Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review
Abstract
1. Introduction
2. Lubricants in TENG Devices
2.1. Contact-and-Separation Working Mode of TENG
2.2. Free-Standing Working Mode
2.3. Water Droplet Energy Harvesting Device
2.4. Single Electrode Mode

2.5. Sliding Working Mode
3. Charge Transfer Mechanisms in the Presence of Lubricants and Related Influencing Parameters
3.1. Liquid Lubricants-Based TENG Devices
3.2. Grease-Based Lubricants
3.3. Hydrodynamic Lubrication
3.4. Contaminants in Lubricants

3.5. Nanomaterial-Based Lubricants
4. Types and Properties of Lubricants
4.1. Solid Lubricants
4.2. Semi-Solid Lubricants
4.3. Liquid Lubricants

| Lubricant Type | Working Mode | Isc | Voc | Highlighted Benefits | Major Drawbacks |
|---|---|---|---|---|---|
| DI Water | Sliding working mode | 0.28 µA | 0.4 V | Water functioning as a lubricant significantly enhances electrical output. | The presence of water and ethane leads to a lower electrical output in n-n junction configurations [101]. |
| Lubricant oil (Dupont Krytox) | Single electrode configuration | N.A. | 26.4 V | The presence of lubricant provides a slippery surface, facilitating the movement of air bubbles. | The electrical output was lower compared to that of a solid-state energy generator [87]. |
| TiO2-doped oleic acid | Single electrode mode | 3.8 nA | 2 V | The device exhibited improved tribological and triboelectric performance. | An increase in the wt.% of TiO2 particles led to greater friction generation [93]. |
| Graphene oxide (GO) in a water-based solution | Sliding working mode | 47 µA | 0.02 V | The device’s short-circuit performance was enhanced. | The open-circuit voltage remained unchanged at varying sliding speeds [99]. |
| PDMS combined with hollow Si2O spheres | Rotational working mode | 10 mA/m2 | 260 V | The film demonstrated inherent self-lubricating properties. | The dielectric properties of the composite film were similar to those of pristine PDMS [55]. |
| Silicon oil | Rotational working mode | 2.8 nA | 0.2 V | Silicon oil, as a non-polar liquid, enhances the electrical output of the device. | A greater length of liquid pockets at the interface leads to reduced electrical output [6]. |
| Mxene Solution | Sliding working mode | 53.9 µA | 0.227 V | The MXene solution increases the short-circuit current. | The device exhibited a decreased open-circuit voltage [16]. |
| Fatty acid doped polymer film | Contact-and-separation mode | 2.81 µA | 296 V | The self-lubricating film played a significant role in increasing both the dielectric constant and β-phase crystallinity. | Charge dissipation is more pronounced at elevated temperatures [63]. |
| Hexadecane | Rotating working mode | Not available | 1380 V | Lubricants suppress air breakdown and enhance the accumulation of surface charges. | Introducing water at a very low concentration (0.01%) into the lubricant leads to a decrease in electrical output [81]. |
| h-BN nanosheets based polymer film | Rotating disk structure mode | 142 µA | 292 V | The nanosheets’ high thermal conductivity protects tribo-materials and extends the device shelf life in TENG applications. | Adding more than 2 wt.% of nanosheets causes a reduction in electrical output [53]. |
| Grease | Free-standing rotating disk mode | 150 µA | 179 V | The application of grease eliminates air gaps, which subsequently enhances the device’s electrical output. | Grease with polar properties, such as lithium grease, limits charge generation at the interface [102]. |
| Graphite powder | Contact-and-separation mode | 6.0 µA | 78 V | The coefficient of friction was reduced as a result of using the graphite material. | The open-circuit voltage exhibits a very gradual increase [110]. |
| Graphene-doped silicon oil | Sliding working mode | 9.24 nA | 2.23 V | A very low coefficient of friction was attained. | A higher percentage of graphene leads to reduced electrical output [104]. |
5. Stimulus-Based Surface Lubrication Techniques
5.1. Stress-Responsive Technique
5.2. Thermo-Responsive Lubricants Layers
5.3. Photo-Responsive Lubricants
6. Physicochemical Properties of Lubricants
6.1. Total Acidic and Basic Number Characterization
6.2. Pour Point
6.3. Viscosity and Density
6.4. Oxidation Characteristics
6.5. Flash Point
6.6. Tribological Characteristics of a Lubricant
7. Lubricants Impact on the Different Areas of a TENG Device
7.1. Lubricant as Surface Morphology Protector
7.2. Thin Film Formation of Liquid Lubricants
7.3. Lubricant to Improve Electrical Output and Co-Efficient of Friction
7.4. Conductivity and Dielectric Properties of Lubricants
7.5. Wettability of Lubricants
8. Comparison of Lubricants with Other Techniques to Improve the Performance of a TENG Device
8.1. Thermally Conductive Materials
8.2. Carbon-Based Materials
8.3. Microhardness Property of a Composite Film
9. Exiting Gaps and Challenges
9.1. Lubricants According to the Working Mode of TENG Device
9.2. Charge Transfer Efficiency of Lubricants
9.3. Lubricant Additives Impact on Electrical Output of a TENG Device
10. Conclusion and Future Perspective
10.1. Physicochemical Properties of Lubricants Utilized in TENG Devices
10.2. Instantaneous Energy Conversion Efficiency
10.3. Structural Modification of Tribolayers
10.4. Charge Transfer Mechanism
10.5. Low Permittivity Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, A.; Zhang, C.; Zhu, G.; Wang, Z.L. Polymer Materials for High-Performance Triboelectric Nanogenerators. Adv. Sci. 2020, 7, 2000186. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, C.; Zhang, G.; Fan, E.; Zhou, Z.; Shen, Z.; Yang, J.; Liu, M.; Xia, Y.; Si, S.; et al. Flexible Triboelectric Nanogenerator to ward Ultrahigh-Frequency Vibration Sensing. Nano Res. 2022, 15, 7484–7491. [Google Scholar] [CrossRef]
- Zi, Y.; Guo, H.; Wen, Z.; Yeh, M.H.; Hu, C.; Wang, Z.L. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano 2016, 10, 4797–4805. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Li, R.; Orlando, R.J.; Manica, R.; Liu, Q. Liquid-Solid Triboelectric Nanogenerators for a Wide Operation Window Based on Slippery Lubricant-Infused Surfaces (SLIPS). Chem. Eng. J. 2022, 439, 135688. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shan, C.; Li, K.; Wu, H.; Li, G.; Fu, S.; Zhao, Q.; Xi, Y.; Hu, C. High Triboelectrification and Charge Collection Efficiency of a Direct Current Triboelectric Nanogenerator Achieved by a Tri-Synergistic Enhancement Strategy. Energy Environ. Sci. 2024, 17, 9590–9600. [Google Scholar] [CrossRef]
- Gao, M.; Sun, T.; Li, Y.; Zhang, Z.; Lee, C.; Choi, J. AI-Enabled Metal-Polymer Plain Bearing Based on the Triboelectric Principle. Adv. Funct. Mater. 2023, 33, 2304070. [Google Scholar] [CrossRef]
- Luo, N.; Feng, Y.; Wang, D.; Zheng, Y.; Ye, Q.; Zhou, F.; Liu, W. New Self-Healing Triboelectric Nanogenerator Based on Simultaneous Repair Friction Layer and Conductive Layer. ACS Appl. Mater. Interfaces 2020, 12, 30390–30398. [Google Scholar] [CrossRef]
- Segkos, A.; Tsamis, C. Rotating Triboelectric Nanogenerators for Energy Harvesting and Their Applications. Nanoenergy Adv. 2023, 3, 170–219. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, H.; Xu, L.; Ji, L.; Wang, D.; Zheng, Y.; Feng, Y.; Sui, X.; Guo, Y.; Guo, W.; et al. Macro-Superlubric Triboelectric Nanogenerator Based on Tribovoltaic Effect. Matter 2022, 5, 1532–1546. [Google Scholar] [CrossRef]
- Song, M.; Hur, J.; Heo, D.; Chung, S.H.; Kim, D.; Kim, S.; Kim, D.; Lin, Z.H.; Chung, J.; Lee, S. Current Amplification through Deformable Arch-Shaped Film Based Direct-Current Triboelectric Nanogenerator for Harvesting Wind Energy. Appl. Energy 2023, 344, 121248. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.; Zhao, Z.; Li, S.; Liu, Y.; Liu, L.; Gao, Y.; Wang, Z.L.; Wang, J. Simultaneously Enhancing Power Density and Durability of Sliding-Mode Triboelectric Nanogenerator via Interface Liquid Lubrication. Adv. Energy Mater. 2020, 10, 2002920. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Wang, P.; Yang, L.; Yu, X.; Qiu, J.; Tan, K.; Tang, Y.; Guo, Y. Intelligent Online Sensing of Lubricating Oil Debris via Dual-Electrode Oil-Driven Triboelectric Nanogenerator. Chem. Eng. J. 2025, 503, 1–12. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Sun, Y.; Wu, Z.; Zhang, H.; Xiao, K.; Du, J.; Li, J.; Luo, J. Macroscopic Liquid Superlubric Triboelectric Nanogenerator: An In-depth Understanding of Solid-Liquid Interfacial Charge Behavior. Nano Energy 2024, 129, 110038. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, Y. Boosting the Durability of Triboelectric Nanogenerators: A Critical Review and Prospect. Adv. Funct. Mater. 2023, 33, 2213407. [Google Scholar] [CrossRef]
- Seo, D.; Kong, J.; Chung, J. Scott–Russel Linkage-Based Triboelectric Self-Powered Sensor for Contact Material-Independent Force Sensing and Tactile Recognition. Small 2024, 20, 2403394. [Google Scholar] [CrossRef]
- Qiao, W.; Zhou, L.; Zhao, Z.; Yang, P.; Liu, D.; Liu, X.; Liu, J.; Liu, D.; Wang, Z.L.; Wang, J. MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. Nanomicro. Lett. 2023, 15, 218. [Google Scholar] [CrossRef]
- Mohamed Ariffin, N.A.A.; Lee, C.T.; Thirugnanasambandam, A.; Wong, K.J.; Chong, W.W.F. Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases. Lubricants 2024, 12, 272. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, L.; Luo, N.; Liu, Y.; Sun, W.; Peng, J.; Feng, M.; Feng, Y.; Wang, H.; Wang, D. Tribological-Behaviour-Controlled Direct-Current Triboelectric Nanogenerator Based on the Tribovoltaic Effect under High Contact Pressure. Nano Energy 2022, 99, 107370. [Google Scholar] [CrossRef]
- Sulek, M.W.; Sas, W.; Wasilewski, T.; Bak-Sowinska, A.; Piotrowska, U. Polymers (Polyvinylpyrrolidones) as Active Additives Modifying the Lubricating Properties of Water. Ind. Eng. Chem. Res. 2012, 51, 14700–14707. [Google Scholar] [CrossRef]
- Feng, H.; Ma, Z.; Zhang, Y.; Liu, F.; Ma, S.; Zhang, R.; Cai, M.; Yu, B.; Zhou, F. Polystyrene Nanospheres Modified with a Hydrophilic Polymer Brush through Subsurface-Initiated Atom Transfer Radical Polymerization as Biolubricating Additive. Macromol. Mater. Eng. 2020, 305, 2000135. [Google Scholar] [CrossRef]
- Müller, M.; Fan, J.; Spikes, H. Design of Functionalized PAMA Viscosity Modifiers to Reduce Friction and Wear in Lubricating Oils. Automot. Lubr. Test. Adv. Addit. Dev. 2008, 4, 116. [Google Scholar] [CrossRef]
- Müller, M.; Topolovec-Miklozic, K.; Dardin, A.; Spikes, H.A. The Design of Boundary Film-Forming Pma Viscosity Modifiers. Tribol. Trans. 2006, 49, 225–232. [Google Scholar] [CrossRef]
- Murdoch, T.J.; Pashkovski, E.; Patterson, R.; Carpick, R.W.; Lee, D. Sticky but Slick: Reducing Friction Using Associative and Nonassociative Polymer Lubricant Additives. ACS Appl. Polym. Mater. 2020, 2, 4062–4070. [Google Scholar] [CrossRef]
- Li, Z.; Ma, S.; Zhang, G.; Wang, D.; Zhou, F. Soft/Hard-Coupled Amphiphilic Polymer Nanospheres for Water Lubrication. ACS Appl. Mater. Interfaces 2018, 10, 9178–9187. [Google Scholar] [CrossRef]
- Shara, S.I.; Eissa, E.A.; Basta, J.S. Polymers Additive for Improving the Flow Properties of Lubricating Oil. Egypt. J. Pet. 2018, 27, 795–799. [Google Scholar] [CrossRef]
- Song, S.; Wan, C.; Zhang, Y. Non-Covalent Functionalization of Graphene Oxide by Pyrene-Block Copolymers for Enhancing Physical Properties of Poly(Methyl Methacrylate). RSC Adv. 2015, 5, 79947–79955. [Google Scholar] [CrossRef]
- Ma, R.; Xiong, D.; Miao, F.; Zhang, J.; Peng, Y. Friction Properties of Novel PVP/PVA Blend Hydrogels as Artificial Cartilage. J. Biomed. Mater. Res. A 2010, 93, 1016–1019. [Google Scholar] [CrossRef]
- Boussaid, M.; Haddadine, N.; Benmounah, A.; Dahal, J.; Bouslah, N.; Benaboura, A.; El-Shall, S. Viscosity-Boosting Effects of Polymer Additives in Automotive Lubricants. Polym. Bull. 2024, 81, 6995–7011. [Google Scholar] [CrossRef]
- Karmakar, G.; Dey, K.; Ghosh, P.; Sharma, B.K.; Erhan, S.Z. A Short Review on Polymeric Biomaterials as Additives for Lubricants. Polymers 2021, 13, 1333. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Y.; Liu, B.; Yu, L.; Tong, Y.; Yan, M.; Yang, Z.; Hao, Y.; Shangguan, L.; Zhang, S.; et al. Research Progresses of Nanomaterials as Lubricant Additives. Friction 2024, 12, 1347–1391. [Google Scholar] [CrossRef]
- Ochoa, I.; Hatzikiriakos, S.G. Polytetrafluoroethylene Paste Preforming: Viscosity and Surface Tension Effects. Powder Technol. 2004, 146, 73–83. [Google Scholar] [CrossRef]
- Encinas, N.; Pantoja, M.; Abenojar, J.; Martínez, M.A. Control of Wettability of Polymers by Surface Roughness Modification. J. Adhes. Sci. Technol. 2010, 24, 1869–1883. [Google Scholar] [CrossRef]
- Wan, S.; Tieu, A.K.; Xia, Y.; Zhu, H.; Tran, B.H.; Cui, S. An Overview of Inorganic Polymer as Potential Lubricant Additive for High Temperature Tribology. Tribol. Int. 2016, 102, 620–635. [Google Scholar] [CrossRef]
- Hossain, K.R.; Jiang, P.; Yao, X.; Wu, J.; Hu, D.; Yang, X.; Wu, T.; Wang, X. Additive Manufacturing of Polymer-Based Lubrication. Macromol. Mater. Eng. 2023, 308, 2300147. [Google Scholar] [CrossRef]
- Van Ravensteijn, B.G.P.; Bou Zerdan, R.; Seo, D.; Cadirov, N.; Watanabe, T.; Gerbec, J.A.; Hawker, C.J.; Israelachvili, J.N.; Helgeson, M.E. Triple Function Lubricant Additives Based on Organic-Inorganic Hybrid Star Polymers: Friction Reduction, Wear Protection, and Viscosity Modification. ACS Appl. Mater. Interfaces 2019, 11, 1363–1375. [Google Scholar] [CrossRef]
- Martini, A.; Ramasamy, U.S.; Len, M. Review of Viscosity Modifier Lubricant Additives. Tribol. Lett. 2018, 66, 58. [Google Scholar] [CrossRef]
- Verdier, S.; Coutinho, J.A.P.; Silva, A.M.S.; Alkilde, O.F.; Hansen, J.A. A Critical Approach to Viscosity Index. Fuel 2009, 88, 2199–2206. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Ye, E.; Li, Z.; Wang, D. Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators. Adv. Sens. Res. 2023, 2, 2200058. [Google Scholar] [CrossRef]
- Liao, L.; Ni, Q.; Peng, W.; Mei, Q. Advances in Multifunctional Sensors Based on Triboelectric Nanogenerator—Applications, Triboelectric Materials, and Manufacturing Integration. Adv. Mater. Technol. 2024, 9, 2301592. [Google Scholar] [CrossRef]
- Hasan, S.; Kouzani, A.Z.; Adams, S.; Long, J.; Mahmud, M.A.P. Comparative Study on the Contact-Separation Mode Triboelectric Nanogenerator. J. Electrostat. 2022, 116, 103685. [Google Scholar] [CrossRef]
- Nawaz, A.; Kumar, M.; Sarwar, N.; Jeong, D.I.; Yoon, D.H. ZnFe2O4@PDMS Composite Film for Mechanical Energy Harvesting and Tactile Sensing Application. Mater. Technol. 2022, 37, 2659–2667. [Google Scholar] [CrossRef]
- Xiao, X.; Meng, X.; Kim, D.; Jeon, S.; Park, B.J.; Cho, D.S.; Lee, D.M.; Kim, S.W. Ultrasound-Driven Injectable and Fully Biodegradable Triboelectric Nanogenerators. Small Methods 2023, 7, 2201350. [Google Scholar] [CrossRef]
- Sun, J.; Yang, A.; Zhao, C.; Liu, F.; Li, Z. Recent Progress of Nanogenerators Acting as Biomedical Sensors in Vivo. Sci. Bull. 2019, 64, 1336–1347. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Lin Wang, Z. A Breathable, Biodegradable, Antibacterial, and Self-Powered Electronic Skin Based on All-Nanofiber Triboelectric Nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef]
- Sankar Ganesh, R.; Yoon, H.J.; Kim, S.W. Recent Trends of Biocompatible Triboelectric Nanogenerators toward Self-Powered e-Skin. EcoMat 2020, 2, 12065. [Google Scholar] [CrossRef]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, L.; Li, J.; Xue, Y.; Liu, H.; He, J.; Qu, M. All-Fiber-Based Superhydrophobic Wearable Self-Powered Triboelectric Nanogenerators for Biomechanical and Droplet Energy Harvesting. ACS Appl. Nano Mater. 2023, 6, 23279–23291. [Google Scholar] [CrossRef]
- Xu, K.; Peng, T.; Zhang, B.; Wu, Y.; Huang, Z.; Guan, Q. Zinc Oxide Bridges the Nanofillers to Enhance the Wear Resistance and Stability of Triboelectric Nanogenerators. Chem. Eng. J. 2024, 493, 152532. [Google Scholar] [CrossRef]
- Zi, Y.; Wu, C.; Ding, W.; Wang, Z.L. Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. Adv. Funct. Mater. 2017, 27, 1700049. [Google Scholar] [CrossRef]
- Sun, B.; Xu, D.; Wang, Z.; Zhan, Y.; Zhang, K. Interfacial Structure Design for Triboelectric Nanogenerators. Battery Energy 2022, 1, 20220001. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Gao, Y.; Zhao, Z.; Zhang, B.; Zhang, C.; He, L.; Liu, J.; Zhou, L.; Wang, Z.L.; et al. A Noncontact Constant-Voltage Triboelectric Nanogenerator via Charge Excitation. ACS Energy Lett. 2023, 8, 2066–2076. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material Choices for Triboelectric Nanogenerators: A Critical Review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Zhao, K.; Gao, Z.; Zhang, J.; Zhou, J.; Zhan, F.; Qiang, L.; Liu, M.J.; Cyu, R.H.; Chueh, Y.L. Design of Strong-Performance, High-Heat Dissipation Rate, and Long-Lifetime Triboelectric Nanogenerator Based on Robust Hexagonal Boron Nitride (HBN) Nanosheets/Polyvinyl Chloride (PVC) Composite Films for Rotational Energy Harvesting. J. Power Sources 2024, 614, 234997. [Google Scholar] [CrossRef]
- Niu, L.; Miao, X.; Li, Y.; Xie, X.; Wen, Z.; Jiang, G. Surface Morphology Analysis of Knit Structure-Based Triboelectric Nanogenerator for Enhancing the Transfer Charge. Nanoscale Res. Lett. 2020, 15, 181. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Zhang, Z.; Min, H.; Wang, C.; Hu, G.; Yang, T.; Luo, S.; Yu, B.; Huang, T.; et al. Highly Durable Bidirectional Rotary Triboelectric Nanogenerator with a Self-Lubricating Texture and Self-Adapting Contact Synergy for Wearable Applications. Small 2023, 19, 2300890. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, Y.; Shao, J.; Meng, H.; Li, Z. Strategies to Improve the Output Performance of Triboelectric Nanogenerators. Small Methods 2024, 8, 2301682. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Yao, T.; Li, N.; Li, X.; Shang, J. Self-Powered Non-Contact Triboelectric Rotation Sensor with Interdigitated Film. Sensors 2020, 20, 4947. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Dai, X.; Wu, X.; Ding, Z.; Gao, Y.; Pang, Y.; Jiang, T.; Luo, J.; Hong, Z.; Wang, Z.L. High Energy Density Non-Contact Bidirectional Spinning Oscillating Float-Type Triboelectric Nanogenerators for Energy Extraction from Irregular Waves. Adv. Energy Mater. 2025, 15, 2404891. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Xie, Y.; Wu, Z.; Yang, J.; Wang, Z.L. Elastic-Connection and Soft-Contact Triboelectric Nanogenerator with Superior Durability and Efficiency. Adv. Funct. Mater. 2021, 31, 2105237. [Google Scholar] [CrossRef]
- Han, J.; Feng, Y.; Chen, P.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z.L. Wind-Driven Soft-Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur with High Performance and Durability for Smart Farming. Adv. Funct. Mater. 2022, 32, 2108580. [Google Scholar] [CrossRef]
- Manojkumar, K.; Muthuramalingam, M.; Sateesh, D.; Hajra, S.; Panda, S.; Kim, H.J.; Sundaramoorthy, A.; Vivekananthan, V. Advances in Triboelectric Energy Harvesting at Liquid-Liquid Interfaces. ACS Appl. Energy Mater. 2025, 8, 659–682. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Kim, S.-J.; Wang, Z. Advancements in Solid–Liquid Triboelectric Nanogenerators. MRS Bull. 2025, 50, 491–502. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, Y.; Cao, R.; Wu, H.; Zhang, W.; Zhu, Y.; Ren, K.; Pan, C. Triboelectric Polymer with Excellent Enhanced Electrical Output Performance over a Wide Temperature Range. Nano Energy 2023, 110, 108347. [Google Scholar] [CrossRef]
- Huang, X.; Xing, C.; Zhou, Z.; Zuo-Jiang, S.; Sun, D.; Chen, G.; Jiang, X. Underwater High-Performance Flag-Shaped Triboelectric Nanogenerator for Harvesting Energy in Ultraslow Water Current. Nano Energy 2025, 135, 110664. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X. Chemical Modification of Polymer Surfaces for Advanced Triboelectric Nanogenerator Development. Extreme Mech. Lett. 2016, 9, 514–530. [Google Scholar] [CrossRef]
- Mahmud, M.A.P.; Lee, J.J.; Kim, G.H.; Lim, H.J.; Choi, K.B. Improving the Surface Charge Density of a Contact-Separation-Based Triboelectric Nanogenerator by Modifying the Surface Morphology. Microelectron. Eng. 2016, 159, 102–107. [Google Scholar] [CrossRef]
- Lee, S.; Park, Y. Bin Contact-Separation Mode Triboelectric Nanogenerator Utilizing Carbon-Fiber Composite Structure for Harvesting Mechanical Energy. Funct. Compos. Struct. 2023, 5, 035007. [Google Scholar] [CrossRef]
- Suo, X.; Li, B.; Ji, H.; Mei, S.; Miao, S.; Gu, M.; Yang, Y.; Jiang, D.; Cui, S.; Chen, L.; et al. Dielectric Layer Doping for Enhanced Triboelectric Nanogenerators. Nano Energy 2023, 114, 108651. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, L.; Liu, D.; Li, S.; Liu, L.; Chen, S.; Zhao, Z.; Yuan, W.; Wang, Z.L.; Wang, J. Improving Performance of Triboelectric Nanogenerators by Dielectric Enhancement Effect. Matter 2022, 5, 180–193. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Xu, G.; Wang, S.; Mei, T.; Liu, N.; Wang, T.; Wang, Y.; Xiao, K. Charges Transfer in Interfaces for Energy Generating. Small Methods 2024, 8, 2300261. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.; Park, S.; Park, C.; Park, C.; Choi, H.J. Effect of the Relative Permittivity of Oxides on the Performance of Triboelectric Nanogenerators. RSC Adv. 2017, 7, 49368–49373. [Google Scholar] [CrossRef]
- Wang, Z.L. From Contact Electrification to Triboelectric Nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, W.; Lü, X.; Diao, D. Friction Force Excitation Effect on the Sliding-Mode Triboelectric Nanogenerator. Tribol. Int. 2023, 185, 108504. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, M.S.; Jo, S.E.; Kim, Y.J. Triboelectric-Thermoelectric Hybrid Nanogenerator for Harvesting Frictional Energy. Smart Mater. Struct. 2016, 25, 125007. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Wang, N. B4C/PVDF-Based Triboelectric Nanogenerator: Achieving High Wear-Resistance and Thermal Conductivity. Tribol. Int. 2024, 197, 109828. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Z.; Sun, W.; Xu, X.; Han, Q.; Chu, F. Yoyo-Ball Inspired Triboelectric Nanogenerators for Harvesting Biomechanical Energy. Appl. Energy 2022, 308, 118322. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Örtegren, J.; Andersson, H.; Olsen, M.; Chen, W.; Wang, P.; Dahlström, C.; Eivazi, A.; Norgren, M. Energy Harvesting Using Wastepaper-Based Triboelectric Nanogenerators. Adv. Eng. Mater. 2023, 25, 2300107. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, Z.; Xu, X.; Han, Q.; Chu, F. Harmonic Balance Analysis of Output Characteristics of Free-Standing Mode Triboelectric Nanogenerators. Int. J. Mech. Sci. 2021, 207, 106668. [Google Scholar] [CrossRef]
- Zhang, L.; Su, C.; Cui, X.; Li, P.; Wang, Z.; Gu, L.; Tang, Z. Free-Standing Triboelectric Layer-Based Full Fabric Wearable Nanogenerator for Efficient Mechanical Energy Harvesting. ACS Appl. Electron. Mater. 2020, 2, 3366–3372. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Yang, J. Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source. J. Nanomater. 2016, 2016, 5651613. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Y.; Zhang, H.; Ding, Z.; Song, W.; Li, J. Self-Sensing Smart Thrust Roller Bearing Based on Triboelectric Nanogenerator with Highly Sensitivity for Monitoring Trace Contaminants in Lubricating Oil. Nano Energy 2024, 119, 109058. [Google Scholar] [CrossRef]
- Song, M.; Chung, J.; Chung, S.H.; Cha, K.; Heo, D.; Kim, S.; Hwang, P.T.J.; Kim, D.; Koo, B.; Hong, J.; et al. Semisolid-Lubricant-Based Ball-Bearing Triboelectric Nanogenerator for Current Amplification, Enhanced Mechanical Lifespan, and Thermal Stabilization. Nano Energy 2022, 93, 106816. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Xin, Y.; Guo, D.; Hu, G.; Ma, Y.; Yu, B.; Huang, T.; Ji, C.; Zhu, M.; et al. Earthworm-Inspired Ultra-Durable Sliding Triboelectric Nanogenerator with Bionic Self-Replenishing Lubricating Property for Wind Energy Harvesting and Self-Powered Intelligent Sports Monitoring. Adv. Sci. 2024, 11, 2401636. [Google Scholar] [CrossRef]
- Song, Y.; Xu, W.; Liu, Y.; Zheng, H.; Cui, M.; Zhou, Y.; Zhang, B.; Yan, X.; Wang, L.; Li, P.; et al. Achieving Ultra-Stable and Superior Electricity Generation by Integrating Transistor-like Design with Lubricant Armor. Innovation 2022, 3, 100301. [Google Scholar] [CrossRef]
- Hao, Z.; Li, W. A Review of Smart Lubricant-Infused Surfaces for Droplet Manipulation. Nanomaterials 2021, 11, 801. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, X.; Hao, C.; Zheng, H.; Liu, Y.; Yan, X.; Yang, Z.; Leung, M.; Zeng, X.C.; Xu, R.X.; et al. SLIPS-TENG: Robust Triboelectric Nanogenerator with Optical and Charge Transparency Using a Slippery Interface. Natl. Sci. Rev. 2019, 6, 540–550. [Google Scholar] [CrossRef]
- Yan, X.; Song, Y.; Zheng, H.; Cui, H.; Wang, Z.; Xu, W. A Bubble Energy Generator Featuring Lubricant-Impregnated Surface with High Durability and Efficiency. Nano Energy 2024, 121, 109238. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, C.; Liu, W.; Zhang, Y.; Zhang, J.; Li, X.; Geng, L.; Wang, X. Pulse Sensor Based on Single-Electrode Triboelectric Nanogenerator. Sens. Actuators A Phys. 2018, 280, 326–331. [Google Scholar] [CrossRef]
- Akram, W.; Chen, Q.; Xia, G.; Fang, J. A Review of Single Electrode Triboelectric Nanogenerators. Nano Energy 2023, 106, 108043. [Google Scholar] [CrossRef]
- Patnam, H.; Graham, S.A.; Manchi, P.; Paranjape, M.V.; Yu, J.S. Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications. ACS Appl. Mater. Interfaces 2023, 15, 6768–16777. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Chen, J.; Jing, Q.; Zhou, Y.S.; Wen, X.; Wang, Z.L. Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS Nano 2013, 7, 7342–7351. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.; Zhang, L.; Wang, L.; Xue, H.; Wang, Z.L. Non-Contact and Liquid–Liquid Interfacing Triboelectric Nanogenerator for Self-Powered Water/Liquid Level Sensing. Nano Energy 2020, 72, 104703. [Google Scholar] [CrossRef]
- Shao, J.; Yu, G.; He, Y.; Li, J.; Hou, M.; Wang, X.; Zhang, P.; Wang, X. An Investigation of the Output Performances of a Triboelectric Nanogenerator Lubricated with TiO2-Doped Oleic Acid. Lubricants 2024, 12, 269. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Xue, Q.-J.; Liu, W.-M.; Shen, W.-C. WEAR Friction and Wear Properties of Metal Powder Filled PTFE Composites under Oil Lubricated Conditions. Wear 1997, 210, 151–156. [Google Scholar] [CrossRef]
- Oshita, K.; Yanagi, M.; Okada, Y.; Komiyama, S. Tribological properties of a synthetic mica-organic intercalation compound used as a solid lubricant. Surf. Coat. Technol. 2017, 325, 738–745. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; He, Y.; Xu, S.; Fu, S.; Shan, C.; Wu, H.; An, S.; Li, K.; Li, W.; et al. Ultra-Stability and High Output Performance of a Sliding Mode Triboelectric Nanogenerator Achieved by an Asymmetric Electrode Structure Design. Energy Environ. Sci. 2024, 17, 2651–2661. [Google Scholar] [CrossRef]
- He, W.; Liu, W.; Chen, J.; Wang, Z.; Liu, Y.; Pu, X.; Yang, H.; Tang, Q.; Yang, H.; Guo, H.; et al. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Charge Space-Accumulation Effect. Nat. Commun. 2020, 11, 4277. [Google Scholar] [CrossRef]
- Wen, J.; Chen, B.; Tang, W.; Jiang, T.; Zhu, L.; Xu, L.; Chen, J.; Shao, J.; Han, K.; Ma, W.; et al. Harsh-Environmental-Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning. Adv. Energy Mater. 2018, 8, 1801898. [Google Scholar] [CrossRef]
- Qiao, W.; Zhao, Z.; Zhou, L.; Liu, D.; Li, S.; Yang, P.; Li, X.; Liu, J.; Wang, J.; Wang, Z.L. Simultaneously Enhancing Direct-Current Density and Lifetime of Tribovotaic Nanogenerator via Interface Lubrication. Adv. Funct. Mater. 2022, 32, 2208544. [Google Scholar] [CrossRef]
- You, Z.Y.; Wang, X.; Lu, F.; Wang, S.; Hu, B.; Li, L.; Fang, W.; Liu, Y. An Organic Semiconductor/Metal Schottky Heterojunction Based Direct Current Triboelectric Nanogenerator Windmill for Wind Energy Harvesting. Nano Energy 2023, 109, 108302. [Google Scholar] [CrossRef]
- Luo, X.; Li, H.; Berbille, A.; Liu, L.; Gao, Y.; Han, G.; Wang, Z.L.; Zhu, L. Tribovoltaic Nanogenerators Based on N-n and p-p Semiconductor Homojunctions. Nano Energy 2024, 129, 110043. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Hu, Y.; Li, Z.; Li, L.; Ye, G. Investigation on the Tribological Properties and Electrification Performance of Grease-Lubricated Triboelectric Nanogenerators. Tribol. Int. 2024, 191, 109163. [Google Scholar] [CrossRef]
- Hoehn, B.-R.; Stahl, K.; Michaelis, K. Influence of Lubricant on Gear Wear at Low Speeds. J. Tribol. Lubr. Technol. Appl. Liq. Gaseous Fuels Combust. Eng. 2012, 51, 17–28. [Google Scholar]
- Chen, J.; Zhao, Y.; Wang, R.; Wang, P. Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil. Micromachines 2023, 14, 1776. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Hu, Y.; Li, Z.; Li, L.; Wu, L. Grease-Lubricated Triboelectric Instantaneous Angular Speed Sensor Integrated with Signal Processing Circuit for Bearing Fault Diagnosis. Nano Energy 2023, 117, 108871. [Google Scholar] [CrossRef]
- Shi, G.; Xiong, J.; Wu, W.; Guo, Z.; Wang, S.; Mao, J. High-Strength Conductive Hydrogels Based on the Hofmeister Effect for Friction Nanogenerators. Mater. Today Chem. 2024, 40, 102266. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, K.; Weng, S.; Jiang, X. Super Strong and Tough Anisotropic Hydrogels through Synergy of Directional Freeze-Casting, Metal Complexation and Salting Out. Chem. Eng. J. 2023, 463, 142414. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, D.; Zhang, F.; Liu, Y.; Chen, B.; Wang, Z.L.; Pan, J.; Larsson, R.; Shi, Y. Real-Time and Online Lubricating Oil Condition Monitoring Enabled by Triboelectric Nanogenerator. ACS Nano 2021, 15, 11869–11879. [Google Scholar] [CrossRef] [PubMed]
- Bustami, B.; Rahman, M.M.; Shazida, M.J.; Islam, M.; Rohan, M.H.; Hossain, S.; Nur, A.S.M.; Younes, H. Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review. Lubricants 2023, 11, 11080331. [Google Scholar] [CrossRef]
- Yang, Q.X.; Cao, X.; Wang, Z.L. Water-Driven Robust Triboelectric Nanogenerator for Electrochemical Synthesis. Chem. Eng. J. 2024, 488, 150738. [Google Scholar] [CrossRef]
- Jiang, F.; Zhan, L.; Lee, J.P.; Lee, P.S. Triboelectric nanogenerators based on fluid medium: From fundamental mechanisms toward multifunctional applications. Adv. Mater. 2024, 36, 2308197. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Cui, Y.; Li, Z.; Ji, J.; Feng, Y.; Chen, S.; Zhang, M.; Wang, H. Dual-Functional Coatings with Self-Lubricating and Self-Healing Properties by Combining Poly(Urea-Formaldehyde)/SiO2 Hybrid Microcapsules Containing Linseed Oil. Ind. Eng. Chem. Res. 2019, 58, 22032–22039. [Google Scholar] [CrossRef]
- Li, H.; Cao, C.; Li, Y.; Fan, X.; Sun, J.; Zhu, M. Friction Heat-Driven Robust Self-Lubricity of n-Alkanols/Epoxy Resin Coatings Enabled by Solid-Liquid Phase Transition. Mater. Horiz 2024, 11, 4942–4950. [Google Scholar] [CrossRef]
- Yun, S.; Lee, S.; Yong, K. Photo-Responsive Liquid–Solid Triboelectric Nanogenerator by Photothermal Effect. Nano Energy 2024, 129, 110075. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, N.; Hu, J.; Liao, X.; Shen, Y.; Gan, Z. Effect of Temperature on the Chemical Composition and Physicochemical Properties of Diester Aviation Lubrication Oil. Int. J. Chem. Eng. 2020, 2020, 8829206. [Google Scholar] [CrossRef]
- Soltani, M.E.; Shams, K.; Akbarzadeh, S.; Ruggiero, A. A Comparative Investigation on the Tribological Performance and Physicochemical Properties of Biolubricants of Various Sources, a Petroleum-Based Lubricant, and Blends of the Petroleum-Based Lubricant and Crambe Oil. Tribol. Trans. 2020, 63, 1121–1134. [Google Scholar] [CrossRef]
- Nair, S.S.; Nair, K.P.; Rajendrakumar, P.K. Evaluation of Physicochemical, Thermal and Tribological Properties of Sesame Oil (Sesamum indicum L.): A Potential Agricultural Crop Base Stock for Eco-Friendly Industrial Lubricants. Int. J. Agric. Resour. Gov. Ecol. 2017, 13, 77–90. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, K.; Li, D.; Shi, X. Acid Number Prediction Model of Lubricating Oil Based on Mid-Infrared Spectroscopy. Lubricants 2022, 10, 205. [Google Scholar] [CrossRef]
- Van De Voort, F.R.; Sedm, J.A.; Yaylayan, V.; Saint Laurent, C. Determination of Acid Number and Base Number in Lubricants by Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2003, 57, 1425–1431. [Google Scholar] [CrossRef]
- Conrad, A.; Hodapp, A.; Hochstein, B.; Willenbacher, N.; Jacob, K.H. Low-Temperature Rheology and Thermoanalytical Investigation of Lubricating Oils: Comparison of Phase Transition, Viscosity, and Pour Point. Lubricants 2021, 9, 99. [Google Scholar] [CrossRef]
- Lu, C.X.; Han, C.B.; Gu, G.Q.; Chen, J.; Yang, Z.W.; Jiang, T.; He, C.; Wang, Z.L. Temperature Effect on Performance of Triboelectric Nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275. [Google Scholar] [CrossRef]
- Covitch, M.J.; Trickett, K.J. How Polymers Behave as Viscosity Index Improvers in Lubricating Oils. Adv. Chem. Eng. Sci. 2015, 5, 134–151. [Google Scholar] [CrossRef]
- Rahman, M.H.; Liu, T.; Macias, T.; Misra, M.; Patel, M.; Martini, A.; Menezes, P.L. Physicochemical and Tribological Comparison of Bio- and Halogen-Based Ionic Liquid Lubricants. J. Mol. Liq. 2023, 369, 120918. [Google Scholar] [CrossRef]
- Erhan, S.Z.; Sharma, B.K.; Perez, J.M. Oxidation and Low Temperature Stability of Vegetable Oil-Based Lubricants. Ind. Crops Prod. 2006, 24, 292–299. [Google Scholar] [CrossRef]
- Davis, L.L.; Lincoln, B.H.; Byrkit, G.D.; Jones, W.A. Oxidation of Petroleum Lubricants. Ind. Eng. Chem. 1941, 33, 339–350. [Google Scholar] [CrossRef]
- Fan, M.; Ai, J.; Hu, C.; Du, X.; Zhou, F.; Liu, W. Naphthoate Based Lubricating Oil with High Oxidation Stability and Lubricity. Tribol. Int. 2019, 138, 204–210. [Google Scholar] [CrossRef]
- Ghosh, S.; Choudhury, D.; Roy, T.; Moradi, A.; Masjuki, H.H.; Pingguan-Murphy, B. Tribological Performance of the Biological Components of Synovial Fluid in Artificial Joint Implants. Sci. Technol. Adv. Mater. 2015, 16, 45002. [Google Scholar] [CrossRef]
- Ibrahim, M.; Jiang, J.; Wen, Z.; Sun, X. Surface Engineering for Enhanced Triboelectric Nanogenerator. Nanoenergy Adv. 2021, 1, 58–80. [Google Scholar] [CrossRef]
- Aazem, I.; Walden, R.; Babu, A.; Pillai, S.C. Surface Patterning Strategies for Performance Enhancement in Triboelectric Nanogenerators. Results Eng. 2022, 16, 100756. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Chen, K.; Chen, J. Advances in Nanostructures for High-Performance Triboelectric Nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916. [Google Scholar] [CrossRef]
- Chung, S.-H.; Chung, J.; Lee, S. Recent Advances in Lubricant-Based Triboelectric Nanogenerators for Enhancing Mechanical Lifespan and Electrical Output. Nanoenergy Adv. 2022, 2, 210–221. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Fu, T.; Hu, Y.; Li, L.; Zhao, Z.; Wu, L.; Wang, C.; Zhang, S. Research on Nano-Film Composite Lubricated Triboelectric Speed Sensor for Bearing Skidding Monitoring. Nano Energy 2023, 113, 108591. [Google Scholar] [CrossRef]
- Phair, B.; Bensch, L.; Duchowski, J.; Khazan, M.; Tsalyuk, V. Overcoming the Electrostatic Discharge in Hydraulic, Lubricating and Fuel-Filtration Applications by Incorporating Novel Synthetic Filter Media. Tribol. Trans. 2005, 48, 343–351. [Google Scholar] [CrossRef]
- Berman, D.; Farfan-Cabrera, L.I.; Rosenkranz, A.; Erdemir, A. Advancing the Frontiers of EV Tribology with 2D Materials—A Critical Perspective. Mater. Sci. Eng. R Rep. 2024, 161, 100855. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.; Yoon, H.-J. Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review. Micromachines 2025, 16, 1195. https://doi.org/10.3390/mi16111195
Nawaz A, Yoon H-J. Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review. Micromachines. 2025; 16(11):1195. https://doi.org/10.3390/mi16111195
Chicago/Turabian StyleNawaz, Ali, and Hong-Joon Yoon. 2025. "Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review" Micromachines 16, no. 11: 1195. https://doi.org/10.3390/mi16111195
APA StyleNawaz, A., & Yoon, H.-J. (2025). Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review. Micromachines, 16(11), 1195. https://doi.org/10.3390/mi16111195
