Aggressive Prostate Cancer in Patients Treated with Active Surveillance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of Active Surveillance
2.1. Principles of Active Surveillance
2.2. Inclusion Criteria of Active Surveillance
2.3. Protocol of Active Surveillance
3. Aggressive Prostate Cancer during Active Surveillance
3.1. Definition of Aggressive Prostate Cancer during Active Surveillance
3.2. Definition of Pathological Reclassification
Research Group | Inclusion Criteria | Trigger for Definitive Treatment | Rate of Reclassification | Definitive Treatment Rate | ||||
---|---|---|---|---|---|---|---|---|
Clinical Stage | Gleason Score | Cancer Volume | PSA (ng/mL) | PSA Density (ng/mL/cm3) | ||||
John Hopkins University | T1c | 6 | ≤2 cores positive, ≤50% core involvement per core | - | ≤0.15 | GS ≥3 + 4, 3 positive cores, >50% cancer per core | 26% at 10 years, 31% at 15 years [16] | 50% at 10 years, 57% at 15 years [16] |
University of Toronto | ≤T2a | 3 + 3 or 3 + 4 if aged >70 years | - | ≤10 or ≤15 if aged >70 years | - | GS upgrading, clinical progression | 25.6% (median follow-up: 6.4 years) [14] | 27% (median follow-up: 6.4 years) [14] |
Memorial Sloan Kettering Cancer Center | ≤T2a | 6 | ≤2 cores positive, ≤50% core involvement per core | ≤10 | - | GS upgrading, clinical progression, upstaging | 24% at 5 years, 36% at 10 years, 41% at 15 years [21] | 24% at 5 years, 36% at 10 years, 42% at 15 years [21] |
University of California, San Francisco | ≤T2a | 6 | <33% positive cores | ≤10 | - | GS ≥ 3 + 4, PSA velocity >0.75 | 60% at 7 years [22] | 41% at 7 years [22] |
Canary Prostate Active Surveillance Study | ≤T2c | 6 and 3 + 4 | - | - | - | GS upgrading, clinical progression, PSA-DT < 3 year | 22.4% (median follow-up: 5.6 years) [32,33] | 32.5% (median follow-up: 5.6 years) [32,33] |
PRIAS | ≤T2 | ≤6 | no limitation if MRI available at diagnosis (if not, ≤2 cores positive) | ≤20 (if MRI available at diagnosis), ≤10 (if MRI not available) | <0.25 if MRI available at diagnosis (if not, ≤0.2) | progression to ≥T3, GS ≥ 4+3, or GS≤ 3 + 4 with IDC-P/cribriform | 34% at 5 years, 41% at 10 years [15] | 20.8% (median follow-up: not available) [15] |
3 + 4 | ≤50% positive cores if MRI available at diagnosis (if not, ≤2 cores positive) | ≤20 (if MRI available at diagnosis), ≤10 (if MRI not available) | <0.25 if MRI available at diagnosis (if not, ≤0.2) |
3.3. Rate of Reclassification and Definitive Treatment during Active Surveillance
4. Risk Factors for Aggressive Prostate Cancer during Active Surveillance
4.1. Aggressive Prostate Cancer That Is Not an Indication for Active Surveillance, despite Low-Risk or Favorable Intermediate-Risk PC
4.1.1. Tumor Volume
4.1.2. IDC-P and Cribriform Pattern
4.1.3. Percentage of Gleason Pattern 4 in Prostate Biopsy Cores
4.2. Aggressive Prostate Cancer Undergoes Pathological Upgrading during Active Surveillance Monitoring
4.2.1. Risk Factors for Reclassification on Repeat Biopsies during Active Surveillance
4.2.2. Risk Factors for Adverse Pathology on Radical Prostatectomy Specimens after Upfront Active Surveillance
5. Appropriate Approach for Aggressive Prostate Cancer during Active Surveillance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- He, W.; Goodkind, D.; Kowal, P. An Aging World. 2015. Available online: https://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf (accessed on 16 June 2023).
- Catalona, W.J.; Smith, D.S.; Ratliff, T.L.; Dodds, K.M.; Coplen, D.E.; Yuan, J.J.; Petros, J.A.; Andriole, G.L. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 1991, 324, 1156–1161. [Google Scholar] [CrossRef]
- Neppl-Huber, C.; Zappa, M.; Coebergh, J.W.; Rapiti, E.; Rachtan, J.; Holleczek, B.; Rosso, S.; Aareleid, T.; Brenner, H.; Gondos, A.; et al. Changes in incidence, survival and mortality of prostate cancer in Europe and the United States in the PSA era: Additional diagnoses and avoided deaths. Ann. Oncol. 2012, 23, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Resnick, M.J.; Koyama, T.; Fan, K.H.; Albertsen, P.C.; Goodman, M.; Hamilton, A.S.; Hoffman, R.M.; Potosky, A.L.; Stanford, J.L.; Stroup, A.M.; et al. Long-term functional outcomes after treatment for localized prostate cancer. N. Engl. J. Med. 2013, 368, 436–445. [Google Scholar] [CrossRef]
- Smith, P.H. The case for no initial treatment of localized prostate cancer. Urol. Clin. North Am. 1990, 17, 827–834. [Google Scholar] [CrossRef]
- Choo, R.; Klotz, L.; Danjoux, C.; Morton, G.C.; DeBoer, G.; Szumacher, E.; Fleshner, N.; Bunting, P.; Hruby, G. Feasibility study: Watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 2002, 167, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically localized prostate cancer. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef] [PubMed]
- European Association of Urology (EAU). EAU Guidelines on Prostate Cancer. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 16 July 2023).
- The National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology Prostate Cancer. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (accessed on 16 July 2023).
- Hoffman, K.E.; Penson, D.F.; Zhao, Z.; Huang, L.C.; Conwill, R.; Laviana, A.A.; Joyce, D.D.; Luckenbaugh, A.N.; Goodman, M.; Hamilton, A.S.; et al. Patient-reported outcomes through 5 years for active surveillance, surgery, brachytherapy, or external beam radiation with or without androgen deprivation therapy for localized prostate cancer. JAMA 2020, 323, 149–163. [Google Scholar] [CrossRef]
- Punnen, S.; Cowan, J.E.; Chan, J.M.; Carroll, P.R.; Cooperberg, M.R. Long-term health-related quality of life after primary treatment for localized prostate cancer: Results from the CaPSURE registry. Eur. Urol. 2015, 68, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Tohi, Y.; Kato, T.; Matsuda, I.; Honda, T.; Osaki, Y.; Naito, H.; Matsuoka, Y.; Okazoe, H.; Taoka, R.; Ueda, N.; et al. Active surveillance in younger patients with prostate cancer: Clinical characteristics including longitudinal patient-reported outcomes. Jpn. J. Clin. Oncol. 2023, 53, 335–342. [Google Scholar] [CrossRef]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Bokhorst, L.P.; Valdagni, R.; Rannikko, A.; Kakehi, Y.; Pickles, T.; Bangma, C.H.; Roobol, M.J.; PRIAS study group. A decade of active surveillance in the PRIAS study: An update and evaluation of the criteria used to recommend a switch to active treatment. Eur. Urol. 2016, 70, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Wolf, S.; Trock, B.J.; Carter, H.B. Intermediate and longer-term outcomes from a prospective active-surveillance program for favorable-risk prostate cancer. J. Clin. Oncol. 2015, 33, 3379–3385. [Google Scholar] [CrossRef] [PubMed]
- Kakehi, Y.; Sugimoto, M.; Taoka, R. Committee for establishment of the evidenced-based clinical practice guideline for prostate cancer of the Japanese Urological Association. Evidenced-based clinical practice guideline for prostate cancer (summary: Japanese Urological Association, 2016 edition). Int. J. Urol. 2017, 24, 648–666. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging–Reporting and Data System: 2015, version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Nilsson, R.; Næss-Andresen, T.F.; Myklebust, T.Å.; Bernklev, T.; Kersten, H.; Haug, E.S. Fear of recurrence in prostate cancer patients: A cross-sectional study after radical prostatectomy or active surveillance. Eur. Urol. Open Sci. 2021, 25, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Luta, G.; Zotou, V.; Lobo, T.; Hoffman, R.M.; Davis, K.M.; Potosky, A.L.; Li, T.; Aaronson, D.; Van Den Eeden, S.K. Psychological predictors of delayed active treatment following active surveillance for low-risk prostate cancer: The Patient REported outcomes for Prostate cARE prospective cohort study. BJUI Compass 2022, 3, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Benfante, N.; Alvim, R.; Sjoberg, D.D.; Vickers, A.; Reuter, V.E.; Fine, S.W.; Vargas, H.A.; Wiseman, M.; Mamoor, M.; et al. Long-term outcomes of active surveillance for prostate cancer: The Memorial Sloan Kettering Cancer Center experience. J. Urol. 2020, 203, 1122–1127. [Google Scholar] [CrossRef]
- Maggi, M.; Cowan, J.E.; Fasulo, V.; Washington, S.L., 3rd; Lonergan, P.E.; Sciarra, A.; Nguyen, H.G.; Carroll, P.R. The long-term risks of metastases in men on active surveillance for early stage prostate cancer. J. Urol. 2020, 204, 1222–1228. [Google Scholar] [CrossRef]
- Newcomb, L.F.; Brooks, J.D.; Carroll, P.R.; Feng, Z.; Gleave, M.E.; Nelson, P.S.; Thompson, I.M.; Lin, D.W. Canary Prostate Active Surveillance Study: Design of a multi-institutional active surveillance cohort and biorepository. Urology 2010, 75, 407–413. [Google Scholar] [CrossRef]
- PRIAS Project. PRIAS Project–Active Surveillance–(prias-project.org). Available online: https://www.prias-project.org/modules/articles/article.php?id=1 (accessed on 17 June 2023).
- Ross, A.E.; Loeb, S.; Landis, P.; Partin, A.W.; Epstein, J.I.; Kettermann, A.; Feng, Z.; Carter, H.B.; Walsh, P.C. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J. Clin. Oncol. 2010, 28, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.K.; Van As, N.; Thomas, K.; Woode-Amissah, R.; Horwich, A.; Huddart, R.; Khoo, V.; Thompson, A.; Dearnaley, D.; Parker, C. Prostate-specific antigen (PSA) kinetics in untreated, localized prostate cancer: PSA velocity vs PSA doubling time. BJU Int. 2009, 103, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Iremashvili, V.; Manoharan, M.; Lokeshwar, S.D.; Rosenberg, D.L.; Pan, D.; Soloway, M.S. Comprehensive analysis of post-diagnostic prostate-specific antigen kinetics as predictor of a prostate cancer progression in active surveillance patients. BJU Int. 2013, 111, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Whitson, J.M.; Porten, S.P.; Hilton, J.F.; Cowan, J.E.; Perez, N.; Cooperberg, M.R.; Greene, K.L.; Meng, M.V.; Simko, J.P.; Shinohara, K.; et al. The relationship between prostate specific antigen change and biopsy progression in patients on active surveillance for prostate cancer. J. Urol. 2011, 185, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Bokhorst, L.P.; Alberts, A.R.; Rannikko, A.; Valdagni, R.; Pickles, T.; Kakehi, Y.; Bangma, C.H.; Roobol, M.J.; PRIAS study group. Compliance rates with the prostate cancer research international active surveillance (PRIAS) protocol and disease reclassification in noncompliers. Eur. Urol. 2015, 68, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Goluboff, E.T.; Heitjan, D.F.; DeVries, G.M.; Katz, A.E.; Benson, M.C.; Olsson, C.A. Pretreatment prostate specific antigen doubling times: Use in patients before radical prostatectomy. J. Urol. 1997, 158, 1876–1878; discussion 1878. [Google Scholar] [CrossRef] [PubMed]
- Egawa, S.; Arai, Y.; Tobisu, K.; Kuwao, S.; Kamoto, T.; Kakehi, Y.; Baba, S. Use of pretreatment prostate-specific antigen doubling time to predict outcome after radical prostatectomy. Prostate Cancer Prostatic Dis. 2000, 3, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, L.F.; Thompson, I.M., Jr.; Boyer, H.D.; Brooks, J.D.; Carroll, P.R.; Cooperberg, M.R.; Dash, A.; Ellis, W.J.; Fazli, L.; Feng, Z.; et al. Outcomes of active surveillance for clinically localized prostate cancer in the prospective, multi-institutional Canary PASS cohort. J. Urol. 2016, 195, 313–320. [Google Scholar] [CrossRef]
- Kirk, P.S.; Zhu, K.; Zheng, Y.; Newcomb, L.F.; Schenk, J.M.; Brooks, J.D.; Carroll, P.R.; Dash, A.; Ellis, W.J.; Filson, C.P.; et al. Treatment in the absence of disease reclassification among men on active surveillance for prostate cancer. Cancer 2022, 128, 269–274. [Google Scholar] [CrossRef]
- Epstein, J.I.; Walsh, P.C.; Carmichael, M.; Brendler, C.B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994, 271, 368–374. [Google Scholar] [CrossRef]
- Cooley, L.F.; Emeka, A.A.; Meyers, T.J.; Cooper, P.R.; Lin, D.W.; Finelli, A.; Eastham, J.A.; Logothetis, C.J.; Marks, L.S.; Vesprini, D.; et al. Factors associated with time to conversion from active surveillance to treatment for prostate cancer in a multi-institutional cohort. J. Urol. 2021, 206, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Savdie, R.; Aning, J.; So, A.I.; Black, P.C.; Gleave, M.E.; Goldenberg, S.L. Identifying intermediate-risk candidates for active surveillance of prostate cancer. Urol. Oncol. 2017, 35, 605.e1–605.e8. [Google Scholar] [CrossRef] [PubMed]
- Osiecki, R.; Kozikowski, M.; Sarecka-Hujar, B.; Pyzlak, M.; Dobruch, J. Prostate cancer morphologies: Cribriform pattern and intraductal carcinoma relations to adverse pathological and clinical outcomes-systematic review and meta-analysis. Cancers 2023, 15, 1372. [Google Scholar] [CrossRef] [PubMed]
- Kweldam, C.F.; Kümmerlin, I.P.; Nieboer, D.; Verhoef, E.I.; Steyerberg, E.W.; Incrocci, L.; Bangma, C.H.; van der Kwast, T.H.; Roobol, M.J.; van Leenders, G.J. Prostate cancer outcomes of men with biopsy Gleason score 6 and 7 without cribriform or intraductal carcinoma. Eur. J. Cancer 2016, 66, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Yang, P.; Wang, C.; Wu, S.; Xiao, Y.; McDougal, W.S.; Young, R.H.; Wu, C.L. Architectural heterogeneity and cribriform growth predict adverse clinical outcome for Gleason grade 4 prostatic adenocarcinoma. Am. J. Surg. Pathol. 2013, 37, 1855–1861. [Google Scholar] [CrossRef]
- Kato, M.; Hirakawa, A.; Sato, H.; Hanazawa, R.; Naito, Y.; Tochigi, K.; Sano, T.; Ishida, S.; Funahashi, Y.; Fujita, T.; et al. Grade group 2 (10% ≥ GP4) patients have very similar malignant potential with grade group 1 patients, given the risk of intraductal carcinoma of the prostate. Int. J. Clin. Oncol. 2021, 26, 764–769. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.E.; Yemoto, C.E. Spread of adenocarcinoma within prostatic ducts and acini. Morphologic and clinical correlations. Am. J. Surg. Pathol. 1996, 20, 802–814. [Google Scholar] [CrossRef]
- Van der Kwast, T.; Al Daoud, N.; Collette, L.; Sykes, J.; Thoms, J.; Milosevic, M.; Bristow, R.G.; Van Tienhoven, G.; Warde, P.; Mirimanoff, R.O.; et al. Biopsy diagnosis of intraductal carcinoma is prognostic in intermediate and high risk prostate cancer patients treated by radiotherapy. Eur. J. Cancer 2012, 48, 1318–1325. [Google Scholar] [CrossRef]
- Bonkhoff, H.; Wheeler, T.M.; van der Kwast, T.H.; Magi-Galluzzi, C.; Montironi, R.; Cohen, R.J. Intraductal carcinoma of the prostate:precursor or aggressive phenotype of prostate cancer? Prostate 2013, 73, 442–448. [Google Scholar] [CrossRef]
- Tohi, Y.; Ishikawa, R.; Kato, T.; Miyakawa, J.; Matsumoto, R.; Mori, K.; Mitsuzuka, K.; Inokuchi, J.; Matsumura, M.; Shiga, K.; et al. Clinical outcomes of intraductal carcinoma or cribriform in radical prostatectomy specimens of men opting for active surveillance: Data from the PRIAS-JAPAN study. Int. J. Clin. Oncol. 2023, 28, 299–305. [Google Scholar] [CrossRef]
- Kweldam, C.F.; Wildhagen, M.F.; Steyerberg, E.W.; Bangma, C.H.; van der Kwast, T.H.; van Leenders, G.J. Cribriform growth is highly predictive for postoperative metastasis and disease-specific death in Gleason score 7 prostate cancer. Mod. Pathol. 2015, 28, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, E.; Verhoef, E.I.; Bangma, C.H.; Rietbergen, J.; Helleman, J.; Roobol, M.J.; van Leenders, G.J.L.H. Large cribriform growth pattern identifies ISUP grade 2 prostate cancer at high risk for recurrence and metastasis. Mod. Pathol. 2019, 32, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Kong, M.X.; Zhou, M.; Rosenkrantz, A.B.; Taneja, S.S.; Melamed, J.; Deng, F.M. Gleason score 3 + 4 = 7 prostate cancer with minimal quantity of Gleason pattern 4 on needle biopsy is associated with low-risk tumor in radical prostatectomy specimen. Am. J. Surg. Pathol. 2014, 38, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.I.; Morgan, T.M.; Spratt, D.E.; Palapattu, G.S.; He, C.; Tomlins, S.A.; Weizer, A.Z.; Feng, F.Y.; Wu, A.; Siddiqui, J.; et al. Prognostic value of percent Gleason Grade 4 at prostate biopsy in predicting prostatectomy pathology and recurrence. J. Urol. 2016, 196, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.D.; Tosoian, J.J.; Carter, H.B.; Epstein, J.I. Adverse pathologic findings for men electing immediate radical prostatectomy: Defining a favorable intermediate-risk group. JAMA Oncol. 2018, 4, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L. Active surveillance in intermediate-risk prostate cancer. BJU Int. 2020, 125, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Press, B.H.; Jones, T.; Olawoyin, O.; Lokeshwar, S.D.; Rahman, S.N.; Khajir, G.; Lin, D.W.; Cooperberg, M.R.; Loeb, S.; Darst, B.F.; et al. Association between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade during Active Surveillance for Prostate Cancer. Eur. Urol. Open Sci. 2022, 37, 113–119. [Google Scholar] [CrossRef]
- Gandellini, P.; Ciniselli, C.M.; Rancati, T.; Marenghi, C.; Doldi, V.; El Bezawy, R.; Lecchi, M.; Claps, M.; Catanzaro, M.; Avuzzi, B.; et al. Prediction of grade reclassification of prostate cancer patients on active surveillance through the combination of a three-miRNA signature and selected clinical variables. Cancers 2021, 13, 2433. [Google Scholar] [CrossRef]
- Lonergan, P.E.; Washington, S.L., 3rd; Cowan, J.E.; Zhao, S.; Nguyen, H.G.; Shinohara, K.; Cooperberg, M.R.; Carroll, P.R. Risk factors for biopsy reclassification over time in men on active surveillance for early stage prostate cancer. J. Urol. 2020, 204, 1216–1221. [Google Scholar] [CrossRef]
- Newcomb, L.F.; Zheng, Y.; Faino, A.V.; Bianchi-Frias, D.; Cooperberg, M.R.; Brown, M.D.; Brooks, J.D.; Dash, A.; Fabrizio, M.D.; Gleave, M.E.; et al. Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis. 2019, 22, 438–445. [Google Scholar] [CrossRef]
- Carter, H.B.; Helfand, B.; Mamawala, M.; Wu, Y.; Landis, P.; Yu, H.; Wiley, K.; Na, R.; Shi, Z.; Petkewicz, J.; et al. Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer. Eur. Urol. 2019, 75, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Hirama, H.; Mitsuzuka, K.; Maruyama, S.; Sasaki, H.; Saito, T.; Matsumoto, R.; Sakamoto, S.; Sakai, Y.; Fukuhara, H.; et al. Reclassification prediction of first-year protocol biopsy on active surveillance of prostate cancer by p2PSA-related parameters: From PRIAS-JAPAN. Prostate Cancer Prostatic Dis. 2022, 25, 666–671. [Google Scholar] [CrossRef]
- Huang, M.M.; Macura, K.J.; Landis, P.; Epstein, J.I.; Gawande, R.; Carter, H.B.; Mamawala, M. Evaluation of apparent diffusion coefficient as a predictor of grade reclassification in men on active surveillance for prostate cancer. Urology 2020, 138, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Khondakar, N.R.; Daneshvar, M.A.; O’Connor, L.P.; Gomella, P.T.; Mehralivand, S.; Yerram, N.K.; Egan, J.; Gurram, S.; Rompré-Brodeur, A.; et al. The risk of prostate cancer progression in active surveillance patients with bilateral disease detected by combined magnetic resonance imaging-fusion and systematic biopsy. J. Urol. 2021, 206, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Luiting, H.B.; Remmers, S.; Valdagni, R.; Boevé, E.R.; Staerman, F.; Rueb, J.; Somford, D.M.; Pickles, T.; Rannikko, A.; Roobol, M.J. PRIAS consortium. What is the effect of MRI with targeted biopsies on the rate of patients discontinuing active surveillance? A reflection of the use of MRI in the PRIAS study. Prostate Cancer Prostatic Dis. 2021, 24, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Schwen, Z.R.; Mamawala, M.; Tosoian, J.J.; Druskin, S.C.; Ross, A.E.; Sokoll, L.J.; Epstein, J.I.; Carter, H.B.; Gorin, M.A.; Pavlovich, C.P. Prostate Health Index and multiparametric magnetic resonance imaging to predict prostate cancer grade reclassification in active surveillance. BJU Int. 2020, 126, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, G.T.; Vertosick, E.A.; Benfante, N.; Sjoberg, D.D.; Fainberg, J.; Lee, T.; Eastham, J.; Laudone, V.; Scardino, P.; Touijer, K.; et al. Role of Changes in Magnetic Resonance Imaging or Clinical Stage in Evaluation of Disease Progression for Men with Prostate Cancer on Active Surveillance. Eur. Urol. 2020, 77, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Samaratunga, H.; Egevad, L.; Yaxley, J.W.; Johannsen, S.; Le Fevre, I.K.; Perry-Keene, J.L.; Gianduzzo, T.; Chabert, C.; Coughlin, G.; Parkinson, R.; et al. Clinicopathologic Significance of Anterior Prostate Cancer: Comparison with Posterior Prostate Cancer in the Era of Multiparametric Magnetic Resonance Imaging. Am. J. Surg. Pathol. 2023, 47, 701–708. [Google Scholar] [CrossRef]
- Saout, K.; Zambon, A.; Nguyen, T.A.; Lucas, C.; Payrard-Starck, C.; Segalen, T.; Tissot, V.; Doucet, L.; Marolleau, J.; Deruelle, C.; et al. Impact of Multiparametric MRI and PSA Density on the Initial Indication or the Maintaining in Active Surveillance During Follow-Up in low-Risk Prostate Cancer. Clin. Genitourin. Cancer 2022, 20, e244–e252. [Google Scholar] [CrossRef]
- Dai, C.; Ganesan, V.; Nyame, Y.A.; Almassi, N.; Greene, D.J.; Hettel, D.; Magi-Galluzzi, C.; Gong, M.; Jones, J.S.; Stephenson, A.J.; et al. Older age at diagnosis and initial disease volume predict grade reclassification risk on confirmatory biopsy in patients considered for active surveillance. Urology 2019, 130, 106–112. [Google Scholar] [CrossRef]
- Druskin, S.C.; Mamawala, M.; Tosoian, J.J.; Epstein, J.I.; Pavlovich, C.P.; Carter, H.B.; Trock, B.J. Older age predicts biopsy and radical prostatectomy grade reclassification to aggressive prostate cancer in men on active surveillance. J. Urol. 2019, 201, 98–104. [Google Scholar] [CrossRef] [PubMed]
- De la Calle, C.M.; Mamawala, M.M.; Landis, P.; Macura, K.J.; Trock, B.J.; Epstein, J.I.; Pavlovich, C.P. Clinical significance of perineural invasion in men with grade Group 1 prostate cancer on active surveillance. J. Urol. 2023, 209, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Marra, G.; Martini, A.; Kasivisvanathan, V.; Grummet, J.; Harkin, T.; Ploussard, G.; Olivier, J.; Chiu, P.K.; Valerio, M.; et al. Is There an Impact of Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsy on the Risk of Upgrading in Final Pathology in Prostate Cancer Patients Undergoing Radical Prostatectomy? A European Association of Urology-Young Academic Urologists Prostate Cancer Working Group Multi-institutional Study. Eur. Urol. Focus 2023, 9, 621–628. [Google Scholar] [CrossRef]
- Pepe, P.; Cimino, S.; Garufi, A.; Priolo, G.; Russo, G.I.; Giardina, R.; Reale, G.; Pennisi, M.; Morgia, G. Confirmatory biopsy of men under active surveillance: Extended versus saturation versus multiparametric magnetic resonance imaging/transrectal ultrasound fusion prostate biopsy. Scand. J. Urol. 2017, 51, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.M.; So, W.Z.; Lee, H.J.; Lee, A.; Yap, D.W.T.; Takwoingi, Y.; Tay, K.J.; Tuan, J.; Thang, S.P.; Lam, W.; et al. Head-to-head Comparison of the Diagnostic Accuracy of Prostate-specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate- to High-risk Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2023, 84, 36–48. [Google Scholar] [CrossRef]
- Pepe, P.; Pepe, L.; Tamburo, M.; Marletta, G.; Pennisi, M.; Fraggetta, F. Targeted prostate biopsy: 68Ga-PSMA PET/CT vs. mpMRI in the diagnosis of prostate cancer. Arch. Ital. Urol. Androl. 2022, 94, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Sundi, D.; Trock, B.J.; Landis, P.; Epstein, J.I.; Schaeffer, E.M.; Carter, H.B.; Mamawala, M. Pathologic outcomes in favorable-risk prostate cancer: Comparative analysis of men electing active surveillance and immediate surgery. Eur. Urol. 2016, 69, 576–581. [Google Scholar] [CrossRef]
- Björnebo, L.; Olsson, H.; Nordström, T.; Jäderling, F.; Grönberg, H.; Eklund, M.; Lantz, A. Predictors of adverse pathology on radical prostatectomy specimen in men initially enrolled in active surveillance for low-risk prostate cancer. World J. Urol. 2021, 39, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- de la Calle, C.M.; Shee, K.; Chu, C.E.; Cowan, J.E.; Nguyen, H.G.; Carroll, P.R. Association of age with risk of adverse pathological findings in men undergoing delayed radical prostatectomy following active surveillance. Urology 2021, 155, 91–95. [Google Scholar] [CrossRef]
- Marenghi, C.; Qiu, Z.; Helleman, J.; Nieboer, D.; Rubio-Briones, J.; Carroll, P.R.; Lee, L.S.; Valdagni, R.; Boutros, P.C.; Nicolai, N.; et al. Adverse Pathological Findings at radical Prostatectomy following Active Surveillance: Results from the Movember GAP3 Cohort. Cancers 2022, 14, 3558. [Google Scholar] [CrossRef]
- Tohi, Y.; Ishikawa, R.; Kato, T.; Miyakawa, J.; Matsumoto, R.; Mori, K.; Mitsuzuka, K.; Inokuch, J.; Matsumura, M.; Shiga, K.; et al. Increasing age predicts adverse pathology including intraductal carcinoma of the prostate and cribriform patterns in deferred radical prostatectomy after upfront active surveillance for Gleason grade group 1 prostate cancer: Analysis of prospective observational study cohort. Jpn. J. Clin. Oncol. 2023, hyad088. [Google Scholar] [CrossRef]
- De Vos, I.I.; Luiting, H.B.; Roobol, M.J. Active surveillance for prostate cancer: Past, current, and future trends. J. Pers. Med. 2023, 13, 629. [Google Scholar] [CrossRef]
- Moore, C.M.; King, L.E.; Withington, J.; Amin, M.B.; Andrews, M.; Briers, E.; Chen, R.C.; Chinegwundoh, F.I.; Cooperberg, M.R.; Crowe, J.; et al. Best current practice and research priorities in active surveillance for prostate cancer-A report of a Movember international consensus meeting. Eur. Urol. Oncol. 2023, 6, 160–182. [Google Scholar] [CrossRef] [PubMed]
- Light, A.; Lophatananon, A.; Keates, A.; Thankappannair, V.; Barrett, T.; Dominguez-Escrig, J.; Rubio-Briones, J.; Benheddi, T.; Olivier, J.; Villers, A.; et al. Development and external validation of the STRATified CANcer surveillance (STRATCANS) multivariable model for predicting progression in men with newly diagnosed prostate cancer starting active surveillance. J. Clin. Med. 2022, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Bjartell, A.; Steyerberg, E.W.; Rizopoulos, D.; Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3) consortium. Personalised biopsy schedules based on risk of Gleason upgrading for patients with low-risk prostate cancer on active surveillance. BJU Int. 2021, 127, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Zheng, Y.; Faino, A.V.; Newcomb, L.F.; Zhu, K.; Cowan, J.E.; Brooks, J.D.; Dash, A.; Gleave, M.E.; Martin, F.; et al. Tailoring intensity of active surveillance for low-risk prostate cancer based on individualized prediction of risk stability. JAMA Oncol. 2020, 6, e203187. [Google Scholar] [CrossRef] [PubMed]
- Drost, F.H.; Nieboer, D.; Morgan, T.M.; Carroll, P.R.; Roobol, M.J. Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP) Consortium. Predicting biopsy outcomes during active surveillance for prostate cancer: External validation of the canary prostate active surveillance study risk calculators in five large active surveillance cohorts. Eur. Urol. 2019, 76, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Coley, R.Y.; Fisher, A.J.; Mamawala, M.; Carter, H.B.; Pienta, K.J.; Zeger, S.L. A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer. Biometrics 2017, 73, 625–634. [Google Scholar] [CrossRef]
- Seibert, T.M.; Garraway, I.P.; Plym, A.; Mahal, B.A.; Giri, V.; Jacobs, M.F.; Cheng, H.H.; Loeb, S.; Helfand, B.T.; Eeles, R.A.; et al. Genetic risk prediction for prostate cancer: Implications for early detection and prevention. Eur. Urol. 2023, 83, 241–248. [Google Scholar] [CrossRef]
- Tohi, Y.; Kato, T.; Nakamura, M.; Matsumoto, R.; Sasaki, H.; Mitsuzuka, K.; Inokuchi, J.; Hashine, K.; Yokomizo, A.; Naito, H.; et al. Deferred radical prostatectomy in patients who initially elected for active surveillance: A multi-institutional, prospective, observational cohort of the PRIAS-JAPAN study. Int. J. Clin. Oncol. 2022, 27, 194–201. [Google Scholar] [CrossRef]
- Paudel, R.; Madan, R.; Qi, J.; Ferrante, S.; Cher, M.L.; Lane, B.R.; George, A.K.; Semerjian, A.; Ginsburg, K.B. The use and short-term outcomes of active surveillance in men with National Comprehensive Cancer Network favorable intermediate-risk prostate cancer: The initial Michigan urological surgery improvement collaborative experience. J. Urol. 2023, 209, 170–179. [Google Scholar] [CrossRef] [PubMed]
Guideline | Inclusion Criteria | Strength of Recommendation | ||||
---|---|---|---|---|---|---|
Clinical Stage | Gleason Score | Cancer Volume | PSA (ng/mL) | PSA Density (ng/mL/cm3) | ||
AUA [8] | ≦T2 | ≦6 | - | <20 | - | strong |
≦T2 | 3 + 4 | low % of pattern 4; <50% of total cores positive | <10 | low | strong | |
EAU [9] | ≦T2a | ≦6 | - | <10 | - | strong |
≦T2a | 3 + 4 | <10% pattern 4; ≤3 cores positive; and ≤50% core involvement per core | <10 | - | weak | |
NCCN [10] | ≦T2a | ≦6 | - | <20 | ≦0.15 | - |
≦T2a | 3 + 4 | low % of pattern 4; <50% of total cores positive | <10 | low | - | |
JUA [17] | ≦T2 | ≦6 | ≦2 | <10 | <0.2 | grade B |
≦T2 | 3 + 4 | ≦2 | <10 | <0.2 | weak |
Guideline | Follow-Up Schedules | |||
---|---|---|---|---|
PSA | DRE | MRI | Repeat Biopsy | |
AUA [8] | not more frequently than every 6 months | every 1–2 years | increase in serial PSA, new DRE abnormalities, or clinical progression | increase in serial PSA, new DRE abnormalities, or clinical progression |
EAU [9] | every 6 months | every 12 months | - | every 3 years for 10 years |
NCCN [10] | every 6 months | every 12 months | every 12 months; | every year |
JUA [17] | for first 2 years: every 3 months 3rd year onwards: every 6 months | every 6 months | additional MRI if not performed at diagnosis *, if PSA DT <10 years **, or prior to repeat biopsy ** | at 1 year after diagnosis, every 3 years thereafter, and every 5 years after 10 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tohi, Y.; Kato, T.; Sugimoto, M. Aggressive Prostate Cancer in Patients Treated with Active Surveillance. Cancers 2023, 15, 4270. https://doi.org/10.3390/cancers15174270
Tohi Y, Kato T, Sugimoto M. Aggressive Prostate Cancer in Patients Treated with Active Surveillance. Cancers. 2023; 15(17):4270. https://doi.org/10.3390/cancers15174270
Chicago/Turabian StyleTohi, Yoichiro, Takuma Kato, and Mikio Sugimoto. 2023. "Aggressive Prostate Cancer in Patients Treated with Active Surveillance" Cancers 15, no. 17: 4270. https://doi.org/10.3390/cancers15174270
APA StyleTohi, Y., Kato, T., & Sugimoto, M. (2023). Aggressive Prostate Cancer in Patients Treated with Active Surveillance. Cancers, 15(17), 4270. https://doi.org/10.3390/cancers15174270