Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins
Abstract
:1. Introduction
2. Results
2.1. Lasalocid Effects on Cell Intoxication by TcdB, Stx1 or ETA
2.2. Lasalocid Affects Lysosomal Acidification and Protein Degradation as Well as the Phenotype of the Golgi Apparatus
2.3. Lasalocid Affects Early and Recycling Endosomes
2.4. Lasalocid Affects Autophagy
3. Discussion
4. Materials and Methods
4.1. Cell Cultures and Reagents
4.2. Cytotoxicity Assay
4.3. Protein Biosynthesis Assay
4.4. TcdB Rounding Assay
4.5. Live Cell Imaging
4.6. Immunostaining
4.7. Imaging of HeLa Cells Stably-Expressing GFP-LC3B
4.8. Electrophoresis and Western Blot
Author Contributions
Funding
Conflicts of Interest
References
- Di Fiore, P.P.; von Zastrow, M. Endocytosis, Signaling, and Beyond. Cold Spring Harb. Perspect. Biol. 2014, 6, a016865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossart, P.; Helenius, A. Endocytosis of Viruses and Bacteria. Cold Spring Harb. Perspect. Biol. 2014, 6, a016972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spooner, R.A.; Lord, J.M. How Ricin and Shiga Toxin Reach the Cytosol of Target Cells: Retrotranslocation from the Endoplasmic Reticulum. In Ricin and Shiga Toxins; Mantis, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 357, pp. 19–40. ISBN 978-3-642-27469-5. [Google Scholar]
- Kart, A.; Bilgili, A. Ionophore Antibiotics: Toxicity, Mode of Action and Neurotoxic Aspect of Carboxylic Ionophores. J. Anim. Vet. Adv. 2008, 7, 748–751. [Google Scholar]
- Antonenko, Y.N.; Yaguzhinsky, L.S. The ion selectivity of nonelectrogenic ionophores measured on a bilayer lipid membrane: Nigericin, monensin, A23187 and lasalocid A. Biochim. Biophys. Acta 1988, 938, 125–130. [Google Scholar] [CrossRef]
- Deleers, M.; Gelbcke, M.; Malaisse, W.J. Formation of hybrid complexes between Ca and the ionophores bromolasalocid (Br-X537A) and A23187. Proc. Natl. Acad. Sci. USA 1981, 78, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonio, R.V.; da Silva, L.P.; Vercesi, A.E. Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A). Biochim. Biophys. Acta-Bioenergy 1991, 1056, 250–258. [Google Scholar] [CrossRef]
- Kant, V.; Singh, P.; Verma, P.K.; Bais, I.; Parmar, M.S.; Gopal, A.; Gupta, V. Anticoccidial Drugs Used in the Poultry: An Overview. Sci. Int. 2013, 1, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.M.; Johnson, J.; Dick, J. Anticoccidial activity of Lasalocid in control of moderate and severe coccidiosis. Avian Dis. 1975, 19, 12–18. [Google Scholar] [CrossRef]
- Garg, S.; Wang, W.; Song, Y.; Petrovski, K.; Eats, P.; Trott, D.; Wong, H.S.; Page, S.; Perry, J. Development of intramammary delivery systems containing lasalocid for the treatment of bovine mastitis: Impact of solubility improvement on safety, efficacy, and milk distribution in dairy cattle. Drug Des. Dev. Ther. 2015, 9, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Steverding, D.; Huczyński, A. Trypanosoma brucei: Trypanocidal and cell swelling activities of lasalocid acid. Parasitol. Res. 2017, 116, 3229–3233. [Google Scholar] [CrossRef] [Green Version]
- Golder, H.M.; Lean, I.J. A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. J. Anim. Sci. 2016, 94, 306–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandvig, K.; Olsnes, S. Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles. J. Biol. Chem. 1982, 257, 7504–7513. [Google Scholar] [PubMed]
- Mahtal, N.; Brewee, C.; Pichard, S.; Visvikis, O.; Cintrat, J.-C.; Barbier, J.; Lemichez, E.; Gillet, D. Screening of drug library identifies inhibitors of cell intoxication by CNF1. ChemMedChem 2018, 13, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Somlyo, A.P.; Garfield, R.E.; Chacko, S.; Somlyo, A.V. Golgi organelle response to the antibiotic X537A. J. Cell Biol. 1975, 66, 425–443. [Google Scholar] [CrossRef] [Green Version]
- Reijngoud, D.J.; Oud, P.S.; Tager, J.M. Effect of ionophores on intralysosomal pH. Biochim. Biophys. Acta 1976, 448, 303–313. [Google Scholar] [CrossRef]
- Saelinger, C.B. Use of exotoxin A to inhibit protein synthesis. Methods Enzymol. 1988, 165, 226–231. [Google Scholar]
- Contamin, S.; Galmiche, A.; Doye, A.; Flatau, G.; Benmerah, A.; Boquet, P. The p21 Rho-activating toxin cytotoxic necrotizing factor 1 is endocytosed by a clathrin-independent mechanism and enters the cytosol by an acidic-dependent membrane translocation step. Mol. Biol. Cell 2000, 11, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.R. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 2011, 3, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Orrell, K.E.; Zhang, Z.; Sugiman-Marangos, S.N.; Melnyk, R.A. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 461–473. [Google Scholar] [CrossRef]
- Fiorentini, C.; Fabbri, A.; Flatau, G.; Donelli, G.; Matarrese, P.; Lemichez, E.; Falzano, L.; Boquet, P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J. Biol. Chem. 1997, 272, 19532–19537. [Google Scholar] [CrossRef] [Green Version]
- Grinde, B. Effect of carboxylic ionophores on lysosomal protein degradation in rat hepatocytes. Exp. Cell Res. 1983, 149, 27–35. [Google Scholar] [CrossRef]
- Johansen, T.; Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.Z.C.; Gasnereau, I.; Lieu, Z.Z.; Gleeson, P.A. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J. Cell Sci. 2011, 124, 2401–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riederer, M.A.; Soldati, T.; Shapiro, A.D.; Lin, J.; Pfeffer, S.R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J. Cell Biol. 1994, 125, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Kucera, A.; Bakke, O.; Progida, C. The multiple roles of Rab9 in the endolysosomal system. Commun. Integr. Biol. 2016, 9, e1204498. [Google Scholar] [CrossRef] [Green Version]
- Barbero, P.; Bittova, L.; Pfeffer, S.R. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J. Cell Biol. 2002, 156, 511–518. [Google Scholar] [CrossRef]
- Ao, X.; Zou, L.; Wu, Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014, 21, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-Y.; Kim, S.-H.; Yu, S.-N.; Park, S.-G.; Kim, Y.-W.; Nam, H.-W.; An, H.-H.; Yu, H.-S.; Kim, Y.W.; Ji, J.-H.; et al. Lasalocid induces cytotoxic apoptosis and cytoprotective autophagy through reactive oxygen species in human prostate cancer PC-3 cells. Biomed. Pharmacother. 2017, 88, 1016–1024. [Google Scholar] [CrossRef]
- Garfield, R.E.; Somlyo, A.P. Golgi apparatus and lectin-binding sites: Effects of lasalocid (X537A). Exp. Cell Res. 1977, 109, 163–179. [Google Scholar] [CrossRef]
- Selyunin, A.S.; Mukhopadhyay, S. A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2. Traffic 2015, 16, 1270–1287. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Redler, B.; Linstedt, A.D. Shiga toxin-binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms. Mol. Biol. Cell 2013, 24, 2311–2318. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.; Forsten-Williams, K.; Storrie, B. Both post-Golgi and intra-Golgi cycling affect the distribution of the Golgi phosphoprotein GPP130. Traffic 2007, 8, 1265–1279. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Bachert, C.; Fimmel, C.J.; Linstedt, A.D. Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 2002, 3, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Koreishi, M.; Gniadek, T.J.; Yu, S.; Masuda, J.; Honjo, Y.; Satoh, A. The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS ONE 2013, 8, e59821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, N. Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. J. Pharmacol. Sci. 2010, 112, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Mouna, L.; Hernandez, E.; Bonte, D.; Brost, R.; Amazit, L.; Delgui, L.R.; Brune, W.; Geballe, A.P.; Beau, I.; Esclatine, A. Analysis of the role of autophagy inhibition by two complementary human cytomegalovirus BECN1/Beclin 1-binding proteins. Autophagy 2016, 12, 327–342. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahtal, N.; Wu, Y.; Cintrat, J.-C.; Barbier, J.; Lemichez, E.; Gillet, D. Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins. Toxins 2020, 12, 26. https://doi.org/10.3390/toxins12010026
Mahtal N, Wu Y, Cintrat J-C, Barbier J, Lemichez E, Gillet D. Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins. Toxins. 2020; 12(1):26. https://doi.org/10.3390/toxins12010026
Chicago/Turabian StyleMahtal, Nassim, Yu Wu, Jean-Christophe Cintrat, Julien Barbier, Emmanuel Lemichez, and Daniel Gillet. 2020. "Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins" Toxins 12, no. 1: 26. https://doi.org/10.3390/toxins12010026
APA StyleMahtal, N., Wu, Y., Cintrat, J. -C., Barbier, J., Lemichez, E., & Gillet, D. (2020). Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins. Toxins, 12(1), 26. https://doi.org/10.3390/toxins12010026