Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Inclusion and Exclusion Criteria
2.3. Disease-Free Survival and Overall Survival
2.4. Statistical Analysis
3. Results
3.1. Unmatched Series
3.2. Matched Series
3.3. Survival Analysis
4. Discussion
4.1. Strengths and Weakness
4.2. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Llueca, A.; Serra, A.; Herraiz, J.L.; Rivadulla, I.; Gomez-Quiles, L.; Gilabert-Estelles, J.; Escrig, J. Peritoneal carcinomatosis index as a predictor of diaphragmatic involvement in stage III and IV ovarian cancer. OncoTargets Ther. 2018, 11, 2771–2777. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Sugarbaker, P.H. Peritoneal-Plasma Barrier. Cancer Treat Res. 1996, 82, 53–63. [Google Scholar] [CrossRef]
- Flessner, M.F. Distributed model of peritoneal transport: Implications of the endothelial glycocalyx. Nephrol. Dial. Transpl. 2008, 23, 2142–2146. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H.; van der Speeten, K.; Anthony Stuart, O.; Chang, D. Impact of Surgical and Clinical Factors on the Pharmacology of Intraperitoneal Doxorubicin in 145 Patients with Peritoneal Carcinomatosis. Eur. J. Surg. Oncol. 2011, 37, 719–726. [Google Scholar] [CrossRef]
- Speeten, K.; Stuart, O.; Sugarbaker, P. Using Pharmacologic Data to Plan Clinical Treatments for Patients with Peritoneal Surface Malignancy. Curr. Drug Discov. Technol. 2009, 6, 72–81. [Google Scholar] [CrossRef]
- Ansaloni, L.; Coccolini, F.; Morosi, L.; Ballerini, A.; Ceresoli, M.; Grosso, G.; Bertoli, P.; Busci, L.M.; Lotti, M.; Cambria, F.; et al. Pharmacokinetics of Concomitant Cisplatin and Paclitaxel Administered by Hyperthermic Intraperitoneal Chemotherapy to Patients with Peritoneal Carcinomatosis from Epithelial Ovarian Cancer. Br. J. Cancer 2015, 112, 306–312. [Google Scholar] [CrossRef]
- Issels, R.D. Hyperthermia Adds to Chemotherapy. Eur. J. Cancer 2008, 44, 2546–2554. [Google Scholar] [CrossRef]
- Cavaliere, D.; Cirocchi, R.; Coccolini, F.; Fagotti, A.; Fambrini, M.; Federici, O.; Lorusso, D.; Vaira, M.; Ceresoli, M.; Delrio, P.; et al. 1st Evidence-Based Italian Consensus Conference on Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinosis from Ovarian Cancer. Tumori. J. 2017, 103, 525–536. [Google Scholar] [CrossRef]
- Ansaloni, L.; Agnoletti, V.; Amadori, A.; Catena, F.; Cavaliere, D.; Coccolini, F.; De Iaco, P.; Di Battista, M.; Framarini, M.; Gazzotti, F.; et al. Evaluation of Extensive Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Patients with Advanced Epithelial Ovarian Cancer. Int. J. Gynecol. Cancer 2012, 22, 778–785. [Google Scholar] [CrossRef]
- Hotouras, A.; Desai, D.; Bhan, C.; Murphy, J.; Lampe, B.; Sugarbaker, P.H. Heated IntraPEritoneal Chemotherapy (HIPEC) for Patients with Recurrent Ovarian Cancer: A Systematic Literature Review. Int. J. Gynecol. Cancer 2016, 26, 661–670. [Google Scholar] [CrossRef]
- Coccolini, F.; Campanati, L.; Catena, F.; Ceni, V.; Ceresoli, M.; Cruz, J.J.; Lotti, M.; Magnone, S.; Napoli, J.; Rossetti, D.; et al. Hyperthermic Intraperitoneal Chemotherapy with Cisplatin and Paclitaxel in Advanced Ovarian Cancer: A Multicenter Prospective Observational Study. J. Gynecol. Oncol. 2015, 26, 54–61. [Google Scholar] [CrossRef]
- Llueca, M.; Ibañez, M.V.; Climent, M.T.; Serra, A.; Llueca, A. Effectiveness of Hyperthermic Intraperitoneal Chemotherapy Associated with Cytoreductive Surgery in the Treatment of Advanced Ovarian Cancer: Systematic Review and Meta-Analysis. J. Pers. Med. 2023, 13, 258. [Google Scholar] [CrossRef]
- Van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.; Schreuder, H.W.R.; Hermans, R.H.M.; De Hingh, I.H.; Van Der Velden, J.; Arts, H.J.; Massuger, L.F.; et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018, 378, 230–240. Available online: https://www.nejm.org/doi/10.1056/NEJMoa1708618 (accessed on 12 July 2022). [CrossRef] [PubMed]
- Antonio, C.C.P.; Alida, G.G.; Elena, G.G.; Rocío, G.S.; Jerónimo, M.G.; Luis, A.R.J.; Aníbal, N.D.; Francisco, B.V.; Jesús, G.R.; Pablo, R.R.; et al. Cytoreductive Surgery with or without HIPEC after Neoadjuvant Chemotherapy in Ovarian Cancer: A Phase 3 Clinical Trial. Ann. Surg. Oncol. 2022, 29, 2617–2625. [Google Scholar] [CrossRef]
- Lim, M.C.; Chang, S.J.; Park, B.; Yoo, H.J.; Yoo, C.W.; Nam, B.H.; Park, S.-Y. Survival after Hyperthermic Intraperitoneal Chemotherapy and Primary or Interval Cytoreductive Surgery in Ovarian Cancer: A Randomized Clinical Trial. JAMA Surg. 2022, 157, 374–383. Available online: https://jamanetwork.com/journals/jamasurgery/fullarticle/2789724 (accessed on 12 July 2022). [CrossRef] [PubMed]
- Sugarbaker, P.H.; Jablonski, K.A. Prognostic Features of 51 Colorectal and 130 Appendiceal Cancer Patients with Peritoneal Carcinomatosis Treated by Cytoreductive Surgery and Intraperitoneal Chemotherapy. Ann. Surg. 1995, 221, 124–132. [Google Scholar] [CrossRef]
- Llueca, A.; Serra, A.; Delgado, K.; Maiocchi, K.; Jativa, R.; Gomez, L.; Escrig, J. A Radiologic-Laparoscopic Model to Predict Suboptimal (or Complete and Optimal) Debulking Surgery in Advanced Ovarian Cancer: A Pilot Study. Int. J. Womens Health 2019, 11, 333–342. [Google Scholar] [CrossRef]
- Clavien, P.A.; Sanabria, J.R.; Strasberg, S.M. Proposed Classification of Complications of Surgery with Examples of Utility in Cholecystectomy—PubMed. Surgery 1992, 111, 518–526. [Google Scholar]
- Anderson-Cook, C.M.; Anderson-Cook, M.C. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. William R. Shadish, Thomas D. Cook, and Donald T. Campbell. J. Am. Stat Assoc. 2005, 100, 708. Available online: https://EconPapers.repec.org/RePEc:bes:jnlasa:v:100:y:2005:p:708-708 (accessed on 12 January 2022). [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. Available online: https://www.jstatsoft.org/index.php/jss/article/view/v042i08 (accessed on 16 January 2022). [CrossRef]
- Noah, G. Covariate Balance Tables and Plots. R Package Version 4.3.1. 2021. Available online: https://CRAN.R-project.org/package=cobalt (accessed on 7 July 2022).
- Therneau, T.M.; Grambsch, P.M. A Package for Survival Analysis in S, Version 2.38. Modeling Survival Data: Extending the Cox Model. 2000. Available online: http://cran.r-project.org/package=survival (accessed on 16 January 2022).
- Möllenhoff, K.; Tresch, A. Survival Analysis under Non-Proportional Hazards: Investigating Non-Inferiority or Equivalence in Time-to-Event Data. 14 September 2020. Available online: http://arxiv.org/abs/2009.06699 (accessed on 16 January 2022).
- Alboukadel, K. Drawing Survival Curves Using “ggplot2”. [R Package Survminer Version 0.4.9]. 9 Mar 2021. Available online: https://CRAN.R-project.org/package=survminer (accessed on 16 January 2022).
- Winter, W.E.; Maxwell, G.L.; Tian, C.; Sundborg, M.J.; Rose, G.S.; Rose, P.G.; Rubin, S.C.; Muggia, F.; McGuire, W.P. Tumor Residual after Surgical Cytoreduction in Prediction of Clinical Outcome in Stage IV Epithelial Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2008, 26, 83–89. [Google Scholar] [CrossRef]
- Armstrong, D.K.; Bundy, B.; Wenzel, L.; Huang, H.Q.; Baergen, R.; Lele, S.; Burger, R.A. Intraperitoneal Cisplatin and Paclitaxel in Ovarian Cancer. N. Engl. J. Med. 2006, 354, 34–43. [Google Scholar] [CrossRef]
- Oei, A.L.; Vriend, L.E.M.; Krawczyk, P.M.; Horsman, M.R.; Franken, N.A.P.; Crezee, J. Targeting Therapy-Resistant Cancer Stem Cells by Hyperthermia. Int. J. Hyperth. 2017, 33, 419–427. [Google Scholar] [CrossRef]
- Koole, S.; van Stein, R.; Sikorska, K.; Barton, D.; Perrin, L.; Brennan, D.; van Driel, W.J. Primary Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for FIGO Stage III Epithelial Ovarian Cancer: OVHIPEC-2, a Phase III Randomized Clinical Trial. Int. J. Gynecol. Cancer 2020, 30, 888–892. [Google Scholar] [CrossRef]
- Spiliotis, J.; Halkia, E.; Lianos, E.; Kalantzi, N.; Grivas, A.; Efstathiou, E.; Giassas, S. Cytoreductive Surgery and HIPEC in Recurrent Epithelial Ovarian Cancer: A Prospective Randomized Phase III Study. Ann. Surg. Oncol. 2015, 22, 1570–1575. [Google Scholar] [CrossRef]
- Bae, J.H.; Lee, J.M.; Ryu, K.S.; Lee, Y.S.; Park, Y.G.; Hur, S.Y.; Namkoong, S.E. Treatment of Ovarian Cancer with Paclitaxel- or Carboplatin-Based Intraperitoneal Hyperthermic Chemotherapy during Secondary Surgery. Gynecol. Oncol. 2007, 106, 193–200. [Google Scholar] [CrossRef]
- Kerr, J.B.; Duckett, R.; Myers, M.; Britt, K.L.; Mladenovska, T.; Findlay, J.K. Quantification of Healthy Follicles in the Neonatal and Adult Mouse Ovary: Evidence for Maintenance of Primordial Follicle Supply. Reproduction 2006, 132, 95–109. [Google Scholar] [CrossRef]
- Aletti, G.D.; Gallenberg, M.M.; Cliby, W.A.; Jatoi, A.; Hartmann, L.C. Current Management Strategies for Ovarian Cancer. Mayo Clin. Proc. 2007, 82, 751–770. [Google Scholar] [CrossRef]
- Muñoz-Galván, S.; Carnero, A. Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells 2020, 9, 1402. [Google Scholar] [CrossRef]
- Hombach-Klonisch, S.; Paranjothy, T.; Wiechec, E.; Pocar, P.; Mustafa, T.; Seifert, A.; Zahl, C.; Gerlach, K.L.; Biermann, K.; Steger, K.; et al. Cancer Stem Cells as Targets for Cancer Therapy: Selected Cancers as Examples. Arch. Immunol. Ther. Exp. 2008, 56, 165–180. [Google Scholar] [CrossRef]
- Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.; Hu, X.; Su, F.; Lieberman, J.; et al. let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells. Cell 2007, 131, 1109–1123. [Google Scholar] [CrossRef]
- Lim, M.C.; Song, Y.J.; Seo, S.S.; Yoo, C.W.; Kang, S.; Park, S.Y. Residual Cancer Stem Cells after Interval Cytoreductive Surgery Following Neoadjuvant Chemotherapy Could Result in Poor Treatment Outcomes for Ovarian Cancer. Onkologie 2010, 33, 324–330. [Google Scholar] [CrossRef]
- Tate, S.; Nishikimi, K.; Kato, K.; Matsuoka, A.; Kambe, M.; Kiyokawa, T.; Shozu, M. Microscopic Diseases Remain in Initial Disseminated Sites after Neoadjuvant Chemotherapy for Stage III/IV Ovarian, Tubal, and Primary Peritoneal Cancer. J. Gynecol. Oncol. 2020, 31, e34. [Google Scholar] [CrossRef]
- McGuire, W.P.; Hoskins, W.J.; Brady, M.F.; Homesley, H.D.; Creasman, W.T.; Berman, M.L.; Ball, H.; Berek, J.S.; Woodward, J. Assessment of Dose-Intensive Therapy in Suboptimally Debulked Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 1995, 13, 1589–1599. [Google Scholar] [CrossRef]
- Goodman, M.D.; McPartland, S.; Detelich, D.; Saif, M.W. Chemotherapy for Intraperitoneal Use: A Review of Hyperthermic Intraperitoneal Chemotherapy and Early Post-Operative Intraperitoneal Chemotherapy. J. Gastrointest. Oncol. 2016, 7, 45–57. [Google Scholar] [CrossRef]
- Tattersall, A.; Ryan, N.; Wiggans, A.J.; Rogozińska, E.; Morrison, J. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer. Cochrane Database Syst. Rev. 2022, 2, CD007929. [Google Scholar] [CrossRef]
- Genet, S.C.; Fujii, Y.; Maeda, J.; Kaneko, M.; Genet, M.D.; Miyagawa, K.; Kato, T.A. Hyperthermia Inhibits Homologous Recombination Repair and Sensitizes Cells to Ionizing Radiation in a Time- and Temperature-Dependent Manner. J. Cell Physiol. 2013, 228, 1473–1481. [Google Scholar] [CrossRef]
- Krawczyk, P.M.; Eppink, B.; Essers, J.; Stap, J.; Rodermond, H.; Odijk, H.; Zelensky, A.; van Bree, C.; Stalpers, L.J.; Buist, M.R.; et al. Mild Hyperthermia Inhibits Homologous Recombination, Induces BRCA2 Degradation, and Sensitizes Cancer Cells to Poly (ADP-Ribose) Polymerase-1 Inhibition. Proc. Natl. Acad. Sci. USA 2011, 108, 9851–9856. [Google Scholar] [CrossRef]
- Llueca, A.; Serra, A.; Climent, M.T.; Segarra, B.; Maazouzi, Y.; Soriano, M.; Escrig, J. Outcome Quality Standards in Advanced Ovarian Cancer Surgery. World J. Surg. Oncol. 2020, 18, 309. [Google Scholar] [CrossRef]
- Climent, M.T.; Serra, A.; Gilabert-estellés, J.; Gilabert-aguilar, J.; Llueca, A. Comparison of Peritoneal Carcinomatosis Scoring Methods in Predicting Resectability and Prognosis in Gynecologic Malignancies. J. Clin. Med. 2021, 10, 2553. [Google Scholar] [CrossRef]
- Llueca, A.; Serra, A.; Maiocchi, K.; Delgado, K.; Jativa, R.; Gomez, L.; Escrig, J. Predictive model for major complications after extensive abdominal surgery in primary advanced ovarian cancer. Int. J. Womens Health 2019, 11, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Dovern, E.; de Hingh, I.H.J.T.; Verwaal, V.J.; van Driel, W.J.; Nienhuijs, S.W. Hyperthermic Intraperitoneal Chemotherapy Added to the Treatment of Ovarian Cancer. A Review of Achieved Results and Complications. Eur. J. Gynaecol. Oncol. 2010, 31, 256–261. [Google Scholar]
CRSnoH n (%) | CRSH n (%) | p-Value | |
---|---|---|---|
N = 287 (58.7%) | N = 202 (41.3%) | ||
Age at diagnosis, years, | 0.36 | ||
mean (SD) | 60 (10.21) | 61 (10.32) | |
Age group | 0.29 | ||
<65 years | 162 (56.4%) | 121 (59.9%) | |
≥65 years | 125 (43.6%) | 81 (40.1%) | |
Tumor histologic type | 0.12 | ||
Serous | 259 (91.2%) | 192 (97.0%) | |
Endometroid | 9 (3.2%) | 1 (0.5%) | |
Clear-cell carcinoma | 4 (1.4%) | 1 (0.5%) | |
Undifferentiated | 4 (1.4%) | 2 (1%) | |
Other | 8 (2.8%) | 2 (1%) | |
Histological grade | 0 | ||
Unknown | 20 (7.0%) | 47 (23.3%) | |
G1–G2 | 18 (6.3%) | 33 (16.3%) | |
G3 | 249 (86.8%) | 122 (60.4%) | |
FIGO | 0 | ||
Stage III | 153 (53.3%) | 164 (81.2%) | |
Stage IVA | 30 (10.5%) | 28 (13.9%) | |
Stage IVB | 104 (36.2%) | 10 (5.0%) | |
Comorbidities | 0.027 | ||
No | 166 (58.9%) | 97 (48.3%) | |
Yes | 116 (41.1%) | 104 (51.7%) | |
Charlson index | <0.001 | ||
mean (SD) | 1.33 (2.09) | 0.49 (1.11) | |
Median (P25–P75) | 0 (0–2) | 0 (0–0) | |
CEA | 0.33 | ||
mean (SD) | 4.57 (19.26) | 2.94 (6.79) | |
Median (P25–P75) | 1.20 (0.60–2.40) | 2 (1.20–2.73) | |
Ca199 | 0.98 | ||
mean (SD) | 55.33 (315.14) | 54.85(133.85) | |
Median (P25–P75) | 10 (4–23) | 11.50 (6–30.00) | |
CA125 | <0.001 | ||
mean (SD) | 2494.09 (5788.41) | 613.28 (1423.01) | |
Median (P25–P75) | 871 (301–2036) | 90 (25–595) | |
CA153 | 037 | ||
mean (SD) | 188.19 (282.18) | 125.64 (212.48) | |
Median (P25–P75) | 76.75 (26.60–152) | 80 (38.60–101) | |
Categorized Icp | 0.35 | ||
1–10 | 170 (59.4%) | 110 (54.5%) | |
11–20 | 85 (29.7%) | 62 (30.7%) | |
>20 | 31 (10.8%) | 30 (14.9%) | |
Cytoreduction | 0.005 | ||
Complete | 225 (78.9%) | 171 (84.7%) | |
Optimal | 46 (16.1%) | 31 (15.3%) | |
Incomplete | 14 (4.9%) | 0 (0%) | |
Postoperative complications | 0.9 | ||
No | 165 (58.9%) | 115 (41.1%) | |
Yes | 117 (58.5%) | 83 (41.5%) | |
Major complication Dindo-Clavien | 0.11 | ||
No | 151 (52.6%) | 108 (53.5%) | |
grade I | 35 (12.2%) | 18 (8.9%) | |
grade II | 61 (21.3%) | 53 (26.2%) | |
grade IIIa | 10 (3.5%) | 11 (5.4%) | |
grade IIIb | 16 (5.6%) | 3 (1.5%) | |
grade IVa | 5 (1.7%) | 6 (3.0%) | |
grade IVb | 3 (1.0%) | 0 (0.0%) | |
grade V (death) | 2 (0.7%) | 2 (1.0%) | |
Degree of complication | 0.77 | ||
No complications | 162 (56.6%) | 108 (53.7%) | |
Low (I–II) | 92 (32.2%) | 71 (35.3%) | |
High (III–IV) | 32 (11.2%) | 22 (10.9%) | |
Reoperation | 0.24 | ||
No | 253 (88.5%) | 186 (92.1%) | |
Yes | 33 (11.5%) | 16 (7.9%) | |
Postoperative death | 1 | ||
No | 284 (99.3%) | 200 (99.0%) | |
Yes | 2 (0.7%) | 2 (1%) | |
Postoperative stay (in days) | 0.15 | ||
mean (sd) | 10.31 (10.40) | 9.24 (5.47) | |
Recurrence at follow-up | 0.80 | ||
No | 83(29.3%) | 56 (27.9%) | |
Yes | 200 (70.7%) | 145 (72.1%) | |
Type of recurrence | 0.12 | ||
Peritoneal | 53 (26.5%) | 36 (24.8%) | |
Visceral | 25 (12.5%) | 16 (11.0%) | |
Lymph nodes | 16 (8.0%) | 22 (15.2%) | |
Mixed1 (peritoneal and visceral) | 33 (16.5%) | 28 (19.3%) | |
Mixed 2 (nodal and others) | 65 (32.5%) | 36 (24.8%) | |
NA | 8 (4.0%) | 7 (4.8%) | |
Deceased during follow-up | 0.02 | ||
No | 186 (61.2%) | 104 (50.7%) | |
Yes | 118 (38.8%) | 101 (49.3%) | |
Time follow-up from diagnosis (months) | <0.001 | ||
mean (sd) | 34.56 (21.89) | 45.34 (32.12) | |
Time from surgery to recurrence (months) | <0.001 | ||
mean (sd) | 14.09 (11.55) | 15.60 (12.81) | |
Time from surgery to death (months) | 0.02 | ||
mean (sd) | 27.91 (19.03) | 34.71 (23.15) | |
Time from diagnosis to death (months) | 0.16 | ||
mean (sd) | 32.58 (18.59) | 36.58 (22.85) |
CRSnoH n (%) | CRSH n (%) | p-Value | |
---|---|---|---|
N = 170 (50%) | N = 170 (50%) | ||
Age at diagnosis, years | 0.69 | ||
mean (SD) | 60.32 (10.56) | 59.87 (10.21) | |
Age group | 1 | ||
<65 years | 103 (60.6%) | 103 (60.6%) | |
≥65 years | 67 (39.4%) | 67 (39.4%) | |
Tumor histologic type | 0.66 | ||
Serous | 161(94.7%) | 165 (96.6%) | |
Endometroid | 3 (1.8%) | 1 (0.6%) | |
Clear-cell carcinoma | 1 (0.6%) | 1 (0.6%) | |
Undifferentiated | 2 (1.2%) | 1 (0.6%) | |
Other | 3 (1.8%) | 1 (0.6%) | |
Histological grade | 0.007 | ||
Unknown | 22 (13.6%) | 38 (22.4%) | |
G1–G2 | 4 (2.4%) | 14 (8.2%) | |
G3 | 143 (84.1%) | 118 (69.4%) | |
FIGO | 0.46 | ||
Stage III | 133 (78.2%) | 142 (83.5%) | |
Stage IVA | 26 (15.3%) | 20 (11.8%) | |
Stage IVB | 11 (6.5%) | 8 (4.7%) | |
Comorbidities | 0.01 | ||
No | 106 (63.5%) | 84 (49.4%) | |
Yes | 61 (36.5%) | 86 (50.6%) | |
Charlson index | <0.001 | ||
mean (SD) | 1.05 (1.77) | 0.47 (1.07) | |
Median (P25–P75) | 0 (0–2) | 0 (0–0) | |
CEA | 0.25 | ||
mean (SD) | 5.94 (24.40) | 2.93 (7.40) | |
Median (P25–P75) | 1.28 (0.6–2.67) | 2 (1.10–2.70) | |
Ca199 | 0.70 | ||
mean (SD) | 77.85 (402.48) | 61.14 (147.36) | |
Median (P25–P75) | 9.9 (3.00–23.00) | 12 (6.68–39.50) | |
CA125 | <0.001 | ||
mean (SD) | 2730.99 (6243.87) | 644.93 (1508.49) | |
Median (P25–P75) | 791 (268–2036) | 111 (26–536) | |
CA153 | 0.85 | ||
mean (SD) | 125.53 (176.2) | 143.22 (257.20) | |
Median (P25–P75) | 59.05 (23.95–134.6) | 51 (26.50–101) | |
Categorized Icp | 0.57 | ||
1–10 | 55 (47.8%) | 92 (54.1%) | |
11–20 | 40 (34.8%) | 51 (30.0%) | |
>20 | 20 (17.4%) | 27 (15.9%) | |
Cytoreduction | 0.3 | ||
Complete | 135 (79.4%) | 144 (84.7%) | |
Optimal | 34 (20.0%) | 26 (15.3%) | |
Incomplete | 1 (0.6%) | 0 (0%) | |
Postoperative complications | 0.55 | ||
No | 90 (48.1%) | 97 (51.9%) | |
Yes | 76 (52.1%) | 40 (47.9%) | |
Major complication Dindo-Clavien | 0.005 | ||
No | 84 (49.4%) | 90 (52.9%) | |
grade I | 26 (15.3%) | 16 (9.4%) | |
grade II | 34 (20.0%) | 43 (25.3%) | |
grade IIIa | 5 (2.9%) | 11 (6.5%) | |
grade IIIb | 14 (8.2%) | 2 (1.1%) | |
grade IVa | 1 (0.6%) | 5 (2.9%) | |
grade IVb | 2 (1.2%) | 0 | |
grade V (death) | 1 (0.6%) | 2 (1.2%) | |
Degree of complication | 0.83 | ||
No complications | 91 (53.8%) | 90 (53.3%) | |
minor (I–II) | 55 (32.5%) | 59 (34.9%) | |
major (III–V) | 23 (13.6%) | 20 (11.8%) | |
Reoperation | 0.16 | ||
No | 147 (86.5%) | 156 (91.8%) | |
Yes | 23 (13.5%) | 14 (8.2%) | |
Postoperative death | 1 | ||
No | 168 (99.4%) | 168 (98.9%) | |
Yes | 1 (0.6%) | 2 (1.2%) | |
Postoperative stay (in days) | 0.048 | ||
mean (sd) | 11.22 (10.84) | 9.34 (5.73) | |
Recurrence at follow-up | 0.71 | ||
No | 40(23.5%) | 44 (25.9%) | |
Yes | 130 (76.5%) | 126 (74.1%) | |
Type of recurrence | 0.26 | ||
Peritoneal | 37 (28.5%) | 28 (22.2%) | |
Visceral | 21 (16.2%) | 16 (12.7%) | |
Lymph nodes | 11 (8.5%) | 19 (15.1%) | |
Mixed (Peritoneal and Visceral) | 19 (14.6%) | 23 (18.3%) | |
Mixed 2 (Lymph nodes and others) | 39 (30.0%) | 33 (26.2%) | |
NA | 3 (2.3%) | 7 (5.6%) | |
Deceased during follow-up | 0.32 | ||
No | 97 (57.1%) | 87 (51.2%) | |
Yes | 73 (42.9%) | 83 (48.8%) | |
Time follow-up from diagnosis (months) | 0.01 | ||
mean (sd) | 36.34 (21.74) | 43.91 (31.91) | |
Time from surgery to recurrence (months) | 0.0006 | ||
mean (sd) | 15.14 (12.51) | 15.40 (11.57) | |
Time from surgery to death (months) | 0.51 | ||
mean (sd) | 31.27 (20.58) | 33.54 (22.50) | |
Time from diagnosis to death (months) | 0.97 | ||
mean (sd) | 35.71 (20.25) | 35.61 (22.30) |
Recurrence Free Survival Time (in Months) | Percentil 25 (95% CI) | Median (95% CI) | Percentil 75 (95% CI) |
---|---|---|---|
Surgery | 8 (7–10) | 13 (11–16) | 26 (20–42) |
Surgery + Hipec | 9 (7–11) | 16 (13–23) | 42 (32–NA) |
Overall Survival Time (in Months) | Percentil 25 (95% CI) | Median (95% CI) | Percentil 75 (95% CI) |
---|---|---|---|
Surgery | 25 (20–35) | 51 (41–67) | 108 (82–NA) |
Surgery + Hipec | 27 (24–38) | 53 (45–79) | NA (90–NA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llueca, A.; Ibañez, M.V.; Cascales, P.; Gil-Moreno, A.; Bebia, V.; Ponce, J.; Fernandez, S.; Arjona-Sanchez, A.; Muruzabal, J.C.; Veiga, N.; et al. Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study. Cancers 2023, 15, 4271. https://doi.org/10.3390/cancers15174271
Llueca A, Ibañez MV, Cascales P, Gil-Moreno A, Bebia V, Ponce J, Fernandez S, Arjona-Sanchez A, Muruzabal JC, Veiga N, et al. Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study. Cancers. 2023; 15(17):4271. https://doi.org/10.3390/cancers15174271
Chicago/Turabian StyleLlueca, Antoni, Maria Victoria Ibañez, Pedro Cascales, Antonio Gil-Moreno, Vicente Bebia, Jordi Ponce, Sergi Fernandez, Alvaro Arjona-Sanchez, Juan Carlos Muruzabal, Nadia Veiga, and et al. 2023. "Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study" Cancers 15, no. 17: 4271. https://doi.org/10.3390/cancers15174271
APA StyleLlueca, A., Ibañez, M. V., Cascales, P., Gil-Moreno, A., Bebia, V., Ponce, J., Fernandez, S., Arjona-Sanchez, A., Muruzabal, J. C., Veiga, N., Diaz-Feijoo, B., Celada, C., Gilabert-Estelles, J., Aghababyan, C., Lacueva, J., Calero, A., Segura, J. J., Maiocchi, K., Llorca, S., ... on behalf of Spain GOG and GECOP Working Group. (2023). Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study. Cancers, 15(17), 4271. https://doi.org/10.3390/cancers15174271