Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning
Abstract
:1. Introduction
2. DSA Process Flow Introduction
2.1. Graphoepitaxy Method
2.2. Chemoepitaxy Method
2.2.1. LiNe Flow
2.2.2. SMART Flow
2.2.3. Underlayer Surface Treatment Flow
3. Materials for DSA Lithography
3.1. Underlayer (UL) and Neutral Layer (NL) Materials
3.1.1. Underlayers (ULs)
Polymeric ULs
Inorganic ULs
3.1.2. Neutral Layers (NLs)
3.2. Brush and Pinning Materials
3.3. BCP Material
4. Pattern Transfer Techniques
4.1. Dry Etching
4.2. Wet Etching
5. DSA Simulation
5.1. Core of DSA Simulation Technologies
5.1.1. SCFT: The Precise Predictor of BCP Phase Behavior
5.1.2. MD: The Dynamic Observer of the Microscopic World
5.1.3. DFT: Quantum Insights for Polymer Design
5.2. Existing Challenges and Countermeasures
5.2.1. Strategies to Overcome Computational Challenges in DSA Simulations
5.2.2. Integrated Simulation of Multiple Domains
6. DSA Industrial Application
6.1. Pattern Rectification (Roughness Improvement)
6.2. Pitch Multiplication for Hexagonal Hole
6.3. LCDU and PPE Improvement
7. DSA Challenges
7.1. BCP Material Complexity
7.2. DSA Defect Formation and Control
7.3. DSA Metrology Challenges and Solutions
8. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Schoot, J.; van Setten, E.; Kneer, B.; Kürz, P.; Kaiser, W.; Migura, S. EUV lithography: NXE scanner performance overview. Proc. SPIE 2017, 10143, 101430D. [Google Scholar]
- Levinson, H.J. Principles of Lithography, 4th ed.; SPIE Press: Bellingham, WA, USA, 2021. [Google Scholar]
- Mack, C.A. Line edge roughness: Measurement and modeling. J. Vac. Sci. Technol. B 2018, 36, 031601. [Google Scholar]
- Segalman, R.A. Directed self-assembly of block copolymers. Mater. Sci. Eng. R 2005, 48, 1–44. [Google Scholar]
- International Roadmap for Devices and Systems (IRDS). IEEE International Roadmap for Devices and Systems (IRDS™) 2017 Edition. 2017. Available online: https://irds.ieee.org/roadmap-2017 (accessed on 24 April 2025).
- Ruiz, R.; Kang, H.; Detcheverry, F.A.; Dobisz, E.; Kercher, D.S.; Albrecht, T.R.; de Pablo, J.J.; Nealey, P.F. Density Multiplication and Improved Lithography via Directed Block Copolymer Assembly. Science 2008, 321, 936–939. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Stafström, S.; Hultman, L. Nano-wire formation by self-assembly of silicon–metal cage-like molecules. Chem. Phys. Lett. 2008, 458, 170–174. [Google Scholar] [CrossRef]
- Guerrero, D.J. A lithographer’s Guide to Patterning CMOS Devices with Directed Self-Assembly; SPIE Press: Bellingham, WA, USA, 2020; Volume SL59, pp. 1–26. [Google Scholar]
- Ji, S.; Liu, C.-C.; Liu, G.; Nealey, P.F. Chemical epitaxy: Directed self-assembly of block copolymers via substrate surface chemistry engineering. ACS Nano 2016, 10, 11094–11104. [Google Scholar]
- Stoykovich, M.P.; Nealey, P.F. Block Copolymers and Conventional Lithography. Mater. Today 2006, 9, 20–29. [Google Scholar] [CrossRef]
- Kim, S.O.; Solak, H.H.; Stoykovich, M.P.; Ferrier, N.J.; de Pablo, J.J.; Nealey, P.F. Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates. Nature 2003, 424, 411–414. [Google Scholar] [CrossRef]
- Bencher, C.; Yi, H.; Zhou, H.; Dai, H.; Smith, J.; Mignot, Y. Directed Self-Assembly Defectivity Assessment. Proc. SPIE 2011, 7970, 797009. [Google Scholar]
- Liu, C.-C.; Han, E.; Onses, M.S.; Thode, C.J.; Nealey, P.F. Three-Dimensional Nanofabrication by Block Copolymer Self-Assembly. Adv. Mater. 2013, 25, 4538–4543. [Google Scholar]
- Filho, M.A.M.; Farmer, W.; Hsiao, C.L.; Santos, R.B.D.; Hultman, L.; Birch, J.; Ankit, K.; Gueorguiev, G.K. Density functional theory-fed phase field model for semiconductor nanostructures: The case of self-induced core–shell InAlN nanorods. Cryst. Growth Des. 2024, 24, 4717–4727. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.M.; Gueorguiev, G.K.; Martins, J.L. First-principles study of the possibility of condensed phases of endohedral silicon cage clusters. Phys. Rev. B 2002, 66, 033401. [Google Scholar] [CrossRef]
- Majewski, P.W.; Yager, K.G. Defect Mitigation in Directed Self-Assembly. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 241–264. [Google Scholar]
- Doerk, G.S.; Yager, K.G. Beyond Native Block Copolymer Morphologies. Mol. Syst. Des. Eng. 2018, 3, 223–232. [Google Scholar] [CrossRef]
- Yang, J.K.W.; Jung, Y.S.; Chang, J.-B.; Mickiewicz, R.A.; Alexander-Katz, A.; Ross, C.A.; Berggren, K.K. Complex Self-Assembled Patterns Using Sparse Commensurate Templates. Nanotechnology 2014, 25, 135301. [Google Scholar]
- Delgadillo, P.R.; Miyakawa, M.; Nagahara, S.; Kawakami, T.; Minegishi, S.; Oyama, K.; Somervell, M.; Wallow, T. IBM’s Directed Self-Assembly Process Integration Strategy. Proc. SPIE 2016, 9779, 97790C. [Google Scholar]
- Li, W.; Liu, G.; Zhou, H.; Wang, X.; Müller, M.; Xiao, S. BCP Alignment Mechanisms in High-χ Systems. Chin. J. Polym. Sci. 2020, 38, 1043–1053. [Google Scholar]
- Cheng, J.Y.; Sanders, D.P.; Truong, H.D.; Harrer, S.; Friz, A.; Stacey, N.A.; Tjio, M.; Rettner, C.T.; Arellano, N.; Hart, M.W. Simple and Versatile Methods to Generate Directed Self-Assembly Patterns with Sub-30 nm Features. ACS Nano 2014, 8, 6656–6664. [Google Scholar]
- Ji, S.; Wan, L.; Liu, C.-C.; Craig, G.S.W.; Nealey, P.F. Directed Self-Assembly of Block Copolymers via Chemical Epitaxy: A Platform for 7 nm FinFET Patterning. ACS Appl. Mater. Interfaces 2016, 8, 27022–27029. [Google Scholar]
- Oria, L.; Luzuriaga, A.R.; Chevalier, X.; Alduncin, J.A.; Mecerreyes, D.; Tiron, R.; Gaugiran, S. Directed self-assembly of block copolymers for advanced lithography applications. Proc. SPIE 2011, 7970, 79700P. [Google Scholar]
- Liu, C.-C.; Han, E.; Onses, M.S.; Thode, C.J.; Nealey, P.F. Fabrication of lithographically defined chemically patterned polymer brushes and mats. Macromolecules 2011, 44, 1876–1885. [Google Scholar] [CrossRef]
- Kim, J.; Wan, J.X.; Miyazaki, S.; Yin, J.; Cao, Y.; Her, Y.J.; Wu, H.; Shan, J.H.; Shan, J.H.; Kurosawa, K.; et al. The SMART™ Process for Directed Block Co-Polymer Self-Assembly. J. Photopolym. Sci. Technol. 2013, 26, 573–579. [Google Scholar] [CrossRef]
- Van Bela, J.; Verstraete, L.; Suh, H.S.; De Gendt, S.; Bezard, P.; Vandereyken, J.; Li, W.; Beggiato, M.; Tamaddon, A.-H.; Beral, C.; et al. EUV lithography line-space pattern rectification using block copolymer directed self-assembly: A roughness and defectivity study. Proc. SPIE 2023, 12497, 124970K. [Google Scholar]
- Verstraete, L.; Suh, H.S.; Van Bela, J.; Timi, P.H.; Vallat, R.; Bezard, P.; Vandereyken, J.; Beggiato, M.; Tamaddon, A.-H.; Beral, C.; et al. Mitigating stochastics in EUV lithography by directed self-assembly. Proc. SPIE 2023, 12497, 124970I. [Google Scholar]
- Yoshida, H.; Suh, H.S.; Ramirez-Hernandez, A.; Hur, S.-M.; Segal-Peretz, T.; de Pablo, J.J.; Nealey, P.F. High-Temperature Stable Polymer Brushes for Directed Self-Assembly. Chem. Mater. 2020, 32, 2274–2285. [Google Scholar]
- Bai, W.; Ross, C.A.; Alexander-Katz, A. pH-Responsive Polymer Brush Systems for Dynamic Control of Block Copolymer Self-Assembly. ACS Nano 2021, 15, 12324–12334. [Google Scholar]
- Cummins, C.; Ghoshal, T.; Morris, M.A. Advances in Photo-Patternable Materials for Next-Generation Nanolithography. Adv. Mater. Technol. 2022, 7, 2100689. [Google Scholar]
- Kim, H.S.; Park, W.I.; Lee, J.H. Directional Assembly of Block Copolymers via Atomic Layer Deposition of AlOx/TiOx Nanolaminate Gradients. Adv. Funct. Mater. 2018, 28, 1707586. [Google Scholar]
- Stoykovich, M.P.; Kang, H.; Daoulas, K.C.; Liu, G.; Liu, C.-C.; de Pablo, J.J.; Müller, M.; Nealey, P.F. Directed self-assembly of block copolymers for nanolithography. Science 2005, 308, 1442–1446. [Google Scholar] [CrossRef]
- Han, E.; Cheng, J.Y.; Ross, C.A. Quantitative Criteria for Neutral Surfaces in Directed Self-Assembly of Polystyrene-Block-Poly(methyl Methacrylate). Nat. Mater. 2017, 16, 139–146. [Google Scholar]
- Sivaniah, E.; Dalnoki-Veress, B.; Limary, S.; Green, P.F.; Kramer, E.J. Effect of Grafting Density on the Orientation of Symmetric and Asymmetric Poly(styrene-b-methyl Methacrylate) Copolymers in Thin Films. Macromolecules 2005, 38, 1837–1847. [Google Scholar] [CrossRef]
- Iino, S.; Seshimo, T.; Miyagi, K.; Dazai, T.; Sato, K. Advanced strategies for Next-Generation block copolymers. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 23–27 February 2025. [Google Scholar]
- Seki, M.; Gronheid, R.; Doise, J. Photo-definable neutral layers for streamlined DSA lithography. ACS Nano 2022, 16, 12345–12356. [Google Scholar]
- Xiao, S.; Nealey, P.F.; Alexander-Katz, A. Grafting density effects on the self-assembly of PS-b-PMMA block copolymers. Macromolecules 2021, 54, 5678–5689. [Google Scholar]
- Claveau, G.; Quemere, P.; Argoud, M.; Hazart, J.; Pimenta Barros, P.; Sarrazin, A.; Posseme, N.; Tiron, R.; Chevalier, X.; Nicolet, C.; et al. Surface affinity role in graphoepitaxy of lamellar block copolymers. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 13–17 March 2016. [Google Scholar]
- Chen, Y.; Xiong, S. Directed self-assembly of block copolymers for sub-10 nm fabrication. Int. J. Extrem. Manuf. 2020, 2, 032006. [Google Scholar] [CrossRef]
- Suh, H.S.; Kim, D.H.; Moni, P.; Xiong S., S.; Ocola L., E.; Zaluzec N., J.; Gleason, K.K.; Nealey P., F. Sub-10 nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 2017, 12, 575–581. [Google Scholar] [CrossRef]
- Verstraete, L.; Suh, H.S.; Bel, J.V.; Bak, B.U.; Kim, S.E.; Vallat, R.; Bezard, P.; Beggiato, M.; Beral, C. Material and Process Optimization for EUV Pattern Rectification by Directed Self-Assembly. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 25–29 February 2024. [Google Scholar]
- Wu, H.-C.; Liao, M.-C.; Hirahara, E.; Iwaki, T. Wet Etch Process for High-Resolution Directed Self-Assembly Patterning for Advanced Node DRAM. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 25 February–1 March 2024; Volume 12957, p. 1295721. [Google Scholar]
- Fredrickson, G.H.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 1987, 87, 697–705. [Google Scholar] [CrossRef]
- Laachi, N.; Takahashi, H.; Delaney, K.T.; Hur, S.-M.; Shykind, D.; Weinheimer, C.J.; Fredrickson, G.H. Self-consistent field theory of directed self-assembly in laterally confined lamellae-forming diblock copolymers. Proc. SPIE 2012, 8323, 83230K. [Google Scholar]
- Ahn, H.; Ryu, D.Y.; Kim, Y.; Kwon, K.W.; Lee, J.; Cho, J. Phase Behavior of Polystyrene-b-poly(methyl methacrylate) Diblock Copolymer. Macromolecules 2009, 42, 7897–7902. [Google Scholar] [CrossRef]
- Arora, A.; Qin, J.; Morse, D.C.; Delaney, K.T.; Fredrickson, G.H.; Bates, F.S.; Dorfman, K.D. Broadly Accessible Self-Consistent Field Theory for Block Polymer Materials Discovery. Macromolecules 2016, 49, 4675–4690. [Google Scholar] [CrossRef]
- Escobedo, F.A.; de Pablo, J.J. Monte Carlo simulation of branched and crosslinked polymers. J. Chem. Phys. 1996, 104, 4788–4801. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wu, Z.; Yang, H.; Li, Z. Coarse-grained molecular dynamics model of conformationally asymmetric AB diblock copolymers forming lamellar structures. Soft Matter 2013, 9, 2194–2205. [Google Scholar]
- Baker, S.D.; Peyman, S.A.; Hultgren, S.; Deng, K.; McGill, M. Simulation techniques for directed self-assembly lithography: An overview. Mater. Sci. Eng. R Rep. 2021, 146, 1–22. [Google Scholar]
- Koh, C.; Kim, K.; Ross, C.A.; Fredrickson, G.H. Open-source code for self-consistent field theory calculations of block polymer phase behavior on graphics processing units. J. Chem. Phys. 2017, 146, 034106. [Google Scholar]
- Liu, X.; Chen, M.; Wang, Z.; Li, Y. Template design for complex block copolymer patterns using a machine learning method. J. Mater. Chem. C 2020, 8, 8039–8048. [Google Scholar] [CrossRef]
- Park, H.; Yu, B.; Park, J.; Sun, G.; Tajkhorshid, E.; de Pablo, J.J.; Schneider, L. Prediction of Diblock Copolymer Morphology via Machine Learning. arXiv 2023, arXiv:2308.16886. [Google Scholar]
- Wang, H.; Li, S.; Zeng, J.; Zhang, T. Accelerating polymer self-consistent field simulation and inverse DSA-lithography with deep neural networks. J. Chem. Phys. 2023, 162, 104105. [Google Scholar] [CrossRef]
- Fühner, T.; Welling, U.; Müller, M.; Erdmann, A. Rigorous simulation and optimization of the lithography/directed self-assembly co-process. Proc. SPIE 2014, 9052, 90521C. [Google Scholar]
- Ler, J.; Müller, M. Kinetic Pathways of Block Copolymer Directed Self-Assembly: Insights from Efficient Continuum Modeling. ACS Nano 2020, 14, 13986–13994. [Google Scholar]
- Hannon, A.F.; Ding, Y.; Bai, W.; Ross, C.A.; Alexander-Katz, A. Optimizing Topographical Templates for Directed Self-Assembly of Block Copolymers via Inverse Design Simulations. Nano Lett. 2014, 14, 3128–3133. [Google Scholar] [CrossRef]
- Shim, S.; Shin, Y. Mask optimization for directed self-assembly lithography: Inverse DSA and inverse lithography. In Proceedings of the 21st Asia and South Pacific Design Automation Conference (ASP-DAC) 2016, Macao SAR, China, 25–28 January 2016; pp. 83–88. [Google Scholar]
- Shim, S.; Shin, Y. Physical Design and Mask Synthesis for Directed Self-Assembly Lithography; Springer: Cham, Switzerland, 2018; pp. 75–130. [Google Scholar]
- Shelton, C.K.; Epps, T.H. Block copolymer thin films: Characterizing nanostructure evolution with in situ X-ray and neutron scattering. Polymer 2016, 105, 545–561. [Google Scholar] [CrossRef]
- Ruiz, R.; Dobisz, E.; Albrecht, T.R. Rectangular Patterns Using Block Copolymer Directed Assembly for High Bit Aspect Ratio Patterned Media. ACS Nano 2011, 5, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wi, S. Transport Characteristics of Multichannel Transistors Made from Densely Aligned Sub-10 nm Half-Pitch Graphene Nanoribbons. ACS Nano 2012, 6, 9700–9710. [Google Scholar] [CrossRef] [PubMed]
- Oshiyama, I.; Shigetoshi, T.; Mita, I.; Sumitani, N.; Oinoue, T.; Saito, S.; Okawa, T.; Ebiko, Y.; Yokochi, K.; Kitano, Y.; et al. Visible Light Sensitivity Enhancement of CMOS Image Sensor with Pseudo High Refractive Index Film Integrated by Directed Self-Assembly Process. In Proceedings of the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference, Chengdu, China, 8–11 April 2021. [Google Scholar]
- Liu, C.-C.; Franke, E.; Lie, F.L.; Sieg, S.; Tsai, H.; Lai, K.; Truong, H.; Farrell, R.; Somervell, M.; Sanders, D.; et al. DSA Patterning Options for FinFET Formation at 7nm Node. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 26 February–2 March 2016; Volume 9777, p. 97770R. [Google Scholar]
- Liu, C.-C.; Franke, E.; Mignot, Y.; Xie, R.; Yeung, C.W.; Zhang, J.; Chi, C.; Zhang, C.; Farrell, R.; Lai, K.; et al. Directed Self-Assembly of Block Copolymers for 7 Nanometre FinFET Technology and Beyond. Nat. Electron. 2018, 1, 562–569. [Google Scholar] [CrossRef]
- Pathangi, H.; Genin, V.R.; Vandepitte, D.; Delgadillo, P.R. Improved cost-effectiveness of the block co-polymer anneal process for DSA. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 26 February–2 March 2016; Volume 9777, p. 97771Z. [Google Scholar]
- Han, E. DSA Materials and Processes Development for ≤ P24 EUV Resist L/S Pattern Rectification. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 25 February–1 March 2024; Volume PC12956, p. PC129560P. [Google Scholar]
- EMD. Directed Self-Assembly PS-b-PMMA Materials Readiness and High-Chi Platforms for Extended Geometry Scaling. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 25 February–1 March 2024; Volume 12956, p. 129560F. [Google Scholar]
- Muramatsu, M.; Nishi, T.; Ito, K.; Takahashi, Y.; Hatamura, Y.; Kitano, T.; Iwaki, T. Pattern Fidelity Improvement of DSA Hole Patterns. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 26 February–2 March 2023; Volume 12497, p. 124970J. [Google Scholar]
- Muramatsu, M.; Nishi, T.; Ito, K.; Takahashi, Y.; Hatamura, Y.; Kitano, T.; Iwaki, T. Fidelity Improvement of Hole Patterns by DSA Multiplication. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 23–27 February 2025; Volume 13427, pp. 13427–13431. [Google Scholar]
- Kim, D.-O. Improvement of EUV Contact Hole Pattern Rectification Using Novel Directed Self-Assembly Materials. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 23–27 February 2025; Volume 13427, p. 134270E. [Google Scholar]
- Gao, X. Directed Self-Assembly of Medium-Chi and High-Chi Block Copolymers for DRAM C/H Patterning. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 23–27 February 2025. [Google Scholar]
- Pathangi, H.; Chan, B.T.; Bayana, H.; Vandenbroeck, N.; Van den Heuvel, D.; Van Look, L.; Rincon-Delgadillo, P.A.; Cao, Y.; Kim, J.; Lin, G.; et al. Defect Mitigation and Root Cause Studies in 14 nm Half-Pitch Chemo-Epitaxy Self-Assembly LiNe Flow. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 031204. [Google Scholar] [CrossRef]
- Rincon Delgadillo, P.; Suri, M.; Durant, S.; Cross, A.J.; Nagaswami, V.R.; Van den Heuvel, D.; Gronheid, R.; Nealey, F.P. Defect Source Analysis of Directed Self-Assembly Process. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 24–28 February 2013; Volume 8680, p. 86800L. [Google Scholar]
- Li, J.; Rincon-Delgadillo, P.; Suh, H.S.; Mannaert, G.; Nealey, P.F. Kinetics of Defect Annihilation in Chemo-Epitaxy Directed Self-Assembly. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 24–28 February 2019; Volume 10960, p. 109600V. [Google Scholar]
- Gronheid, R.; Van Look, L.; Delgadillo, P.R.; Pollentier, I.; Gao, Y.; Lin, G.; Nealey, P.F. High throughput grating qualification for rating directed self-assembly pattern performance using optical metrology. J. Photopolym. Sci. Technol. 2013, 26, 147–152. [Google Scholar] [CrossRef]
Polymer System | χ Parameter | Feature Size (L0) | Applications |
---|---|---|---|
PS-b-PMMA | 0.03–0.05 | 15–30 nm | Lamellae for line/space |
Polystyrene-b-Poly(2-vinylpyridine) (PS-b-P2VP) | 0.10–0.15 | 8–15 nm | Metal nanowire templates |
Polystyrene-b-Polydimethylsioxane (PS-b-PDMS) | 0.25–0.35 | 5–10 nm | High-χ sub-10 nm patterns |
Poly(t-butyl acrylate)-block-poly(methyl methacrylate) (PtBA-b-PMMA) | 0.08–0.12 | 10–20 nm | Solvent-annealed vertical pores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Liang, D.; Jiang, M.; Sha, Y.; Liu, X.; Liu, J.; Cao, Q.; Shi, J. Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning. Micromachines 2025, 16, 667. https://doi.org/10.3390/mi16060667
Cheng X, Liang D, Jiang M, Sha Y, Liu X, Liu J, Cao Q, Shi J. Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning. Micromachines. 2025; 16(6):667. https://doi.org/10.3390/mi16060667
Chicago/Turabian StyleCheng, Xiuyan, Di Liang, Miao Jiang, Yufei Sha, Xiaonan Liu, Jinlai Liu, Qingchen Cao, and Jiangliu Shi. 2025. "Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning" Micromachines 16, no. 6: 667. https://doi.org/10.3390/mi16060667
APA StyleCheng, X., Liang, D., Jiang, M., Sha, Y., Liu, X., Liu, J., Cao, Q., & Shi, J. (2025). Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning. Micromachines, 16(6), 667. https://doi.org/10.3390/mi16060667