Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom
Abstract
1. Introduction
2. Structural Design and Fabrication
3. Experimental Setup and Testing
3.1. Experimental Setup
3.2. Durability Testing of the Polyimide Electrothermal Film
3.3. Static and Dynamic Testing of the 3D U-Shaped Actuator
3.4. Static and Dynamic Testing of the V-Shaped Actuator
3.5. Testing of the U-Shaped Actuator and the V-Shaped Actuator simultaneously
4. Micro-Manipulation Experiments
4.1. Manipulations of a Micro Ball
4.2. Manipulations of a Zebrafish Embryo
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haghighi, R.; Cheah, C.C. Optical manipulation of multiple groups of microobjects using robotic tweezers. IEEE Trans. Robot. 2016, 32, 275–285. [Google Scholar] [CrossRef]
- Denisyuk, A.I.; Krasavin, A.V.; Komissarenko, F.E.; Mukhin, I.S. Mechanical, electrostatic, and electromagnetic manipulation of microobjects and nanoobjects in electron microscopes. Adv. Imaging Electron. Phys. 2014, 186, 101–140. [Google Scholar]
- Denisyuk, A.I.; Komissarenko, F.E.; Mukhin, I.S. Electrostatic pick-and-place micro/nanomanipulation under the electron beam. Microelectron. Eng. 2014, 121, 15–18. [Google Scholar] [CrossRef]
- Zhang, J.; Onaizah, O.; Middleton, K.; You, L.; Diller, E. Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2017, 2, 835–840. [Google Scholar] [CrossRef]
- Avci, E.; Ohara, K.; Nguyen, C.; Theeravithayangkura, C.; Kojima, M.; Tanikawa, T.; Mae, Y.; Arai, T. high-speed automated manipulation of microobjects using a two-fingered microhand. IEEE Trans. Ind. Electron. 2015, 62, 1070–1079. [Google Scholar] [CrossRef]
- Chen, W.; Shi, X.; Chen, W.; Zhang, J. A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling. Rev. Sci. Instrum. 2013, 84, 115111. [Google Scholar] [CrossRef]
- Tanaka, Y.; Wakida, S.I. Controlled 3D rotation of biological cells using optical multiple-force clamps. Biomed. Opt. Express. 2014, 5, 2341–2348. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, J.; Kim, T.; Han, T. A periodic frequency band rotation scheme for multi-cell coordination clustering. IEEE Commun. Lett. 2011, 15, 956–958. [Google Scholar] [CrossRef]
- Zhang, X.P.; Leung, C.; Lu, Z.; Esfandiari, N.; Casper, R.F.; Sun, Y. Controlled aspiration and positioning of biological cells in a micropipette. IEEE Trans. Biomed. Eng. 2012, 59, 1032–1040. [Google Scholar] [CrossRef]
- Shojaei-Baghini, E.; Zheng, Y.; Sun, Y. Automated micropipette aspiration of single cells. Ann. Biomed. Eng. 2013, 41, 1208–1216. [Google Scholar] [CrossRef]
- Hochmuth, R.M. Micropipette aspiration of living cells. J. Biomech. 2000, 33, 15–22. [Google Scholar] [CrossRef]
- Oleshko, V.P.; Howe, J.M. Electron tweezers as a tool for high-precision manipulation of nanoobjects. Adv. Imaging Electron. Phys. 2013, 179, 203–262. [Google Scholar]
- Keloth, A.; Anderson, O.; Risbridger, D.; Paterson, L. Single cell isolation using optical tweezers. Micromachines 2018, 9, 434. [Google Scholar]
- Wang, F.; Liang, C.; Tian, Y.; Zhang, D. Design of a Piezoelectric-Actuated Microgripper with a Three-Stage Flexure-Based Amplification. IEEE/ASME Trans. Mech. 2015, 20, 2205–2213. [Google Scholar] [CrossRef]
- Niaki, M.H.; Nikoobin, A. Design and fabrication a long-gripping-range microgripper with active and passive actuators. Iran. J. Sci. Technol. Trans. Mech. Eng. 2019, 43, 575–585. [Google Scholar] [CrossRef]
- Al-Zandi, M.; Wang, C.; Voicu, R.; Muller, R. Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsyst. Technol. 2017, 24, 1–9. [Google Scholar] [CrossRef]
- Xie, H.; Meng, X.; Zhang, H.; Sun, L. Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization. IEEE Trans. Ind. Electron. 2020, 67, 2065–2075. [Google Scholar] [CrossRef]
- Noveanu, S.; Lates, D.; Fusaru, L.; Rusu, C. A new compliant microgripper and study for flexure hinges shapes. Procedia Manuf. 2020, 46, 517–524. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bepari, B.; Bhaumik, S. IPMC-Actuated compliant mechanism-based multifunctional multifinger microgripper. Mech. Based Des. Struct. Mach. 2014, 42, 312–325. [Google Scholar] [CrossRef]
- Yun, K.; Kim, W.J. System identification and microposition control of ionic polymer metal composite for three-finger gripper manipulation. Syst. Control. Eng. 2006, 220, 539–551. [Google Scholar] [CrossRef]
- Dsouza, R.D.; Navin, K.P.; Theodoridis, T.; Sharma, P. Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsyst. Technol. 2018, 24, 3867–3883. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Z.; Hu, S.; Gao, J.; Gao, X. Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper. Microsyst. Technol. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Q. A review on actuation and sensing techniques for MEMS-based microgrippers. J. Micro-Bio Robot. 2017, 13, 1–14. [Google Scholar] [CrossRef]
- Alogla, A.F.; Amalou, F.; Balmer, C.; Scanlan, P.; Shu, W.; Reuben, R.L. Micro-Tweezers: Design, Fabrication, Simulation and Testing of a Pneumatically Actuated Micro-Gripper for Micromanipulation and Microtactile Sensing. Sens. Actuator A Phys. 2015, 236, 394–404. [Google Scholar] [CrossRef]
- Soother, D.K.; Daudpoto, J.; Chowdhry, B.S. Challenges for practical applications of shape memory alloy actuators. Mater. Res. Express. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Jia, Y.; Jia, M.; Xu, Q. A dual-axis electrostatically driven mems microgripper. Int. J. Adv. Robot. Syst. 2014, 11, 1–9. [Google Scholar] [CrossRef]
- Hamedi, M.; Salimi, P.; Vismeh, M. Simulation and experimental investigation of a novel electrostatic microgripper system. Microelectron. Eng. 2012, 98, 467–471. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, B.; Shim, J.H. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric sensors. Proc. SPIE 2005, 5604, 230–237. [Google Scholar]
- Despa, V.; Catangiu, A.; Ivan, I.A.; Gurgu, V.; Ardeleanu, M. Modeling and control of a microgripper based on electromagnetic actuation. Sci. Bull. Valahia Univ. Mater. Mech. 2014, 9, 131–136. [Google Scholar]
- Rakotondrabe, M.; Ivan, I.A. Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 2011, 8, 824–834. [Google Scholar] [CrossRef]
- Wang, D.H.; Yang, Q.; Dong, H.M. A monolithic compliant piezoelectric-driven microgripper: Design, modeling, and testing. IEEE Trans. Mechatron. 2013, 18, 138–147. [Google Scholar] [CrossRef]
- Zhang, R.; Chu, J.; Wang, H.; Chen, Z. A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst. Technol. 2013, 19, 89–97. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Chen, X. Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst. Technol. 2015, 21, 2307–2314. [Google Scholar] [CrossRef]
- Potekhina, A.; Voicu, R.C.; Muller, R.; Al-Zandi, M.H.M.; Wang, C. Design and characterization of a polymer electrothermal microgripper with a polynomial flexure for efficient operation and studies of moisture effect on negative deflection. Microsyst. Technol. 2020, 1–9. [Google Scholar] [CrossRef]
- Voicu, R.C.; Tibeica, C.; Müller, R.; Dinescu, A.; Birleanu, C. SU-8 microgrippers based on V-shaped electrothermal actuators with implanted heaters. Rom. J. Inf. Sci. Technol. 2016, 19, 269–281. [Google Scholar]
- Zhang, Z.; Yu, Y.; Liu, X.; Zhang, X. Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators. Microsyst. Technol. 2017, 23, 3775–3789. [Google Scholar] [CrossRef]
- Vij, R.; Singh, B.; Jain, D.K. Design and analysis of electro thermally actuated microgripper. IOSR J. VLSI Signal. Process. 2014, 4, 46–51. [Google Scholar] [CrossRef]
- Zhang, W.; Gnerlich, M.; Paly, J.J.; Sun, Y.; Jing, G.; Voloshin, A. A polymer V-shaped electrothermal actuator array for biological applications. J. Micromech. Microeng. 2008, 18, 1–8. [Google Scholar] [CrossRef]
- Kazi, I.H.; Wild, P.M.; Moore, T.N.; Sayer, M. The electromechanical behavior of nichrome (80/20 wt.%) film. Thin Solid Films 2003, 433, 337–343. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Ho, S.S.; Low, L.N. A polymeric microgripper with integrated thermal actuators. J. Micromech. Microeng. 2004, 14, 969–974. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Wu, Q.; Yu, Y.; Liu, X.; Zhang, X. Closed-form modelling and design analysis of V- and Z-shaped electrothermal microactuators. J. Micromech. Microeng. 2017, 27, 015023. [Google Scholar] [CrossRef]
Symbol | Actuator | Definition | Value |
---|---|---|---|
d1 | 3D U-shape actuator | Width of beam | 1 |
d2 | The distance between beam and base boundary | 1.5 | |
d3 | Length of base | 6 | |
d4 | Thickness of beam | 0.8 | |
d5 | The distance between beam and base boundary | 0.4 | |
d6 | Length of beam | 52 | |
b | V-shaped actuator | Thickness of beam and shuttle | 3 |
h1 | Length of shuttle | 10.26 | |
h2 | Length of anchor | 10.86 | |
h3 | Thickness of beam | 1 | |
L1 | Width of shuttle and anchor | 2 | |
L2 | Span of the beam | 24 | |
θ | Inclination of beam | 1.89° |
Rotation about Axis X | Rotation about Axis Y | Rotation about Axis Z | |
---|---|---|---|
The angle of rotation of the ball | 13.35° | 16.21° | 15.60° |
The angle of rotation of the zebrafish embryo | 21.61° | 20.46° | 23.70° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, G.; Sun, L.; Zhang, Z.; Zhang, X. Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom. Micromachines 2021, 12, 444. https://doi.org/10.3390/mi12040444
Si G, Sun L, Zhang Z, Zhang X. Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom. Micromachines. 2021; 12(4):444. https://doi.org/10.3390/mi12040444
Chicago/Turabian StyleSi, Guoning, Liangying Sun, Zhuo Zhang, and Xuping Zhang. 2021. "Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom" Micromachines 12, no. 4: 444. https://doi.org/10.3390/mi12040444
APA StyleSi, G., Sun, L., Zhang, Z., & Zhang, X. (2021). Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom. Micromachines, 12(4), 444. https://doi.org/10.3390/mi12040444