Improved Dielectrically Modulated Quad Gate Schottky Barrier MOSFET Biosensor
Abstract
:1. Introduction
2. Device Structure and Simulation Strategy
3. Result and Discussion
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hafiz, S.A.; Iltesha; Ehteshamuddin, M.; Loan, S.A. Dielectrically Modulated Source-Engineered Charge-Plasma-Based Schottky-FET as a Label-Free Biosensor. IEEE Trans. Electron Devices 2019, 66, 1905–1910. [Google Scholar] [CrossRef]
- Rashid, S.; Bashir, F.; Khanday, F.A.; Beigh, M.R. Double Gate 6H-Silicon Carbide Schottky Barrier FET as Dielectrically Modulated Label Free Biosensor. Silicon 2022, 1–12. [Google Scholar] [CrossRef]
- Sen, D.; De, A.; Goswami, B.; Shee, S.; Sarkar, S.K. Noise Immune Dielectric Modulated Dual Trench Transparent Gate Engineered MOSFET as a Label Free Biosensor: Proposal and Investigation. J. Comput. Electron. 2021, 20, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Akram, M.W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 2013, 34, 584–586. [Google Scholar] [CrossRef]
- Larson, J.M.; Snyder, J. Overview and status of metal S/D Schottky barrier MOSFET technology. IEEE Trans. Electron Devices 2006, 53, 1048–1058. [Google Scholar] [CrossRef]
- Kale, S.; Kondekar, P.N. Ferroelectric Schottky barrier tunnel FET with gate-drain underlap: Proposal and investigation. Superlattices Microstruct. 2016, 89, 225–230. [Google Scholar] [CrossRef]
- Rashid, S.; Bashir, F.; Khanday, F.A.; Beigh, M.R. L-Shaped High Performance Schottky Barrier FET as Dielectrically Modulated Label Free Biosensor. IEEE Trans. NanoBiosci. 2022, 21, 542–548. [Google Scholar] [CrossRef]
- Calvet, L.E.; Luebben, H.; Reed, M.A.; Wang, C.; Snyder, J.P. Subthreshold and scaling of PtSi Schottky barrier MOSFETs. Superlattices Microstruct. 2000, 28, 501–506. [Google Scholar] [CrossRef]
- Liu, X.; Ma, K.; Wang, Y.; Wu, M.; Lee, J.-H.; Jin, X. A Novel High Schottky Barrier Based Bilateral Gate and Assistant Gate Controlled Bidirectional Tunnel Field Effect Transistor. IEEE J. Electron Devices Soc. 2020, 8, 976–980. [Google Scholar] [CrossRef]
- Imenabadi, R.M.; Saremi, M.; Vandenberghe, W.G. A Novel PNPN-Like Z-Shaped Tunnel Field-Effect Transistor With Improved Ambipolar Behavior and RF Performance. IEEE Trans. Electron Devices 2017, 64, 4752–4758. [Google Scholar] [CrossRef]
- Sharma, S.; Goel, A.; Rewari, S.; Nath, V.; Gupta, R.S. Gallium Nitride Cylindrical Schottky Barrier MOSFET(GaN-CSB-MOSFET) For High-Frequency Implementation. In Proceedings of the 2021 International Conference on Industrial Electronics Research and Applications (ICIERA), New Delhi, India, 22–24 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Agarwal, L.; Priya, G.L.; Papnassam, E.; Kumar, B.P.; Venkatesh, M. A Novel Metal Dielectric Metal Based GAA-Junction-Less TFET Structure for Low Loss SRAM Design. Silicon 2022, 1–13. [Google Scholar] [CrossRef]
- Anusuya, P.; Kumar, P.; Esakki, P.; Agarwal, L. Recent Study on Schottky Tunnel Field Effect Transistor for Biosensing Applications. Silicon 2022, 14, 10187–10198. [Google Scholar] [CrossRef]
- Kale, S.; Kondekar, P.N. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance. Superlattices Microstruct. 2018, 113, 799–809. [Google Scholar] [CrossRef]
- Knoll, L.; Schfer, A.; Trellenkamp, S.; Bourdelle, K.K.; Zhao, Q.T.; Mantl, S. Nanowire and planar UTB SOI Schottky Barrier MOSFETs with dopant segregation. In Proceedings of the 13th International Conference on Ultimate Integration on Silicon (ULIS), Grenoble, France, 6–7 March 2012. [Google Scholar]
- Knoch, J.; Zhang, M.; Zhao, Q.T.; Mantl, S. Schottky-barrier height tuning using dopant segregation in Schottky-barrier MOSFETs on fully-depleted SOI. MRS Online Proc. Libr. (OPL) 2006, 913, 0913-D01. [Google Scholar] [CrossRef]
- Kale, S.; Kondekar, P.N. Design and Investigation of Dielectric Engineered Dopant Segregated Schottky Barrier MOSFET With NiSi Source/Drain. IEEE Trans. Electron Devices 2017, 64, 4400–4407. [Google Scholar] [CrossRef]
- Kale, S. Investigation of Dual Metal Gate Schottky Barrier MOSFET for Suppression of Ambipolar Current. IETE J. Res. 2023, 69, 404–409. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.P.; Kondekar, P.N. A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron. Eng. 2017, 168, 67–75. [Google Scholar] [CrossRef]
- Kale, S.; Chandu, M.S. Dual Metal Gate Dielectric Engineered Dopant Segregated Schottky Barrier MOSFET With Reduction in Ambipolar Current. Silicon 2022, 14, 935–941. [Google Scholar] [CrossRef]
- Ghosh, P.; Bhowmick, B. Effect of Temperature on Reliability Issues of Ferroelectric Dopant Segregated Schottky Barrier Tunnel Field Effect Transistor (Fe DS-SBTFET). Silicon 2020, 12, 1137–1144. [Google Scholar] [CrossRef]
- Kumar, P.; Bhowmick, B. Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application. Silicon 2020, 12, 821–830. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Bhattacharya, S.; Gupta, P.S.; Banerjee, L.; Sengupta, A.; Rahaman, H. A Hybrid Atomistic—Semi-Analytical Modeling on Schottky Barrier Au-MoS2-Au MOSFETs. In Proceedings of the 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Kolkata, India, 24–25 November 2018; pp. 46–50. [Google Scholar] [CrossRef]
- Rashid, S.; Bashir, F.; Khanday, F.A.; Beigh, M.R.; Hussin, F.A. 2-D Design of Double Gate Schottky Tunnel MOSFET for High-Performance Use in Analog/RF Applications. IEEE Access 2021, 9, 80158–80169. [Google Scholar] [CrossRef]
- Soni, D.; Sharma, D.; Yadav, S.; Aslam, M.; Yadav, D.S.; Sharma, N. Gate Metal Work Function Engineering for the Improvement of Electrostatic Behaviour of Doped Tunnel Field Effect Transistor. In Proceedings of the 2017 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), Bhopal, India, 18–20 December 2017; pp. 190–194. [Google Scholar] [CrossRef]
- Vinod, A.; Kumar, P.; Bhowmick, B. Impact of ferroelectric on the electrical characteristics of silicon–germanium based heterojunction Schottky barrier FET. AEU Int. J. Electron. Commun. 2019, 107, 257–263. [Google Scholar] [CrossRef]
- Ikeda, K.; Yamashita, Y.; Endoh, A.; Fukano, T.; Hikosaka, K.; Mimura, T. 50-nm gate Schottky source/drain p-MOSFETs with a SiGe channel. IEEE Electron Device Lett. 2002, 23, 670–672. [Google Scholar] [CrossRef]
- Bergveld, P. Development, operation, and application of the ionsensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. -19.
- Dwivedi, P.; Singh, R.; Sengar, B.S.; Kumar, A.; Garg, V. A New Simulation Approach of Transient Response to Enhance the Selectivity and Sensitivity in Tunneling Field Effect Transistor-Based Biosensor. IEEE Sens. J. 2020, 21, 3201–3209. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, M.; Gupta, N.; Tripathi, M.M.; Chaujar, R. Dielectric modulated transparent gate thin film transistor for biosensing applications. Mater. Today Proc. 2020, 28, 141–145. [Google Scholar] [CrossRef]
- Liu, H.; Lei, Y. A critical review: Recent advances in “digital” biomolecule detection with single copy sensitivity. Biosens. Bioelectron. 2021, 177, 112901. [Google Scholar] [CrossRef]
- Barman, U.; Goswami, N.; Ghosh, S.S.; Paily, R.P. Fabrication of FET Biosensor for Detection of Glutathione. In Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE), Bengaluru, India, 17–19 December 2018; pp. 1–4. [Google Scholar]
- Dewan, B.; Chaudhary, S.; Yadav, M. Evaluating the Performance Parameters of Triple Metal Dual Gate Vertical Tunnel FET Biosensor. In Proceedings of the 2022 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 19–20 February 2022; pp. 1–5. [Google Scholar]
- Im, H.; Huang, X.-J.; Gu, B.; Choi, Y.-K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef] [PubMed]
Parameter | Quad Gate SB-MOSFET | Conventional SB-MOSFET |
---|---|---|
Gate oxide thickness | 0.5 nm | 0.5 nm |
Silicon thickness | 6 nm | 6 nm |
Source length | 2 nm | 2 nm |
Doping concentration of Source | 1020 cm−3 | 1020 cm−3 |
Doping concentration of drain | 1018 cm−3 | 1018 cm−3 |
Channel length | 17 nm | 17 nm |
Doping concentration of channel | 1015 cm−3 | 1015 cm−3 |
Thickness of SiGe | 6 nm | - |
Length of SiGe | 2 nm | - |
Parameter | Quad Gate SB-MOSFET | Conventional SB-MOSFET |
---|---|---|
ION | 0.5 × 10−4 | 10−4 |
IOFF | 1.5 × 10−16 | 9 × 10−11 |
ION/IOFF | 3.3 × 1011 | 1.1 × 106 |
SS (mV/dec) | 60.65 | 75.81 |
S.No | Biomolecules | Dielectric Constant |
---|---|---|
1 | Streptavidin | 2.1 |
2 | Biotin | 2.63 |
3 | APTES | 3.57 |
4 | Cellulose | 6.1 |
5 | DNA | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esakki, P.; Kumar, P.; Esakki, M.; Venkatesh, A. Improved Dielectrically Modulated Quad Gate Schottky Barrier MOSFET Biosensor. Micromachines 2023, 14, 685. https://doi.org/10.3390/mi14030685
Esakki P, Kumar P, Esakki M, Venkatesh A. Improved Dielectrically Modulated Quad Gate Schottky Barrier MOSFET Biosensor. Micromachines. 2023; 14(3):685. https://doi.org/10.3390/mi14030685
Chicago/Turabian StyleEsakki, Papanasam, Prashanth Kumar, Manikandan Esakki, and Adithya Venkatesh. 2023. "Improved Dielectrically Modulated Quad Gate Schottky Barrier MOSFET Biosensor" Micromachines 14, no. 3: 685. https://doi.org/10.3390/mi14030685
APA StyleEsakki, P., Kumar, P., Esakki, M., & Venkatesh, A. (2023). Improved Dielectrically Modulated Quad Gate Schottky Barrier MOSFET Biosensor. Micromachines, 14(3), 685. https://doi.org/10.3390/mi14030685