Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure
Abstract
1. Introduction
2. Principle and Methods
2.1. High-Sensitivity Sensing of DFB-FL Based on Phase-Shifted Fiber Bragg Grating
2.2. Ormia ochracea Fly-Inspired Time Delay Amplification Theory
2.3. Vibration Sensing Method of Vector Hydrophone
3. Experiment and Results
3.1. Anechoic Water Tank Experiment
3.2. Waveform Response to Incoming Waves
3.3. Frequency Response to Incoming Waves
3.4. Directional Response to Incoming Waves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Zhang, Y.; Yang, J.; Zhan, G. An Evaluation of Marine Economy Sustainable Development and the Ramifications of Digital Technologies in China Coastal Regions. Econ. Anal. Policy 2024, 82, 554–570. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep Seabed Mining: Frontiers in Engineering Geology and Environment. Int. J. Coal Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Raja, V.; Solaiappan, S.K.; Kumar, L.; Marimuthu, A.; Gnanasekaran, R.K.; Choi, Y. Design and Computational Analyses of Nature Inspired Unmanned Amphibious Vehicle for Deep Sea Mining. Minerals 2022, 12, 342. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Y.; Bao, F.; Xu, H.; Yang, Y.; Yan, Q.; Zhong, S.; Yin, H.; Xu, J.; Huang, Z.; et al. Marine Environmental Monitoring with Unmanned Vehicle Platforms: Present Applications and Future Prospects. Sci. Total Environ. 2023, 858, 159741. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Cretu, E. Bionic MEMS for Touching and Hearing Sensations: Recent Progress, Challenges, and Solutions. J. Bionic Eng. 2022, 19, 590–615. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Geng, Y.; Bai, Z.; Zhang, F.; Zhao, H.; Chen, J.; Hao, J.; Wang, R.; Jia, L.; et al. A Novel Integrated Scalar-Vector Hydrophone for Enhanced Low-Frequency Acoustic Detection in Marine Environments. Measurement 2025, 256, 118216. [Google Scholar] [CrossRef]
- Wang, R.; Liu, W.; Pan, Z.; Fan, W.; Liu, L.; Xing, E.; Zhou, Y.; Tang, J.; Liu, J. Preparation and Controllable Tuning of a High-Quality Factor Phonon-Laser in the Optomechanical Microsphere Cavity. J. Phys. D Appl. Phys. 2024, 57, 055108. [Google Scholar] [CrossRef]
- Miles, R.N.; Robert, D.; Hoy, R.R. Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia ochracea. J. Acoust. Soc. Am. 1995, 98, 3059–3070. [Google Scholar] [CrossRef]
- Kuntzman, M.L.; Hall, N.A. Sound Source Localization Inspired by the Ears of the Ormia ochracea. Appl. Phys. Lett. 2014, 105, 033701. [Google Scholar] [CrossRef]
- Wilmott, D.; Alves, F.; Karunasiri, G. Bio-Inspired Miniature Direction Finding Acoustic Sensor. Sci. Rep. 2016, 6, 29957. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauer, R.; Jackson, J.C.; Whitmer, W.M.; Windmill, J.F.C.; Uttamchandani, D. A Low-Frequency Dual-Band Operational Microphone Mimicking the Hearing Property of Ormia ochracea. J. Microelectromech. Syst. 2018, 27, 667–676. [Google Scholar] [CrossRef]
- Rahaman, A.; Ishfaque, A.; Kim, B. Effect of Torsional Beam Length on Acoustic Functionalities of Bio-Inspired Piezoelectric MEMS Directional Microphone. IEEE Sens. J. 2019, 19, 6046–6055. [Google Scholar] [CrossRef]
- Rahaman, A.; Ishfaque, A.; Jung, H.; Kim, B. Bio-Inspired Rectangular Shaped Piezoelectric MEMS Directional Microphone. IEEE Sens. J. 2019, 19, 88–96. [Google Scholar] [CrossRef]
- Rahaman, A.; Kim, B. Sound Source Localization by Ormia ochracea Inspired Low–Noise Piezoelectric MEMS Directional Microphone. Sci. Rep. 2020, 10, 9545. [Google Scholar] [CrossRef]
- Rahaman, A.; Jung, H.; Kim, B. Coupled D33 Mode-Based High Performing Bio-Inspired Piezoelectric MEMS Directional Microphone. Appl. Sci. 2021, 11, 1305. [Google Scholar] [CrossRef]
- Rahamanand, A.; Kim, B. Sound Source Localization in 2D Using a Pair of Bio–Inspired MEMS Directional Microphones. IEEE Sens. J. 2021, 21, 1369–1377. [Google Scholar] [CrossRef]
- Rahaman, A.; Kim, B. An Mm-Sized Biomimetic Directional Microphone Array for Sound Source Localization in Three Dimensions. Microsyst. Nanoeng. 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Kim, B.; Park, D. Design and Characterizations of a Multi–Sound Receiver Using Fly Ormia ochracea’s Ears–Inspired MEMS Directional Microphone Array. Appl. Acoust. 2025, 228, 110359. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Ding, X. A Low-Frequency Multi-Band Piezoelectric MEMS Acoustic Sensor Inspired by Ormia ochracea. Micromachines 2025, 16, 451. [Google Scholar] [CrossRef]
- Marin, J.M.; Gunawan, W.H.; Rjeb, A.; Ashry, I.; Sun, B.; Ariff, T.; Kang, C.H.; Ng, T.K.; Park, S.; Duarte, C.M.; et al. Marine Soundscape Monitoring Enabled by Artificial Intelligence-Aided Integrated Distributed Sensing and Communications. Adv. Devices Instrum. 2025, 6, 0089. [Google Scholar] [CrossRef]
- Liu, H.J.; Yu, M.; Currano, L.; Gee, D. Fly-Ear Inspired Miniature Directional Microphones: Modeling and Experimental Study. In Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009; ASMEDC: New York, NY, USA, 2009; Volume 12: Micro and Nano Systems, Parts A and B, pp. 271–277. [Google Scholar]
- Liu, X.; Hu, X.; Cai, C.; Wang, H.; Qi, Z. Fiber-Optic Bionic Microphone Based Compact Sound Source Localization System with Extended Directional Range. J. Acoust. Soc. Am. 2024, 156, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.; Foster, S.; Van Velzen, J.; Mendis, H. Field Demonstration of a DFB Fibre Laser Hydrophone Seabed Array in Jervis Bay, Australia. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 5–9 October 2009; p. 75034L. [Google Scholar]
- Zhao, C.; Zheng, B.; Zhao, J.; Yang, Y.; Wang, X. Zero Drift Suppression Method of a Distributed Feedback Fiber Laser Hydrophone. Appl. Opt. 2021, 60, 7628. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Chen, W.; Wang, J.; Hu, X.; Chen, M.; Zhang, Y. Recent Progress in Fiber-Optic Hydrophones. Photonic Sens. 2021, 11, 109–122. [Google Scholar] [CrossRef]
- Hocker, G.B. Fiber-Optic Sensing of Pressure and Temperature. Appl. Opt. 1979, 18, 1445. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, D.; Liu, Z.; Guo, Z.; Dong, X.; Chiang, K.S.; Chu, B.C. High-Sensitivity Pressure Sensor Using a Shielded Polymer-Coated Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2001, 13, 618–619. [Google Scholar] [CrossRef]
- Wang, Q. Study on Localization Mechanisms of the Auditory Systems of Subminiature Creatures and Design and Experimental Research of the Bionic Acoustic Sensing Device. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 2010. [Google Scholar]
- Cho, A.r.; Choi, Y.; Yun, C. Survey of Acoustic Frequency Use for Underwater Acoustic Cognitive Technology. J. Ocean Eng. Technol. 2022, 36, 61–81. [Google Scholar] [CrossRef]











| Sound Source Frequency/Hz | Measured Sound Frequency/Hz | Absolute Error/Hz |
|---|---|---|
| 1000 | 1001 | 1 |
| 1250 | 1249 | 1 |
| 1600 | 1602 | 2 |
| 2000 | 2003 | 3 |
| 2500 | 2499 | 1 |
| 3150 | 3147 | 3 |
| 4000 | 3996 | 4 |
| 5000 | 4997 | 3 |
| 6300 | 6304 | 4 |
| 8000 | 8001 | 1 |
| 10,000 | 10,004 | 4 |
| Angle/° | Calculation Time Delay/ms | Measured Time Delay/ms | Amplification Factor of Time Delay |
|---|---|---|---|
| −90 | −1.17 × 10−2 | −0.6496 | 55.7 |
| −85 | −1.16 × 10−2 | −0.6158 | 53.0 |
| −80 | −1.15 × 10−2 | −0.6302 | 54.9 |
| −75 | −1.13 × 10−2 | −0.6422 | 57.0 |
| −70 | −1.10 × 10−2 | −0.5844 | 53.3 |
| −65 | −1.06 × 10−2 | −0.5674 | 53.7 |
| −60 | −1.01 × 10−2 | −0.4898 | 48.5 |
| −55 | −9.56 × 10−3 | −0.4596 | 48.1 |
| −50 | −8.94 × 10−3 | −0.372 | 41.6 |
| −45 | −8.25 × 10−3 | −0.469 | 56.9 |
| −40 | −7.50 × 10−3 | −0.4214 | 56.2 |
| −35 | −6.69 × 10−3 | −0.3762 | 56.2 |
| −30 | −5.83 × 10−3 | −0.3766 | 64.6 |
| −25 | −4.93 × 10−3 | −0.3362 | 68.2 |
| −20 | −3.99 × 10−3 | −0.1882 | 47.2 |
| −15 | −3.02 × 10−3 | −0.168 | 55.6 |
| −10 | −2.03 × 10−3 | −0.1356 | 66.9 |
| −5 | −1.02 × 10−3 | −0.036 | 35.4 |
| 0 | 0 | 0.0008 | |
| 5 | 1.02 × 10−3 | 0.0122 | 12.0 |
| 10 | 2.03 × 10−3 | 0.0566 | 27.9 |
| 15 | 3.02 × 10−3 | 0.2008 | 66.5 |
| 20 | 3.99 × 10−3 | 0.2164 | 54.2 |
| 25 | 4.93 × 10−3 | 0.309 | 62.7 |
| 30 | 5.83 × 10−3 | 0.312 | 53.5 |
| 35 | 6.69 × 10−3 | 0.3206 | 47.9 |
| 40 | 7.50 × 10−3 | 0.346 | 46.1 |
| 45 | 8.25 × 10−3 | 0.4008 | 48.6 |
| 50 | 8.94 × 10−3 | 0.3494 | 39.1 |
| 55 | 9.56 × 10−3 | 0.3944 | 41.3 |
| 60 | 1.01 × 10−2 | 0.4192 | 41.5 |
| 65 | 1.06 × 10−2 | 0.4518 | 42.7 |
| 70 | 1.10 × 10−2 | 0.4726 | 43.1 |
| 75 | 1.13 × 10−2 | 0.5394 | 47.9 |
| 80 | 1.15 × 10−2 | 0.5448 | 47.4 |
| 85 | 1.16 × 10−2 | 0.576 | 49.6 |
| 90 | 1.17 × 10−2 | 0.6062 | 52.0 |
| Parameter | Fly Ormia ochracea | This Work |
|---|---|---|
| Area | 0.288 mm2 | 3 cm2 |
| Inter-membrane distance | 0.45–0.52 mm | 1.75 cm |
| Mass | <0.5 g | |
| Directional frequency | 4.8–5 kHz | 9.25 kHz |
| Time delay amplification factor | 20× | 12–68.2× |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Peng, J.; Wu, X.; Shi, Y.; Xu, W.; Wang, Y.; Zhang, R.; Li, Z.; An, B. Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure. Micromachines 2025, 16, 1196. https://doi.org/10.3390/mi16111196
Zhang J, Peng J, Wu X, Shi Y, Xu W, Wang Y, Zhang R, Li Z, An B. Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure. Micromachines. 2025; 16(11):1196. https://doi.org/10.3390/mi16111196
Chicago/Turabian StyleZhang, Jinying, Jianyu Peng, Xianmei Wu, Yifan Shi, Wenpeng Xu, Yiyao Wang, Rong Zhang, Ziqi Li, and Bingwen An. 2025. "Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure" Micromachines 16, no. 11: 1196. https://doi.org/10.3390/mi16111196
APA StyleZhang, J., Peng, J., Wu, X., Shi, Y., Xu, W., Wang, Y., Zhang, R., Li, Z., & An, B. (2025). Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure. Micromachines, 16(11), 1196. https://doi.org/10.3390/mi16111196

