Evaluating the Potential Inhibition of PP2A by Nodularin-R Disinfection By-Products: Effect and Mechanism
Abstract
1. Introduction
2. Results and Discussions
2.1. Identification of Prototypical NOD-R-DBPs
2.2. Evaluation of Potential Inhibition Effect
2.3. Simulation of Prototypical NOD-R-DBPs Interaction with PP2A Based on Homology Modeling and Molecular Docking
2.4. Pearson Correlation Analysis
2.5. Molecular Mechanism Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Chlorination Treatment of NOD-R
4.3. Purification and Preparation of Prototypical NOD-R-DBPs
4.3.1. MS Analysis
4.3.2. Purification of Prototypical NOD-R-DBPs
4.3.3. Preparation of Prototypical NOD-R-DBPs
4.4. PP2A Inhibition Assay
4.5. Molecular Simulation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lankoff, A.; Wojcik, A.; Fessard, V.; Meriluoto, J. Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicol. Lett. 2006, 164, 239–248. [Google Scholar] [CrossRef]
- Imanishi, S.; Kato, H.; Mizuno, M.; Tsuji, K.; Harada, K. Bacterial Degradation of Microcystins and Nodularin. Chem. Res. Toxicol. 2005, 18, 591–598. [Google Scholar] [CrossRef]
- Yuan, M.; Ding, Q.; Sun, R.; Zhang, J.; Yin, L.; Pu, Y. Biodegradation of Nodularin by a Microcystin-Degrading Bacterium: Performance, Degradation Pathway, and Potential Application. Toxins 2021, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Meriluoto, J.; Pliński, M. The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere 2006, 65, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Meriluoto, J.; Pliński, M.; Szafranek, J. Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2023–2032. [Google Scholar] [CrossRef]
- Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. Mar. Drugs 2010, 8, 1650–1680. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M. Tumor Promoters—Microcystin-LR, Nodularin and TNF-α and Human Cancer Development. Anticancer Agents Med. Chem. 2011, 11, 4–18. [Google Scholar] [CrossRef]
- Lankoff, A.; Banasik, A.; Nowak, M. Protective effect of melatonin against nodularin-induced oxidative stress in mouse liver. Arch. Toxicol. 2002, 76, 158–165. [Google Scholar] [CrossRef]
- Massey, I.Y.; Al Osman, M.; Yang, F. An overview on cyanobacterial blooms and toxins production: Their occurrence and influencing factors. Toxin Rev. 2020, 41, 326–346. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Y.; Cui, J.; Zong, W. Mechanism for the Potential Inhibition Effect of Microcystin-LR Disinfectant By-Products on Protein Phosphatase 2A. Toxins 2022, 14, 878. [Google Scholar] [CrossRef] [PubMed]
- Kelker, M.S.; Page, R.; Peti, W. Crystal Structures of Protein Phosphatase-1 Bound to Nodularin-R and Tautomycin: A Novel Scaffold for Structure-based Drug Design of Serine/Threonine Phosphatase Inhibitors. J. Mol. Biol. 2009, 385, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Sotton, B.; Domaizon, I.; Anneville, O.; Cattanéo, F.; Guillard, J. Nodularin and cylindrospermopsin: A review of their effects on fish. Rev. Fish Biol. Fish. 2014, 25, 1–19. [Google Scholar] [CrossRef]
- MacKintosh, R.W.; Dalby, K.N.; Campbell, D.G.; Cohen, P.T.W.; Cohen, P.; Mackintosh, C. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett. 1995, 371, 236–240. [Google Scholar]
- Merel, S.; Clément, M.; Thomas, O. State of the art on cyanotoxins in water and their behaviour towards chlorine. Toxicon 2010, 55, 677–691. [Google Scholar] [CrossRef]
- Richardson, S.; Plewa, M.; Wagner, E.; Schoeny, R.; Demarini, D. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Liu, C.; Ersan, M.S.; Wagner, E.; Plewa, M.J.; Amy, G.; Karanfil, T. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Res. 2020, 184, 116145. [Google Scholar] [CrossRef]
- Zong, W.; Sun, F.; Sun, X. Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed by chlorination. J. Hazard. Mater. 2013, 252–253, 293–299. [Google Scholar] [CrossRef]
- Zong, W.; Sun, F.; Pei, H.; Hu, W.; Pei, R. Microcystin-associated disinfection by-products: The real and non-negligible risk to drinking water subject to chlorination. Chem. Eng. J. 2015, 279, 498–506. [Google Scholar] [CrossRef]
- Edwards, C.; Graham, D.; Fowler, N.; Lawton, L.A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73, 1315–1321. [Google Scholar] [CrossRef]
- Hamze, A.; Veau, D.; Provot, O.; Brion, J.-D.; Alami, M. Palladium-Catalyzed Markovnikov Terminal Arylalkynes Hydrostannation: Application to the Synthesis of 1,1-Diarylethylenes. J. Org. Chem. 2009, 74, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Cho, M.; Ki, C.-S. Correct Use of Repeated Measures Analysis of Variance. Ann. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, M.; Cao, N.; Wang, X. Site-directed modification of multifunctional lignocellulose-degrading enzymes of straw based on homologous modeling. World J. Microb. Biot. 2023, 39, 214. [Google Scholar] [CrossRef]
- Bittrich, S.; Bhikadiya, C.; Bi, C.; Chao, H.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Henry, J.; Khokhriakov, I.; Lowe, R.; et al. RCSB Protein Data Bank: Efficient Searching and Simultaneous Access to One Million Computed Structure Models Alongside the PDB Structures Enabled by Architectural Advances. J. Mol. Biol. 2023, 435, 167994. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhatt, R.; Bhikadiya, C.; Bi, C.; Biester, A.; Biswas, P.; Bittrich, S.; Blaumann, S.; Brown, R.; Chao, H.; et al. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res. 2025, 53, D564–D574. [Google Scholar] [CrossRef]
- Roy, U.; Luck, L.A. Molecular modeling of estrogen receptor using molecular operating environment. Biochem. Mol. Biol. Educ. 2007, 35, 238–243. [Google Scholar] [CrossRef]
- Brazel, C. Computational Analysis of Probed phENR Through lowModeMD and Dynamical Simulations Within Molecular Operating Environment. ProQuest LLC 2018, 17, 10929249. [Google Scholar]
- Yuyama, M.; Ito, T.; Arai, Y.; Kadowaki, Y.; Iiyama, N.; Keino, A.; Hiraoka, Y.; Kanaya, T.; Momose, Y.; Kurihara, M. Risk Prediction Method for Anticholinergic Action Using Auto-quantitative Structure–Activity Relationship and Docking Study with Molecular Operating Environment. Chem. Pharm. Bull. 2020, 68, 773–778. [Google Scholar] [CrossRef]
- Pearson, K. Notes On The History of Correlation. R. S. Proc. 1920, 241, 1895. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, Y.; Zhang, C.; Chen, J.; Luo, Y.; Duan, G. A High-Accurate H2S Recognition Method Based on Pearson Correlation Coefficient Feature Extraction of Dynamic Response. IEEE Sens. J. 2024, 24, 31712–31719. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Wang, F.; Bai, S.; Wu, J. Analysis of synthetic route and case correlation of methamphetamine crystals seized by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and Pearson correlation coefficient method. Anal. Methods 2024, 16, 7509–7517. [Google Scholar] [CrossRef]
- Huang, R.; Hanif, M.F.; Siddiqui, M.K.; Hanif, M.F.; Petros, F.B. Analyzing boron oxide networks through Shannon entropy and Pearson correlation coefficient. Sci. Rep. 2024, 14, 26552. [Google Scholar] [CrossRef]
- Yang, M.; Chen, T.; Liu, Y.X.; Huang, L. Visualizing set relationships: EVenn’s comprehensive approach to Venn diagrams. iMeta 2024, 3, e184. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fan, Z.; Zhang, L.; You, Q.; Wang, L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J. Med. Chem. 2021, 64, 8916–8938. [Google Scholar] [CrossRef]
- Yigit, O.; Soyuncu, S.; Eray, O.; Enver, S. Inhalational and dermal injury due to explosion of calcium hypochlorite. Cutan. Ocul. Toxicol. 2009, 28, 37–40. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Carmichael, W.W. Use of a Colorimetric Protein Phosphatase Inhibition Assay and Enzyme Linked Immunosorbent Assay for the Study of Microcystins and Nodularins. Toxicon 1994, 32, 1495–1507. [Google Scholar] [CrossRef]
- Sun, F.; Pei, H.-Y.; Hu, W.-R.; Song, M.-M. A multi-technique approach for the quantification ofMicrocystis aeruginosaFACHB-905 biomass during high algae-laden periods. Environ. Technol. 2012, 33, 1773–1779. [Google Scholar] [CrossRef]
- Ward, C.J.; Beattie, K.A.; Lee, E.Y.C.; Codd, G.A. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: Comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiol. Lett. 1997, 153, 465–473. [Google Scholar] [CrossRef]
- Chen, H.; Fu, W.; Wang, Z.; Wang, X.; Lei, T.; Zhu, F.; Li, D.; Chang, S.; Xu, L.; Hou, T. Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor. ACS Chem. Neurosci. 2018, 10, 677–689. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, J.; Yu, H.; Zong, W. Insight into the Molecular Mechanism for the Discrepant Inhibition of Microcystins (MCLR, LA, LF, LW, LY) on Protein Phosphatase 2A. Toxins 2022, 14, 390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Fu, C.; Shi, Q.; Yang, S.; Zong, W. Evaluating the Potential Inhibition of PP2A by Nodularin-R Disinfection By-Products: Effect and Mechanism. Toxins 2025, 17, 484. https://doi.org/10.3390/toxins17100484
Li M, Fu C, Shi Q, Yang S, Zong W. Evaluating the Potential Inhibition of PP2A by Nodularin-R Disinfection By-Products: Effect and Mechanism. Toxins. 2025; 17(10):484. https://doi.org/10.3390/toxins17100484
Chicago/Turabian StyleLi, Mengchen, Chunyu Fu, Qiannan Shi, Shaocong Yang, and Wansong Zong. 2025. "Evaluating the Potential Inhibition of PP2A by Nodularin-R Disinfection By-Products: Effect and Mechanism" Toxins 17, no. 10: 484. https://doi.org/10.3390/toxins17100484
APA StyleLi, M., Fu, C., Shi, Q., Yang, S., & Zong, W. (2025). Evaluating the Potential Inhibition of PP2A by Nodularin-R Disinfection By-Products: Effect and Mechanism. Toxins, 17(10), 484. https://doi.org/10.3390/toxins17100484