Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N
Abstract
:1. Introduction
2. Design, Simulate, and Fabricate Devices
2.1. Selection of Piezoelectric Materials
2.2. Principle of Device Design
2.3. Noise
2.4. Fabrication and Characterization
3. Results and Discussion
3.1. Frequency Response and Noise Measurement
3.2. Acoustic Overload Point and Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fahy, F.; Thompson, D. Fundamentals of Sound and Vibration, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 55. [Google Scholar]
- Rossing, T. Springer Handbook of Acoustics; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lauterborn, W.; Kurz, T.; Akhatov, I. Nonlinear Acoustics in Fluids; Van Nostrand Reinhold Co.: New York, NY, USA, 2007. [Google Scholar]
- Lee, S.S.; Ried, R.P.; White, R.M. Piezoelectric cantilever microphone and microspeaker. J. Microelectromechanical Syst. 1996, 5, 238–242. [Google Scholar]
- Du, H.; Bogue, R. MEMS sensors: Past, present and future. Sens. Rev. 2007, 27, 7–13. [Google Scholar] [CrossRef]
- Fawzy, A.M.; Magdy, A.; Hossam, A. A piezoelectric MEMS microphone optimizer platform. AEJ Alex. Eng. J. 2021, 61, 3175–3186. [Google Scholar] [CrossRef]
- Ekwińska, M.A.; Bieniek, T.; Janczyk, G.; Wsowski, J.; Budzyński, T. Specialized MEMS Microphone for Industrial Application; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Le, X.; Shi, Q.; Vachon, P.; Ng, E.J.; Lee, C. Piezoelectric MEMS—Evolution from sensing technology to diversified applications in the 5G/Internet of Things (IoT) era. J. Micromechanics Microeng. 2022, 32, 014005. [Google Scholar] [CrossRef]
- Huff, M.A. Mems: An enabling technology for the internet of things (IoT). In Internet of Things and Data Analytics Handbook; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Callender, B.; Janardan, B.; Uellenberg, S.; Premo, J.; Abeysinghe, A. The Quiet Technology Demonstrator Program: Static Test of an Acoustically Smooth Inlet. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), Rome, Italy, 21–23 May 2007. [Google Scholar]
- AIAA. Effect of Uniform Chevrons on Cruise Shockcell Noise. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) (AIAA), Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
- Littrell, R.; Grosh, K. Noise minimization in micromachined piezoelectric microphones. Acoust. Soc. Am. 2013, 19, 030041. [Google Scholar]
- Chen, Y.C.; Lo, S.C.; Wang, S.D.; Wang, Y.J.; Wu, M.; Fang, W. On the PZT/Si unimorph cantilever design for the signal-to-noise ratio enhancement of piezoelectric MEMS microphone. J. Micromech. Microeng. 2021, 31, 105003. [Google Scholar] [CrossRef]
- Papila, M.; Haftka, R.T.; Nishida, T.; Sheplak, M. Piezoresistive Microphone Design Pareto Optimization: Tradeoff Between Sensitivity and Noise Floor. J. Microelectromechanical Syst. 2006, 15, 1632–1643. [Google Scholar] [CrossRef]
- Kon, S.; Oldham, K.; Horowitz, R. Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. In Proceedings of the SPIE—The International Society for Optical Engineering, Pennington, NJ, USA, 10 April 2007; 2007; Volume 6529. [Google Scholar]
- Hall, N.A.; Bicen, B.; Jeelani, M.K.; Lee, W.; Qureshi, S.; Degertekin, F.L.; Okandan, M. Micromachined microphones with diffraction-based optical displacement detection. J. Acoust. Soc. Am. 2005, 118, 3000–3009. [Google Scholar] [CrossRef]
- Kuntzman, M.L.; Garcia, C.T.; Onaran, A.G.; Avenson, B.; Kirk, K.D.; Hall, N.A. Performance and Modeling of a Fully Packaged Micromachined Optical Microphone. J. Microelectromechanical Syst. 2011, 20, 828–833. [Google Scholar] [CrossRef]
- Liu, J.; Martin, D.T.; Kadirvel, K.; Nishida, T.; Cattafesta, L.; Sheplak, M.; Mann, B.P. Nonlinear model and system identification of a capacitive dual-backplate MEMS microphone. J. Sound Vib. 2008, 309, 276–292. [Google Scholar] [CrossRef]
- Fueldner, M. Microphones. In Handbook of Silicon Based MEMS Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Goida, T. US20120027234A1; Reduced Footprint Microphone System with Spacer Member Having Through-Hole. 2015. Available online: https://eureka.patsnap.com/patent-US20120027234A1 (accessed on 17 December 2024).
- Timoshenko, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Scheeper, P.R.; Donk, A.G.H.V.D.; Olthuis, W.; Bergveld, P. A review of silicon microphones. Sens. Actuators Phys. 1994, 44, 1–11. [Google Scholar] [CrossRef]
- Nemirovsky, Y.; Bochobza-Degani, O. A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators. J. Microelectromechanical Syst. 2001, 10, 601–615. [Google Scholar] [CrossRef]
- Littrell, R.J. High Performance Piezoelectric MEMS Microphones. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2010. [Google Scholar]
- Arnau, A.; Soares, D. Fundamentals of Piezoelectricity; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kueppers, H.; Leuerer, T.; Schnakenberg, U.; Mokwa, W.; Hoffmann, M.; Schneller, T.; Boettger, U.; Waser, R. PZT thin films for piezoelectric microactuator applications. Sens. Actuators Phys. 2002, 97, 680–684. [Google Scholar] [CrossRef]
- Patel, R.; Mcwilliam, S.; Popov, A.A. Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater. Struct. 2014, 23, 085002. [Google Scholar] [CrossRef]
- Mahmoodi, S.N.; Daqaq, M.F.; Jalili, N. On the nonlinear-flexural response of piezoelectrically driven microcantilever sensors. Sens. Actuators Phys. 2009, 153, 171–179. [Google Scholar] [CrossRef]
- Piazza, G. Piezoelectric Aluminum Nitride Vibrating RF MEMS for Radio Front-End Technology. IEEE/ASME J. Microelectromechanical Syst. Microelectromechanical Syst. 2005, 8, 12–15. [Google Scholar]
- Trolier-Mckinstry, S.; Muralt, P. Thin Film Piezoelectrics for MEMS. J. Electroceramics 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Dubois, M.A.; Muralt, P. Measurement of the effective transverse piezoelectric coefficient e(31,f) of AlN and Pb(Zr-x,Ti1-x)O-3 thin films. Sens. Actuators Phys. 1999, 77, 106–112. [Google Scholar] [CrossRef]
- Devoe, D.L.; Pisano, A.P. Surface micromachined piezoelectric accelerometers (PiXLs). J. Microelectromechanical Syst. 2001, 10, 180–186. [Google Scholar] [CrossRef]
- Devoe, D.L. Piezoelectric thin film micromechanical beam resonators. Sens. Actuators Phys. 2001, 88, 263–272. [Google Scholar] [CrossRef]
- Naoki, O.; Kounosuke, K.; Ken, N.; Yasushi, S. Measurement of Young’s Modulus of Silicon Single Crystal at High Temperature and Its Dependency on Boron Concentration Using the Flexural Vibration Method. Jpn. J. Appl. Phys. 2000, 39, 368. [Google Scholar]
- Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef]
- Mertin, S.; Nyffeler, C.; Makkonen, T.; Heinz, B.; Mazzalai, A.; Schmitz-Kempen, T.; Tiedke, S.; Pensala, T.; Muralt, P. Non-destructive piezoelectric characterisation of Sc doped aluminium nitride thin films at wafer level. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019. [Google Scholar]
- Seo, Y.; Corona, D.; Hall, N.A. On the theoretical maximum achievable signal-to-noise ratio (SNR) of piezoelectric microphones. Sens. Actuators 2017, 264, 341–346. [Google Scholar] [CrossRef]
- Akiyama, M.; Umeda, K.; Honda, A.; Nagase, T. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films. Appl. Phys. Lett. 2013, 102, 1166. [Google Scholar] [CrossRef]
- Du, S.; Jia, Y.; Seshia, A. Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design. J. Phys. Conf. Ser. 2015, 660, 012114. [Google Scholar] [CrossRef]
- Beeby, S.P.; O’Donnell, T. Energy Harvesting Technologies; Springer: New York, NY, USA, 2009. [Google Scholar]
- Thomson, W.T. Theory of Vibration with Applications; 4th Revised and Enlarged Edition; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Zargarpour, N.; Zarifi, M.H. A piezoelectric micro-electromechanical microphone for implantable hearing aid applications. Microsyst. Technol. 2015, 21, 893–902. [Google Scholar] [CrossRef]
- Martin, F.; Muralt, P.; Dubois, M.A. Process optimization for the sputter deposition of molybdenum thin films as electrode for AlN thin films. J. Vac. Sci. Technol. A 2006, 24, 946–952. [Google Scholar] [CrossRef]
- Wang, S.D.; Chen, Y.C.; Lo, S.C.; Wang, Y.J.; Wu, M.; Fang, W. On the performance enhancement of cantilever diaphragm piezoelectric microphone. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October 2021–3 November 2021; pp. 1–4. [Google Scholar]
- Lou, L.; Yu, H.; Haw, M.T.X.; Zhang, S.; Gu, Y.A. Comparative characterization of bimorph and unimorph AlN piezoelectric micro-machined ultrasonic transducers. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016. [Google Scholar]
- Niu, M.N.; Kim, E.S. Piezoelectric bimorph microphone built on micromachined parylene diaphragm. J. Microelectromechanical Syst. 2003, 12, 892–898. [Google Scholar]
- Cerini, F.; Adorno, S. Flexible Simulation Platform for Multilayer Piezoelectric MEMS Microphones with Signal-to- Noise Ratio (SNR) Evaluation. Proceedings 2018, 2, 862. [Google Scholar] [CrossRef]
- Motchenbacher, C.D.; Connelly, J.A. Low Noise Electronic System Design; Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Horowitz, S.; Nishida, T.; Cattafesta, L.; Sheplak, M. Development of a micromachined piezoelectric microphone for aeroacoustics applications. J. Acoust. Soc. Am. 2007, 122, 3428–3436. [Google Scholar] [CrossRef]
- Levinzon, F.A. Fundamental noise limit of piezoelectric accelerometer. Sens. J. IEEE 2004, 4, 108–111. [Google Scholar] [CrossRef]
- Single-Crystal Multilayer Nitride, Metal, and Oxide Structures on Engineered Silicon for New-Generation Radio Frequency Filter Applications. Phys. Status Solidi 2020, 217, 1900813. [CrossRef]
- Krylov, V.V.; Raguzina, L.V. Scattering of acoustic wedge modes. Sov. Phys. Acoust. 1988, 34, 546–547. [Google Scholar]
- Williams, M.D. Development of a MEMS Piezoelectric Microphone for Aeroacoustic Applications. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Frederiksen, E. System for measurement of microphone distortion and linearity at very high sound levels. J. Acoust. Soc. Am. 2001, 110, 2670. [Google Scholar] [CrossRef]
- Nikolic, M.; Florian, W.; Gaggl, R.; Liao, L. A 125dBSPL 1%-THD, 115 μA MEMS Microphone Using Passive Pre-Distortion Technique. In Proceedings of the ESSCIRC 2023—IEEE 49th European Solid State Circuits Conference (ESSCIRC), Lisbon, Portugal, 11–14 September 2023. [Google Scholar]
Property | Symbol | Unit | PZT | ZnO | AlN | Al0.8Sc0.2N |
---|---|---|---|---|---|---|
Piezoelectric Coefficient | pC/N | −70 | −5.74 | −2.65 | −3.89 | |
Relative Permittivity | / | 1300 | 10.9 | 10.4 | 13.9 | |
Loss angle | / | 0.03–0.05 | 0.01 | 0.002 | 0.0025 | |
Young’s Moduli | E | GPa | 56–98 | 208 | 338 | 230 |
Name | SNR | AOP | Dynamic Range |
---|---|---|---|
Designed device | 54.5 dB | 147 dB SPL | 107.5 dB |
Miodrag, Germany [55] | 66 dB | 130 dB SPL | 102 dB |
MEMSensing, China | 58 dB | 130 dB SPL | 94 dB |
Infineon IM63D135A, Germany | 63.5 dB | 135 dB SPL | 104.5 dB |
Konwles SPH9855LM4H-1, America | 66 dB | 132.5 dB SPL | 104.5 dB |
Infineon IM69D130, Germany | 69 dB | 130 dB SPL | 105 dB |
Vesper 1010, America | 60.5 dB | 126 dB SPL | 92.5 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Ji, Y.; Liu, A.; Wang, L.; Zhang, S. Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N. Micromachines 2025, 16, 186. https://doi.org/10.3390/mi16020186
Yan R, Ji Y, Liu A, Wang L, Zhang S. Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N. Micromachines. 2025; 16(2):186. https://doi.org/10.3390/mi16020186
Chicago/Turabian StyleYan, Ruixiang, Yucheng Ji, Anyuan Liu, Lei Wang, and Songsong Zhang. 2025. "Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N" Micromachines 16, no. 2: 186. https://doi.org/10.3390/mi16020186
APA StyleYan, R., Ji, Y., Liu, A., Wang, L., & Zhang, S. (2025). Design and Fabrication of a Piezoelectric Bimorph Microphone with High Reliability and Dynamic Range Based on Al0.8Sc0.2N. Micromachines, 16(2), 186. https://doi.org/10.3390/mi16020186