Echocardiography-Assessed Changes of Left and Right Ventricular Cardiac Function May Correlate with Progression of Advanced Lung Cancer—A Generating Hypothesis Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
- Platinum-based doublet chemotherapy: 54 patients (72%);
- Cytotoxic monotherapy: 11 patients (14.67%);
- Pembrolizumab monotherapy: 7 patients (9.33%);
- Targeted therapy: 3 patients (4%).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Laversanne, M.; Brewster, D.H.; Gombe Mbalawa, C.; Kohler, B.; Piñeros, M.; Steliarova-Foucher, E.; Swaminathan, R.; Antoni, S.; et al. Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration. Int. J. Cancer 2015, 137, 2060–2071. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.T.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; et al. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Hodi, F.S.; Ballinger, M.; Lyons, B.; Soria, J.C.; Nishino, M.; Tabernero, J.; Powles, T.; Smith, D.; Hoos, A.; McKenna, C.; et al. Immune-Modified Response Evaluation Criteria in Solid Tumors (imRECIST): Refining Guidelines to Assess the Clinical Benefit of Cancer Immunotherapy. J. Clin. Oncol. 2018, 36, 850–858. [Google Scholar] [CrossRef]
- Mędrek, S.; Szmit, S. Baseline Electrocardiographic and Echocardiographic Assessment May Help Predict Survival in Lung Cancer Patients—A Prospective Cardio-Oncology Study. Cancers 2022, 14, 2010. [Google Scholar] [CrossRef]
- Kocher, F.; Fiegl, M.; Mian, M.; Hilbe, W. Cardiovascular Comorbidities and Events in NSCLC: Often Underestimated but Worth Considering. Clin. Lung Cancer 2015, 16, 305–312. [Google Scholar] [CrossRef]
- Krzakowski, M.; Jassem, J.; Antczak, A.; Chorostowska-Wynimko, J.; Dziadziuszko, R.; Głogowski, M.; Grodzki, T.; Kowalski, D.M.; Olszewski, W.; Orlowski, T.; et al. Cancer of the lung, pleura and mediastinum. Oncol. Clin. Pract. 2019, 15, 20–50. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Lipiec, P.; Bąk, J.; Braksator, W.; Fijałkowski, M.; Gackowski, A.; Gąsior, Z.; Kasprzak, J.D.; Klisiewicz, A.; Kowalski, M.; Kukulski, T.; et al. Transthoracic echocardiography in adults—Guidelines of the Working Group on Echocardiography of the Polish Cardiac Society. Kardiol. Pol. 2018, 76, 488–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 2022, 43, 280–299. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Paz-Ares, L.; Bidoli, P.; Cappuzzo, F.; Dakhil, S.; Moro-Sibilot, D.; Borghaei, H.; Johnson, M.; Jotte, R.; Pennell, N.A.; et al. Outcomes in patients with aggressive or refractory disease from REVEL: A randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer 2017, 112, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Novello, S.; Giannarelli, D.; Bria, E.; Galetta, D.; Gelibter, A.; Reale, M.L.; Carnio, S.; Vita, E.; Stefani, A.; et al. Early Progression in Non-Small Cell Lung Cancer (NSCLC) with High PD-L1 Treated with Pembrolizumab in First-Line Setting: A Prognostic Scoring System Based on Clinical Features. Cancers 2021, 13, 2935. [Google Scholar] [CrossRef] [PubMed]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Gandara, D.; Reck, M.; Moro-Sibilot, D.; Mazieres, J.; Gadgeel, S.; Morris, S.; Cardona, A.; Mendus, D.; Ballinger, M.; Rittmeyer, A.; et al. Fast progression in non-small cell lung cancer: Results from the randomized phase III OAK study evaluating second-line atezolizumab versus docetaxel. J. Immunother. Cancer 2021, 9, e001882. [Google Scholar] [CrossRef]
- Zou, B.; Lee, V.H.F.; Yan, H. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis. BMC Bioinform. 2018, 19, 88. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Munoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Čelutkienė, J.; Pudil, R.; López-Fernández, T.; Grapsa, J.; Nihoyannopoulos, P.; Bergler-Klein, J.; Cohen-Solal, A.; Farmakis, D.; Tocchetti, C.G.; von Haehling, S.; et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: A position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020, 22, 1504–1524. [Google Scholar]
- Pudil, R.; Mueller, C.; Čelutkienė, J.; Henriksen, P.A.; Lenihan, D.; Dent, S.; Barac, A.; Stanway, S.; Moslehi, J.; Suter, T.M.; et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1966–1983. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska-Szmit, M.; Krzakowski, M.; Kowalski, D.M.; Szmit, S. Cardiovascular Complications of Systemic Therapy in Non-Small-Cell Lung Cancer. J. Clin. Med. 2020, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Anker, M.S.; Sanz, A.P.; Zamorano, J.L.; Mehra, M.R.; Butler, J.; Riess, H.; Coats, A.J.S.; Anker, S.D. Advanced cancer is also a heart failure syndrome: A hypothesis. Eur. J. Heart Fail. 2021, 23, 140–144. [Google Scholar] [CrossRef]
- Semeraro, G.C.; Cipolla, C.M.; Cardinale, D.M. Role of Cardiac Biomarkers in Cancer Patients. Cancers 2021, 13, 5426. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Li, S.; Liu, Y.; Cui, Y.; Deng, X. Advances in Biomarkers for Detecting Early Cancer Treatment-Related Cardiac Dysfunction. Front. Cardiovasc. Med. 2021, 8, 753313. [Google Scholar] [CrossRef]
- Von Haehling, S.; Lainscak, M.; Kung, T.; Cramer, L.; Fülster, S.; Pelzer, U.; Hildebrandt, B.; Sandek, A.; Schefold, J.C.; Rauchhaus, M.; et al. Non-invasive assessment of cardiac hemodynamics in patients with advanced cancer and with chronic heart failure: A pilot feasibility study. Arch. Med. Sci. 2013, 9, 261–267. [Google Scholar] [CrossRef]
- Libby, P.; Kobold, S. Inflammation: A common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc. Res. 2019, 115, 824–829. [Google Scholar] [CrossRef]
- Tocchetti, C.G.; Galdiero, M.R.; Varricchi, G. Cardiac Toxicity in Patients Treated with Immune Checkpoint Inhibitors: It Is Now Time for Cardio-Immuno-Oncology. J. Am. Coll. Cardiol. 2018, 71, 1765–1767. [Google Scholar] [CrossRef]
- Springer, J.; Tschirner, A.; Haghikia, A.; Von Haehling, S.; Lal, H.; Grzesiak, A.; Kaschina, E.; Palus, S.; Pötsch, M.; Von Websky, K.; et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur. Heart J. 2014, 35, 932–941. [Google Scholar] [CrossRef]
- Pavo, N.; Raderer, M.; Hülsmann, M.; Neuhold, S.; Adlbrecht, C.; Strunk, G.; Goliasch, G.; Gisslinger, H.; Steger, G.G.; Hejna, M.; et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart 2015, 101, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- López-Sendón, J.; Álvarez-Ortega, C.; Zamora Auñon, P.; Buño Soto, A.; Lyon, A.R.; Farmakis, D.; Cardinale, D.; Canales Albendea, M.; Feliu Batlle, J.; Rodríguez Rodríguez, I.; et al. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. Eur. Heart J. 2020, 41, 1720–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaborowska-Szmit, M.; Kowalski, D.M.; Piórek, A.; Krzakowski, M.; Szmit, S. A decrease in D-dimer concentration and an occurrence of skin rash as iatrogenic events and complementary predictors of survival in lung cancer patients treated with EGFR tyrosine kinase inhibitors. Pharmacol. Rep. 2016, 68, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, W.; Szmit, S.; Sobociński, M.; Machaczka, M.; Drozd-Sokołowska, J.; Joks, M.; Dzietczenia, J.; Wróbel, T.; Kumiega, B.; Zaucha, J.M.; et al. Premature cardiovascular mortality in lymphoma patients treated with (R)-CHOP regimen—A national multicenter study. Int. J. Cardiol. 2013, 168, 5212–5217. [Google Scholar] [CrossRef] [PubMed]
- Kamada, P.; Dudek, A.Z. Sorafenib therapy for metastatic renal carcinoma in patients with low cardiac ejection fraction: Report of two cases and literature review. Cancer Investig. 2010, 28, 501–504. [Google Scholar] [CrossRef]
- De Boer, R.A.; Aboumsallem, J.P.; Bracun, V.; Leedy, D.; Cheng, R.; Patel, S.; Rayan, D.; Zaharova, S.; Rymer, J.; Kwan, J.M.; et al. A new classification of cardio-oncology syndromes. Cardiooncology 2021, 7, 24. [Google Scholar] [CrossRef]
- Anker, M.S.; von Haehling, S.; Landmesser, U.; Coats, A.J.S.; Anker, S.D. Cancer and heart failure-more than meets the eye: Common risk factors and co-morbidities. Eur. J. Heart Fail. 2018, 20, 1382–1384. [Google Scholar] [CrossRef]
- Rini, B.I.; Moslehi, J.J.; Bonaca, M.; Schmidinger, M.; Albiges, L.; Choueiri, T.K.; Motzer, R.J.; Atkins, M.B.; Haanen, J.; Mariani, M.; et al. Prospective Cardiovascular Surveillance of Immune Checkpoint Inhibitor-Based Combination Therapy in Patients with Advanced Renal Cell Cancer: Data from the Phase III JAVELIN Renal 101 Trial. J. Clin. Oncol. 2022, 40, 1929–1938. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 23, ehac244. [Google Scholar] [CrossRef]
- Michel, L.; Mincu, R.I.; Mahabadi, A.A.; Settelmeier, S.; Al-Rashid, F.; Rassaf, T.; Totzeck, M. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: A meta-analysis. Eur. J. Heart Fail. 2020, 22, 350–361. [Google Scholar] [CrossRef] [Green Version]
Parameters | Characteristic by Numbers |
---|---|
Sex | |
women | 21 (28.0%) |
men | 54 (72.0%) |
Age | Mean ± SD: 67.31 ± 7.94 |
BMI (kg/m2) | Mean ± SD: 25.46 ± 4.36 |
Never smokers | 12 (16.0%) |
Performance status (ECOG, Eastern Cooperative Oncology Group) | |
0 | 23 (30.67%) |
1 | 42 (56.0%) |
2 | 10 (13.33%) |
Comorbidities | |
Arterial hypertension | 40 (53.33%) |
Chronic obstructive pulmonary disease | 22 (29.33%) |
Chronic coronary syndrome | 15 (20.0%) |
Diabetes mellitus | 11 (14.67%) |
Venous thromboembolic disease | 8 (10.67%) |
Hypothyrosis | 7 (9.33%) |
Chronic renal disease | 2 (2.67%) |
Possible Predictors | Univariable Analysis | ||
---|---|---|---|
OR | 95% CI | p-Value | |
New pleural effusion | 13.38 | 1.24–144.81 | 0.03 |
Deterioration of ECOG | 0.33 | 0.04–2.87 | 0.30 |
New drug needed for pain control | 0.56 | 0.11–2.88 | 0.48 |
New anemia | 2.51 | 0.80–7.87 | 0.11 |
New neutropenia | 0.76 | 0.23–2.54 | 0.66 |
New hemodynamic insignificant pericardial effusion | 2.13 | 0.54–8.43 | 0.28 |
Increase in heart rate (HR) | 1.42 | 0.46–4.41 | 0.53 |
Echocardiography Parameters | Lower and Upper Quartiles as Criteria | Univariable Analysis | |||
---|---|---|---|---|---|
OR | 95% CI | p-Value | |||
Left ventricular (LV) function | EF (%) | ∆ < −5 | 5.78 | 1.60–20.90 | 0.007 |
∆ > 0 | - | - | - | ||
LV GLS (%) | ∆ < −2 | 0.74 | 0.18–3.05 | 0.67 | |
∆ > 3 | 3.81 | 1.13–12.9 | 0.03 | ||
E (cm/s) | ∆ < −6.1 | 0.68 | 0.17–2.77 | 0.58 | |
∆ > 14.7 | 2.35 | 0.70–7.92 | 0.16 | ||
E′ (cm/s) | ∆ < −2.3 | 2.53 | 0.69–9.22 | 0.15 | |
∆ > 1.82 | 0.38 | 0.08–1.93 | 0.24 | ||
E/E′ ratio | ∆ < −1.91 | 0.68 | 0.17–2.77 | 0.58 | |
∆ > 3.25 | 3.39 | 1.02–11.33 | 0.04 | ||
Right ventricular (RV) function | TAPSE (mm) | ∆ < −4 | 1.98 | 0.56–7.03 | 0.28 |
∆ > 2 | 0.68 | 0.17–2.77 | 0.58 | ||
RVSP (mmHg) | ∆ < −3 | 1.18 | 0.32–4.37 | 0.8 | |
∆ > 13 | 1.18 | 0.32–4.37 | 0.8 | ||
RV GLS (%) | ∆ < −5 | 2.94 | 0.85–10.16 | 0.08 | |
∆ > 7 | 0.68 | 0.17–2.77 | 0.58 | ||
RV free wall strain | ∆ < −4 | 4.9 | 1.48–16.48 | 0.009 | |
∆> 7 | 0.68 | 0.17–2.77 | 0.58 | ||
RV end-diastolic area (cm2) | ∆ < −0.8 | 0.74 | 0.18–3.05 | 0.67 | |
∆ > 3.7 | 2.62 | 0.77–8.92 | 0.12 | ||
RV FAC (%) | ∆ < −2.2 | 1.61 | 0.46–5.58 | 0.45 | |
∆ > 4.1 | 4.9 | 1.46–16.48 | 0.009 | ||
RV S′ (cm/s) | ∆ < −2.2 | 1.61 | 0.46–5.58 | 0.45 | |
∆ > 0 | 1.01 | 0.25–4.06 | 0.99 |
CTRCD (n = 24) | No CTRCD (n = 51) | p-Value | |
---|---|---|---|
Progression of lung cancer disease according to computed tomography (n = 16) | 10 (41.67%) | 6 (11.76%) | 0.003 |
New pleural effusion (n = 4) | 3 (12.5%) | 1 (1.96%) | 0.18 |
Deterioration of performance status (n = 11) | 3 (12.5%) | 8 (15.69%) | 0.99 |
New drug needed for pain control (n = 14) | 2 (8.33%) | 12 (23.53%) | 0.21 |
New anemia (n = 29) | 8 (33.33%) | 21 (41.18%) | 0.52 |
New neutropenia (n = 27) | 4 (16.67%) | 23 (45.10%) | 0.03 |
New hemodynamic insignificant pericardial effusion (n = 12) | 6 (25%) | 6 (11.76%) | 0.14 |
Increase in heart rate (n = 37) | 14 (58.33%) | 23 (45.10%) | 0.28 |
E/E′ ratio ∆ > 3.25 (n = 18) | 8 (33.33%) | 10 (19.61%) | 0.19 |
RV free wall strain ∆ < −4 (n = 18) | 5 (20.83%) | 13 (25.49%) | 0.88 |
RV FAC ∆ > 4.1 (n = 18) | 7 (29.17%) | 11 (21.57%) | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mędrek, S.; Szmit, S. Echocardiography-Assessed Changes of Left and Right Ventricular Cardiac Function May Correlate with Progression of Advanced Lung Cancer—A Generating Hypothesis Study. Cancers 2022, 14, 4770. https://doi.org/10.3390/cancers14194770
Mędrek S, Szmit S. Echocardiography-Assessed Changes of Left and Right Ventricular Cardiac Function May Correlate with Progression of Advanced Lung Cancer—A Generating Hypothesis Study. Cancers. 2022; 14(19):4770. https://doi.org/10.3390/cancers14194770
Chicago/Turabian StyleMędrek, Sabina, and Sebastian Szmit. 2022. "Echocardiography-Assessed Changes of Left and Right Ventricular Cardiac Function May Correlate with Progression of Advanced Lung Cancer—A Generating Hypothesis Study" Cancers 14, no. 19: 4770. https://doi.org/10.3390/cancers14194770
APA StyleMędrek, S., & Szmit, S. (2022). Echocardiography-Assessed Changes of Left and Right Ventricular Cardiac Function May Correlate with Progression of Advanced Lung Cancer—A Generating Hypothesis Study. Cancers, 14(19), 4770. https://doi.org/10.3390/cancers14194770