsted, T.; Fröhlich, C.; Pollmann, S.E.; Eriksen, K.W.; et al. Sym015: A Highly Efficacious Antibody Mixture against MET-Amplified Tumors. Clin. Cancer Res. 2017, 23, 5923–5935. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Janku, F.; Martinez-Bueno, A.; Catenacci, D.V.; Lee, J.; Lee, S.; Chung, H.C.; Dowlati, A.; Rohrberg, K.S.; Font, E.F.; et al. A Phase 1a/2a Trial of Sym015—A MET Antibody Mixture—In Patients with Advanced Solid Tumors. Ann. Oncol. 2019, 30 (Suppl. 5), v602–v660. [Google Scholar] [CrossRef]
- Camidge, D.R.; Janku, F.; Martinez-Bueno, A.; Catenacci, D.V.T.; Lee, J.; Lee, S.-H.; Dowlati, A.; Rohrberg, K.S.; Navarro, A.; Moon, Y.W.; et al. Safety and preliminary clinical activity of the MET antibody mixture, Sym015 in advanced non-small cell lung cancer (NSCLC) patients with MET amplification/exon 14 deletion (METAmp/Ex14∆). J. Clin. Oncol. 2020, 38 (Suppl. 15), 9510. [Google Scholar] [CrossRef]
- Cho, B.C.; Ahn, M.-J.; Kim, T.M.; Kim, C.; Shim, B.Y.; Han, J.-Y.; Drilon, A.E.; Lena, H.; Gomez, J.E.; Grayet, J.E.; et al. Early safety, tolerability, and efficacy of REGN5093 in patients (pts) with MET-altered advanced non-small cell lung cancer (aNSCLC) from a first in human (FIH) study. Ann. Oncol. 2022, 33, S1085. [Google Scholar] [CrossRef]
- Oh, S.Y.; Lee, Y.W.; Lee, E.J.; Kim, J.H.; Park, Y.J.; Heo, S.G.; Yu, M.R.; Hong, M.H.; DaSilva, J.; Dalyet, C.; et al. Preclinical Study of a Biparatopic METxMET Antibody-Drug Conjugate, REGN5093-M114, Overcomes MET-driven Acquired Resistance to EGFR TKIs in EGFR-mutant NSCLC. Clin. Cancer Res. 2023, 29, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials.gov. Available online: https://clinicaltrials.gov/ct2/results?recrs=ab&cond=Nsclc&term=met&cntry=&state=&city=&dist= (accessed on 8 August 2023).
- Hu, X.; Zheng, X.; Yang, S.; Wang, L.; Hao, X.; Cui, X.; Ding, L.; Mao, L.; Hu, P.; Shi, Y. First-in-human phase I study of BPI-9016M, a dual MET/Axl inhibitor, in patients with non-small cell lung cancer. J. Hematol. Oncol. 2020, 13, 6. [Google Scholar] [CrossRef]
- Ai, J.; Chen, Y.; Peng, X.; Xi, Y.; Shen, Y.; Yang, X.; Su, Y.; Sun, Y.; Gao, Y.; Ma, Y.; et al. Preclinical Evaluation of SCC244 (Glumetinib), a Novel, Potent, and Highly Selective Inhibitor of c-Met in MET-dependent Cancer Models. Mol. Cancer Ther. 2018, 17, 751–762. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.E.; Jeong, Y.-S.; Kim, Y.M.; Park, H.; Nam, J.-H.; Jung, K.; Son, W.S.; Jung, H.S.; Lee, J.-H.; et al. Therapeutic Efficacy of ABN401, a Highly Potent and Selective MET Inhibitor, Based on Diagnostic Biomarker Test in MET-Addicted Cancer. Cancers 2020, 12, 1575. [Google Scholar] [CrossRef]
- Qing, Z.; Gabrail, N.; Uprety, D.; Rotow, J.; Han, B.; Jänne, P.A.; Nagasaka, M.; Zheng, M.; Zhang, Y.; Yanget, G.; et al. 22P EMB-01: An EGFR-cMET bispecific antibody, in advanced/metastatic solid tumors phase I results. Ann. Oncol. 2022, 33, S39–S40. [Google Scholar] [CrossRef]
- Kim, D.-W.; Lee, S.-H.; Jang, I.-J.; Park, K.-J.; Lee, D.-H. 998P A phase I study of CKD-702, an EGFR-cMET bispecific antibody, in advanced or metastatic non-small cell lung cancer (NSCLC). Ann. Oncol. 2022, 33, S1010. [Google Scholar] [CrossRef]
- Du, Q.; Zeng, W.; Yang, X.; Liang, L.; Li, X.; Li, Y.; Cao, Y.; Xia, Z.; Zhang, J.; Ding, Q.; et al. Abstract LB538: Characterization of GB263T, a tri-specific antibody against EGFR/cMET/cMET for NSCLC. Cancer Res. 2022, 82 (Suppl. 12), LB538. [Google Scholar] [CrossRef]
- Sharma, M.; Kuboki, Y.; Camidge, D.R.; Perets, R.; Sommerhalder, D.; Yamamoto, N.; Bar, J.; Parikh, A.; Li, R.; Thiele, G.M.; et al. Dose escalation results from a first-in-human study of ABBV-400, a novel c-Met–targeting antibody-drug conjugate, in advanced solid tumors. J. Clin. Oncol. 2023, 41 (Suppl. 16), 3015. [Google Scholar] [CrossRef]
- Gera, N.; Fitzgerald, K.; Ramesh, V.; Patel, P.; Kien, L.; Kanojia, D.; Aoyama, S.; Colombo, F.; Deshpande, A.; Comb, W.; et al. Abstract 5000: MYTX-011: A novel cMET-targeting antibody drug conjugate (ADC) engineered to increase on-target uptake in and efficacy against cMET expressing tumors. Cancer Res. 2023, 83 (Suppl. 7), 5000. [Google Scholar] [CrossRef]
- Bahcall, M.; Paweletz, C.P.; Kuang, Y.; Taus, L.J.; Sim, T.; Kim, N.D.; Dholakia, K.H.; Lau, C.J.; Gokhale, P.C.; Chopade, P.R.; et al. Combination of Type I and Type II MET Tyrosine Kinase Inhibitors as Therapeutic Approach to Prevent Resistance. Mol. Cancer Ther. 2022, 21, 322–335. [Google Scholar] [CrossRef] [PubMed]
- FDA.gov. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approvals-tabrecta-camatinib-metastatic-non-small-cell-lung-cancerand#:~:text=On%20August%2010%2C%202022%2C%20the,by%20an%20FDA%2Dapproved%20test (accessed on 9 August 2023).
- FDA.gov. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tepotinib-metastatic-non-small-cell-lung-cancer (accessed on 9 August 2023).
- Ema.europe.eu. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tepmetko (accessed on 9 August 2023).
- Ema.europe.eu. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tabrecta (accessed on 9 August 2023).
- Nccn.org. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 9 August 2023).
- Addeo, A.; Banna, G.L.; Friedlaender, A. KRAS G12C Mutations in NSCLC: From Target to Resistance. Cancers 2021, 13, 2541. [Google Scholar] [CrossRef]
- Rocco, D.; Sapio, L.; Della Gravara, L.; Naviglio, S.; Gridelli, C. Treatment of Advanced Non-Small Cell Lung Cancer with RET Fusions: Reality and Hopes. Int. J. Mol. Sci. 2023, 24, 2433. [Google Scholar] [CrossRef]
- Ayoub, N.M.; Ibrahim, D.R.; Alkhalifa, A.E. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: Evidence from preclinical and clinical studies. Med. Oncol. 2021, 38, 143. [Google Scholar] [CrossRef]
- Reischmann, N.; Schmelas, C.; Molina-Vila, M.A.; Jordana-Ariza, N.; Kuntze, D.; García-Roman, S.; Simard, M.A.; Musch, D.; Esdar, C.; Albers, J.; et al. Overcoming MET-mediated resistance in oncogene-driven NSCLC. iScience 2023, 26, 107006. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/results?cond=NSCLC&term=CABOZANTINIB&cntry=&state=&city=&dist= (accessed on 9 August 2023).
- Kollmannsberger, C.; Hurwitz, H.; Bazhenova, L.; Cho, B.C.; Hong, D.; Park, K.; Reckamp, K.L.; Sharma, S.; Der-Torossian, H.; Christensen, J.G.; et al. Phase I Study Evaluating Glesatinib (MGCD265), An Inhibitor of MET and AXL, in Patients with Non-small Cell Lung Cancer and Other Advanced Solid Tumors. Target. Oncol. 2023, 18, 105–118. [Google Scholar] [CrossRef]
Study Reference | Pt N | Stage | Histology | Methodology | F-Up (yrs) | Multivariate Analysis: MET Parameter Correlated with |
---|---|---|---|---|---|---|
Takanami’96 [18] [Japan] | 120 | I–IV | ADK | IHC | 5–12 | HGF/MET OE: pN and worse OS |
Ichimura’96 [19] [Japan] | 104 | I–IV | NSCLC | WB/IHC | 4 | HGF/MET OE: ADK, p-Stage, worse OS |
Siegfried’97 [20] [USA] | 56 | I–IIIA | ADK | HGF IHC | NR | HGF OE: worse DFS/OS |
Tsao’98 [22] [Canada] | 147 | I–III | NSCLC | mRNA/IHC | NA | MET mRNA levels higher in ADK > Sq |
Masuya’04 [21] [Japan] | 88 | I–III | NSCLC | HGF/MET IHC | 4.2 | HGF OE: pT, Ki-67 index, worse OS |
Cheng’05 [23] [Taiwan] | 45 | I–IIIA | NSCLC | RT-PCR and IHC | 1.9 | b-MET mRNA: pN and worse DSF |
Nakamura’07 [24] [Japan] | 130 | I–III | ADK | IHC pMET | 2.7 | Phospho-MET: Grade and papillary |
Beau-Faller’08 [25] [France] | 106 | I–IV | NSCLC | GCN RT-PCR | 2.2 | Higher GCN: worse OS in ADK (trend) |
Okuda’08 [26] [Japan] | 213 | I–IV | NSCLC | GCN RT-PCR | 5 * | Higher GCN: worse OS (for stages II–IV) |
Cappuzzo’09 [27] [Italy] | 447 | I–IV | NSCLC | GCN FISH | 3.4 | Higher GCN: p-Stage, grading, worse OS |
Park’12 [28] [Korea] | 380 | I–IV | NSCLC | GCN FISH IHC | 3.5 | MET OE: worse OS in ADK (trend) |
Yeung’15 [29] [Hong Kong] | 154 | I–IV | ADK/ADS | GCN FISH IHC RT-PCR | 2.1 | METex14: worse OS |
Tong’16 [30] [Hong Kong] | 687 | I–IV | NSCLC | FISH IHC RT-PCR | 3.4 | METex14/High GCN: worse OS |
Crizotinib AcSé [66] GCN ≥ 6 | Crizotinib METROS [67] MET/CEP7 ≥ 2.2 | Crizotinib Profile1001 [68,69] MET/CEP7 ≥ 1.8 | Capmatinib GeometryMono1 [74,75,76] any GCN | Tepotinib Vision [84,85,86,87] LB GCN ≥ 2.5 | Savolitinib Phase II [93] NA | ||||
---|---|---|---|---|---|---|---|---|---|
METAMP GCN+ | 8/25 | 5/16 | 11/38 | 20/69 | 10/24 | NA | |||
(ORR) | (32%) | (31%) | (29%) | (29%) | (41.7%) | ||||
mPFS | 3.2 mos | 5.0 mos | 5.1 mos | 4.1 mos | 4.2 mos | ||||
GCN High | 0/1 | 0/2 | 8/21 | 1 L 6/15 | NR | NA | |||
(ORR) | (0) | (0) | (38%) | (40%) | |||||
mPFS | NR | NR | 6.7 mos | 4.2 mos | |||||
GCN Intermediate | 5/6 | 5/14 | 2/14 | 5/42 | NR | NA | |||
(ORR) | (83%) | (36%) | (14%) | (12%) | |||||
mPFS | NR | 4.4 mos | 1.9 mos | 2.7 mos | |||||
GCN Low | 2/15 | NA | 1/3 | 7/84 | NR | NA | |||
(ORR) | (13%) | (33%) | (8%) | ||||||
METex14 | 10/25 | 2/10 | 21/65 | 1 L (28) | ≥2 L (69) | 1 L (95) * | ≥2 L (66) * | 1 L (28) | ≥2 L (42) |
(ORR) | (40%) | (20%) | (32%) | (68%) | (41%) | 60% | 47% | (46%) | (40%) |
mPFS | 3.6 mos | 2.6 mos | 7.3 mos | 12.4 mos | 5.4 mos | 15.9 mos | 12 mos | 5.6 mos | 6.9 mos |
METex14 | NA | NA | NA | NA | NA | 10/25 | |||
Sarcomatoid | (40%) | ||||||||
mPFS | 5.5 mos |
Reference | Study | Drug | Type Inh. | Mechanism of Resistance |
---|---|---|---|---|
On-target | ||||
Yao 2023 [103] | Retrosp. 32/54,752 (0.06%) | None | NA | Extremely rare incidence of MET TK domain mutations in tx-I pts |
Tiedt 2011 [96] | Preclinical | NVP-BVU972 AMG458 | I II | MET Y1230 MET F1200 |
Fujino 2019 [97] | Preclinical | MET-Is | I II | MET D1228 or Y1230 MET L1195 or F1200 |
Engstrom 2017 [98] | Preclinical | Type I glesatinib | I II | MET1228N or Y1230C/H Sensitive to glesatinib |
Bahcall 2016 [99] | Case report | Osimertinib+ savolitinib Erlotinib+ cabozantinib | I II | EGFR+NSCLC -> MET D1228V Sensitive to cabozantinib |
Heist 2016 [101] | Case report | Crizotinib | I | METex14NSCLC -> METD1228N |
Ou 2017 [100] | Case report | Crizotinib | I | METex14NSCLC -> Y1230C |
Recondo 2020 [102] | Retrosp. 7/15 (35%) | Crizotinib capmatinib Glesatinib | I II | G1163R, D1228H/N Y1230 L1195V H1094Y and L1195V |
Yao 2023 [103] | Retrosp. 41 pts | EGFR TKI+ MET (20 pts) MET inh (21 pts) | NA | D1228N (63%) D1228H (42%) Y1230H (20%) Y1230C (15%) D1228Y (12%) L1195V (10%) D1228/M1229 (1 pt) |
Dagogo-Jack 2021 [104] | Phase II 5/16 METex14 (31%) | Crizotinib | I | D1228H (2 patients) Y1230H (1 patient) D1228N/Y1230H (1 patient) |
Paik 2021 [95] | Phase II 7/52 METex14 (13%) | Tepotinib | I | Y1230H/C, D1228H/N plus 3 unknown function G685E, G344R, S156L |
Le 2021 [90] | Phase II 2/9 MET AMP (22%) | Tepotinib | I | D1228H/N/Y, Y1230C/H, D1231N (1) D1228N/H, Y1230H, D1231N (1) |
Off-target | ||||
Bahcall 2018 [105] | Preclinical | Crizotinib | I | KRAS gene amplification |
Suzawa 2018 [106] | Retrosp. 1/113 (0.08%) | Crizotinib | I | 1/113 post-Crizo KRAS mutation 4/113 pre-treatment KRAS mutations |
Recondo 2020 [102] | Retrosp. 9/15 METex14 (45%) | Crizotinib Capmatinib Glesatinib | I II | KRAS gene amplification or mutations EGFR gene amplification HER3 gene amplification BRAF gene amplification |
Dagogo-Jack 2021 [104] | Phase II 5/16 METex14 (31%) | Crizotinib | I | MAPK pathway alterations (3/16) ERBB pathway alterations (2/16) |
Paik 2021 [95] | Phase II 13/35 METex14 (37%) | Tepotinib | I | p53/RB1 mutations (6/35), EGFR/HER2 amplifications (4/35), PI3K/RAS mutations (3/35) |
Reference | MET Alteration | Pt N | ORR | mPFS | Predictive Factors |
---|---|---|---|---|---|
Sabari 2018 [113] | METex14 | 24 | 17% | 1.9 months | Neither PD-L1/mTMB |
MET AMP | 0 | NA | NA | NA | |
Dudnik 2018 [114] | METex14 | 14 | 12% | 4 months | PD-L1- |
MET AMP | 5 | 25% | 4.9 months | NR | |
Mazieres 2019 [115] | METex14 | 23 | NR | NR | - |
MET AMP | 13 | NR | NR | MET AMP- | |
TOTAL | 36 | 16% | 3.4 months | Smoking status-/PD-L1- | |
Guiser 2020 [116] | METex14 | 30 | 36% | 4.9 months | - |
MET AMP | 0 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spitaleri, G.; Trillo Aliaga, P.; Attili, I.; Del Signore, E.; Corvaja, C.; Corti, C.; Uliano, J.; Passaro, A.; de Marinis, F. MET in Non-Small-Cell Lung Cancer (NSCLC): Cross ‘a Long and Winding Road’ Looking for a Target. Cancers 2023, 15, 4779. https://doi.org/10.3390/cancers15194779
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Corti C, Uliano J, Passaro A, de Marinis F. MET in Non-Small-Cell Lung Cancer (NSCLC): Cross ‘a Long and Winding Road’ Looking for a Target. Cancers. 2023; 15(19):4779. https://doi.org/10.3390/cancers15194779
Chicago/Turabian StyleSpitaleri, Gianluca, Pamela Trillo Aliaga, Ilaria Attili, Ester Del Signore, Carla Corvaja, Chiara Corti, Jacopo Uliano, Antonio Passaro, and Filippo de Marinis. 2023. "MET in Non-Small-Cell Lung Cancer (NSCLC): Cross ‘a Long and Winding Road’ Looking for a Target" Cancers 15, no. 19: 4779. https://doi.org/10.3390/cancers15194779
APA StyleSpitaleri, G., Trillo Aliaga, P., Attili, I., Del Signore, E., Corvaja, C., Corti, C., Uliano, J., Passaro, A., & de Marinis, F. (2023). MET in Non-Small-Cell Lung Cancer (NSCLC): Cross ‘a Long and Winding Road’ Looking for a Target. Cancers, 15(19), 4779. https://doi.org/10.3390/cancers15194779