Next Article in Journal
Microbeads for Sampling and Mixing in a Complex Sample
Next Article in Special Issue
Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting
Previous Article in Journal
Active Continuous-Flow Micromixer Using an External Braille Pin Actuator Array
Open AccessArticle

Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes

Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA
Protochips, Inc., 616 Hutton Street, Raleigh, NC 27606, USA
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Micromachines 2013, 4(1), 90-102;
Received: 5 November 2012 / Revised: 18 December 2012 / Accepted: 5 March 2013 / Published: 14 March 2013
(This article belongs to the Special Issue Micromachined Tools for Nanoscale Science and Technology)
Here we present new applications for silicon nitride (SiN) membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM) imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time. View Full-Text
Keywords: silicon nitride; microchips; rotavirus; RNA; electron microscopy silicon nitride; microchips; rotavirus; RNA; electron microscopy
Show Figures

Graphical abstract

MDPI and ACS Style

Gilmore, B.L.; Tanner, J.R.; McKell, A.O.; Boudreaux, C.E.; Dukes, M.J.; McDonald, S.M.; Kelly, D.F. Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes. Micromachines 2013, 4, 90-102.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop