The Microstructures and Characteristics of NiO Films: Effects of Substrate Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nail, B.A.; Fields, J.M.; Zhao, J.; Wang, J.; Greaney, M.J.; Brutchey, R.L.; Osterloh, F.E. Nickel Oxide Particles Catalyze Photochemical Hydrogen Evolution from Water—Nanoscaling Promotes P-Type Character and Minority Carrier Extraction. ACS Nano 2015, 9, 5135–5142. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Park, I.J.; Kim, M.; Lee, S.; Bae, C.; Jung, H.S.; Park, N.-G.; Kim, J.Y.; Shin, H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 2016, 8, 11403–11412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, W.; Zhu, J.; Zhao, W.; Ma, J.; Mhaisalkar, S.; Maria, T.L.; Yang, Y.; Zhang, H.; Hng, H.H.; et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Zhang, X.G.; Su, L.H.; Gao, B.; Shen, L.F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spheical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777. [Google Scholar] [CrossRef]
- Lang, J.W.; Kong, L.B.; Wu, W.J.; Luo, Y.C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes matterials for supercapacitors. Chem. Commun. 2008, 35, 4213. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, A.J.; Arshad, M.; Javed, M.S.; Ahmad, A.; Shah, S.S.A.; Khan, M.R.; Akram, S.; Zulfiqar; Ali, S.; et al. Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram. Int. 2020, 47, 8659–8667. [Google Scholar] [CrossRef]
- Hussain, S.; Ullah, N.; Zhang, Y.; Shaheen, A.; Javed, M.S.; Lin, L.; Zulfiqar; Shah, S.B.; Liu, G.; Qiao, G. One-step synthesis of unique catalyst Ni9S8@C for excellent MOR performances. Int. J. Hydrog. Energy 2019, 44, 24525–24533. [Google Scholar] [CrossRef]
- Hussain, S.; Javed, M.S.; Asim, S.; Shaheen, A.; Khan, A.J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M.; Qiao, G.; et al. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 2019, 46, 6406–6412. [Google Scholar] [CrossRef]
- Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F. Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 11851–11858. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Sun, G.-J.; Lee, C. NO2 Gas Sensing Performance of Co-Doped NiO Thin Film Sensors. Nanosci. Nanotechnol. Lett. 2015, 7, 713–717. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Dai, X.; Zhang, B.; Ye, Z.; Wang, M.; Wu, H. Tunable electrical properties of NiO thin films and p-type thin-film transistors. Thin Solid Films 2015, 592, 195–199. [Google Scholar] [CrossRef]
- Moulki, H.; Park, D.H.; Min, B.-K.; Kwon, H.; Hwang, S.-J.; Choy, J.-H.; Toupance, T.; Campet, G.; Rougier, A. Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices. Electrochim. Acta 2012, 74, 46–52. [Google Scholar] [CrossRef]
- Park, Y.T.; Lee, K.T. Degradation mechanism of the complementary electrochromic devices with WO3 and NiO thin films fabricated by RF sputtering deposition. J. Ceram. Process. Res. 2016, 17, 1192. [Google Scholar]
- Atak, G.; Coşkun, Ö.D. Annealing effects of NiO thin films for all-solid-state electrochromic devices. Solid State Ionics 2017, 305, 43–51. [Google Scholar] [CrossRef]
- Verma, V.; Katiyar, M. Origin of intrinic ferromagnetism in undoped antiferromagnetic NiO thin films. J. Phys. D Appl. Phys. 2015, 48, 235003. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Chen, J.-H.; Li, L.-L.; Ma, J.; Nan, C.-W.; Lin, Y.-H. Ferroelectric strain modulation of antiferromagnetic moments in Ni/NiO ferromagnet/antiferromagnet heterostructures. Phys. Rev. B 2017, 95, 174420. [Google Scholar] [CrossRef]
- Becker, M.; Polity, A.; Klar, P.J. NiO films on sapphire as potential antiferromagnetic pinning layers. J. Appl. Phys. 2017, 122, 175303. [Google Scholar] [CrossRef]
- Zaman, A.; Meletis, E.I. Microstructure and mechanical properties of TiN thin films prepared by reactive magnetron sputtering. Coatings 2017, 7, 209. [Google Scholar] [CrossRef]
- Lai, H.-D.; Jian, S.-R.; Tuyen, L.T.C.; Le, P.H.; Luo, C.-W.; Juang, J.-Y. Nanoindentation of Bi2Se3 Thin Films. Micromachines 2018, 9, 518. [Google Scholar] [CrossRef]
- Wiatrowski, A.; Obstarczyk, A.; Mazur, M.; Kaczmarek, D.; Wojcieszak, D. Characterization of HfO2 Optical Coatings Deposited by MF Magnetron Sputtering. Coatings 2019, 9, 106. [Google Scholar] [CrossRef]
- Suganya, M.; Ganesan, K.; Vijayakumar, P.; Gill, A.S.; Ramaseshan, R.; Ganesamoorthy, S. Structural, optical and mechanical properties of Y2Ti2O7 single crystal. Scr. Mater. 2020, 187, 227–231. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Pang, C.T.; Chen, B.S.; Le, P.H.; Uyen, N.N.; Tuyen, L.T.C.; Nguyen, V.; Luo, C.W.; Juang, J.Y.; Leu, J.; et al. Effects of stoichiometry on structural, morphological and nanomechanical properties of Bi2Se3 thin films deposited on InP(111) substrates by pulsed laser deposition. Coatings 2020, 10, 958. [Google Scholar] [CrossRef]
- Jian, S.-R.; Tseng, Y.-C. Nanomechanical Characteristics and Deformation Behaviors of ZnSe Thin Films by Nanoindentation. Sci. Adv. Mater. 2014, 6, 617–622. [Google Scholar] [CrossRef]
- Jian, S.-R.; Le, P.H.; Luo, C.-W.; Yihjuang, J.; Wu, K.-H.; Lee, J.-W. Nanomechanical Properties and Fracture Behaviors of Bi3Se2Te Thin Films by Nanoindentation. Sci. Adv. Mater. 2017, 9, 1877–1881. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Jian, S.-R.; Liu, T.-J.; Le, P.H.; Juang, J.-Y. Localized Deformation and Fracture Behaviors in InP Single Crystals by Indentation. Micromachines 2018, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Smolik, J.; Kacprzyńska-Gołacka, J.; Sowa, S.; Piasek, A. The analysis of resistance to brittle cracking of tungten doped TiO2 coatings by magnetron sputtering. Coatings 2020, 10, 807. [Google Scholar] [CrossRef]
- Zimmermann, J.; Reifler, F.A.; Schrade, U.; Artus, G.R.; Seeger, S. Long term environmental durability of a superhydrophobic silicone nanofilament coating. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 234–240. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098. [Google Scholar] [CrossRef]
- Lim, J.H.; Leem, J.W.; Yu, J.S. Solar power generation enhancement of fye-sensitized solar cells using hydrophobic and antireflective polymers with nanoholes. RSC Adv. 2015, 5, 61284. [Google Scholar] [CrossRef]
- Jiang, D.; Qin, J.; Wang, X.; Gao, S.; Liang, Q.; Zhao, J. Optical properties of NiO thin films fabricated by electron beam evaporation. Vacuum 2012, 86, 1083–1086. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Mahmoud, W.E.; Yaghmour, S.; Al-Marzouki, F. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. J. Alloys Compd. 2009, 486, 9–13. [Google Scholar] [CrossRef]
- Fasaki, I.; Koutoulaki, A.; Kompitsas, M.; Charitidis, C. Structural, electrical and mechancial properties of NiO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2010, 257, 429. [Google Scholar] [CrossRef]
- Verma, V.; Katiyar, M. Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films 2013, 527, 369–376. [Google Scholar] [CrossRef]
- Castro-Hurtado, I.; Malagù, C.; Morandi, S.; Pérez, N.; Mandayo, G.G.; Castaño, E. Properties of NiO sputtered thin films and modeling of their sensing mechanism under formaldehyde atomospheres. Acta Mater. 2013, 61, 1146. [Google Scholar] [CrossRef]
- Reddy, Y.A.K.; Ajitha, B.; Reddy, P.S. Influence of thermal annealing on structural, morphological, optical and electrical properties of NiO-Cu composite thin films. Mater. Express 2014, 4, 32. [Google Scholar] [CrossRef]
- Wang, S.H.; Jian, S.R.; Chen, G.J.; Cheng, H.Z.; Juang, J.Y. Annealing-driven microstructural evolution and is effects on the surface and nanomechancial properties of Cu-doped NiO thin films. Coatings 2019, 9, 107. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Sneddon, I.N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Yang, D.; Wang, R.; He, M.; Zhang, J.; Liu, Z. Ribbon-and boardlike nanostructures of nickel hydroxide: Synthesis, characterization, and electrochemcial properties. J. Phys. Chem. B 2005, 109, 7654. [Google Scholar] [CrossRef]
- Wolf, D. Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys. Rev. Lett. 1992, 68, 3315–3318. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Element of X-Ray Diffraction; Prentice Hall: Upper Saddle River, NJ, USA, 2001; p. 170. [Google Scholar]
- Ottone, C.; Lamberti, A.; Fontana, M.; Cauda, V. Wetting Behavior of Hierarchical Oxide Nanostructures: TiO2 Nanotubes from Anodic Oxidation Decorated with ZnO Nanostructures. J. Electrochem. Soc. 2014, 161, D484–D488. [Google Scholar] [CrossRef]
- Angelo, M.S.; McCandless, B.E.; Birkmire, R.W.; Rykov, S.A.; Chen, J.G. Contact wetting angle as a characterization technique for processing CdTe/CdS solar cells. Prog. Photovolt. Res. Appl. 2006, 15, 93–111. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Rao, A.V.; Parale, V.G.; Kavale, M.S.; Wagh, P.B.; Ingale, S.V.; Gupta, S.C. Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 2011, 99, 104104. [Google Scholar] [CrossRef]
- Bayati, R.; Molaei, R.; Richmond, A.; Nori, S.; Wu, F.; Kumar, D.; Narayan, J.; Reynolds, J.G.; Reynolds, C.L. Modification of properties of yttria stabilixed zirconia epitaxial thin films by excimer laser annealing. ACS Appl. Mater. Interfaces 2014, 6, 22316. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.A.; Abdel-Wahab, M.S.; Farghali, A.; Hasan, P. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films. Mater. Res. Bull. 2016, 75, 71–77. [Google Scholar] [CrossRef]
- Hwang, J.; Ho, T. Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering. Mater. Sci. Semicond. Process. 2017, 71, 396–400. [Google Scholar] [CrossRef]
- Oh, J.H.; Hwang, S.Y.; Kim, Y.D.; Song, J.H.; Seong, T.Y. Effect of different supttering gas mixtures on the structural, electrical, and optical properties of p-type NiO thin films. Mater. Sci. Semicond. Process. 2013, 16, 1346. [Google Scholar] [CrossRef]
- Ben Amor, M.; Boukhachem, A.; Boubaker, K.; Amlouk, M. Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications. Mater. Sci. Semicond. Process. 2014, 27, 994–1006. [Google Scholar] [CrossRef]
- Amotchkina, T.V.; Trubetskov, M.K.; Tikhonravov, A.V.; Janicki, V.; Razskazovskaya, J.Sa.O.; Pervak, V. Oscillations in spectral behavior of total losses (1-R-T) in thin dielectric films. Opt. Express 2012, 20, 16129. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Pub. Inc.: New York, NY, USA, 1971. [Google Scholar]
- Ma, Y.; Tsurumi, T.; Nishizawa, S.; Ohashi, N.; Fukunaga, O. Spectroscopic ellipsometry of nickel oxide/zinc oxide artifical superlattices. J. Am. Ceram. Soc. 1998, 81, 2125. [Google Scholar] [CrossRef]
- Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [Google Scholar] [CrossRef]
- Usha, K.S.; Sivakumar, R.; Sanjeeviraja, C. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 2013, 114, 123501. [Google Scholar] [CrossRef]
- Gomaa, M.; Yazdi, G.R.; Schmidt, S.; Boshta, M.; Khranovskyy, V.; Eriksson, F.; Farag, B.; Osman, M.; Yakimova, R. Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films. Mater. Sci. Semicond. Process. 2017, 64, 32–38. [Google Scholar] [CrossRef]
- Dushaq, G.; Nayfeh, A.; Rasras, M. Hexagonal germanium formation at room temperature using controlled penetration depth nano-indentation. Sci. Rep. 2019, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.-R.; Chen, G.-J.; Juang, J.-Y. Nanoindentation-induced phase transformation in (110)-oriented Si single-crystals. Curr. Opin. Solid State Mater. Sci. 2010, 14, 69–74. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determing hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564. [Google Scholar] [CrossRef]
- Greer, J.R.; de Hosson, J.T.M. Plasticity in small-sized metallic system: Intrinsic versus extrisic size effect. Prog. Mater. Sci. 2011, 56, 654. [Google Scholar] [CrossRef]
- van Swygenhoven, H. Grain boundaries and dislocatinos. Science 2002, 296, 66. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Qian, L.; Lu, K. Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scr. Mater. 2003, 49, 645–650. [Google Scholar] [CrossRef]
Annealing driven orientation texturing Cu-doped NiO films [36] | ||||||
Annealing temperature (°C) | Crystalline size (nm) and microstrain ε (%) | Rrms (nm) | Contact angle (°) | Surface energy (mJ/m2) | ||
D | DWH | ε | ||||
As-deposited | 5.7 | 10.3 | 0.65 | 0.7 | 45.7 | 30.9 |
300 | 8.4 | 13.6 | 0.70 | 1.4 | 55.8 | 28.4 |
400 | 11.2 | 23.8 | 0.77 | 2.9 | 80.4 | 21.2 |
500 | 18.6 | 38.5 | 0.80 | 3.8 | 97.5 | 15.8 |
NiO films deposited at various substrate temperatures [this work] | ||||||
Substrate temperature (°C) | Crystalline size (nm) and microstrain ε (%) | Rrms (nm) | Contact angle (°) | Surface energy (mJ/m2) | ||
D | DWH | ε | ||||
300 | 5 | 26 | 0.70 | 2.97 ± 0.2 | 100.8 | 14.7 |
400 | 9 | 29 | 0.91 | 5.87 ± 0.4 | 105.7 | 13.2 |
500 | 24 | 41 | 1.38 | 7.35 ± 0.5 | 114.5 | 10.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.-J.; Lin, C.-M.; Shih, Y.-H.; Jian, S.-R. The Microstructures and Characteristics of NiO Films: Effects of Substrate Temperature. Micromachines 2022, 13, 1940. https://doi.org/10.3390/mi13111940
Chen G-J, Lin C-M, Shih Y-H, Jian S-R. The Microstructures and Characteristics of NiO Films: Effects of Substrate Temperature. Micromachines. 2022; 13(11):1940. https://doi.org/10.3390/mi13111940
Chicago/Turabian StyleChen, Guo-Ju, Chih-Ming Lin, Yung-Hui Shih, and Sheng-Rui Jian. 2022. "The Microstructures and Characteristics of NiO Films: Effects of Substrate Temperature" Micromachines 13, no. 11: 1940. https://doi.org/10.3390/mi13111940
APA StyleChen, G.-J., Lin, C.-M., Shih, Y.-H., & Jian, S.-R. (2022). The Microstructures and Characteristics of NiO Films: Effects of Substrate Temperature. Micromachines, 13(11), 1940. https://doi.org/10.3390/mi13111940