Limb Osseointegration—How Important Is the Role of Nutrition in the Process?
Abstract
:1. Introduction
2. Macronutrients
2.1. Proteins
2.2. Carbohydrates
2.3. Lipids
Macronutrient | Author/Year | Animal/Human Study | Interventions | Bone Status | Wound Status |
---|---|---|---|---|---|
Protein | Wang X./2022 [14] | Animal (40 rats) | Group 1 (control): 8 rats, 8.3750 g/kg/day saline solution; Group 2 (model): 8 rats, 8.3750 g/kg/day saline solution; Group 3 (trail): 8 rats, whey protein group: 8.3750 g/kg/day whey protein; Group 4 (trail, low-dose compound protein): 8 rats, 4.1875 g/kg/day compound protein; and Group 5 (high-dose compound protein): 8 rats, 8.3750 g/kg/day compound protein | Not tested | Protein-treated mice showed decreased interleukin (IL)-6, IL-8, neutrophils, and lymphocytes and increased IL-10, albumin, prealbumin, total protein levels, insulin-like growth factor 1 (IGF-1), fibroblast growth factor 2 (FGF-2), and vascular endothelial growth factor (VEGF) expressions. |
Protein | Schurch MA./1998 [15] | Humans (82 patients; mean age, 80.7 +/− 7.4 years) | Group 1: 42 patients, protein supplementation, 20 g/d, Group 2: 42 patients, isocaloric placebo (among controls) 6-month intervention period | Decrease in proximal femur BDM (−2.29% +/− 0.75% and −4.71% +/− 0.77% at 12 months; difference, 2.42 percentage points [CI, 0.26 to 4.59 percentage points]; p = 0.029). | Not tested |
Protein | Tidermark J./2004 [19] | Humans (60 women; | Group 1 (control): 20 women, standard diet Group 2: 20 women on protein-rich liquid formula alone Fortimel, 200 mL/day, 20 g protein/day) Group 3: 20 women on formula combination with nandrolone decanoate 6-month intervention period | LBM decreased in the C (−1.2 +/− 2 kg) and PR groups (−1.2 +/− 1 kg) | Not tested |
Carbohydrates | Carter JD/2006 [33] | Humans (30 patients) | Group 1: 15 patients consumed less than 20 g of carbohydrates per day for the 1st month and then less than 40 g per day for months 2 and 3 Group 2 (control): 15 patients with no restrictions on diet | The diet did not increase bone turnover markers compared with controls at any time point | Not tested |
Carbohydrates | Tang W/2024 [34] | Humans (92 patients scheduled for daytime oral surgery) | Group 1 (control): 45 patients on midnight fasting Group 2: 47 patients in the carbohydrate–Outfast loading group (patients in the 2nd group also fasted but received the Outfast drink (4 mL/kg) 2–3 h before the induction of anesthesia) Results assessed 24 hours after administration | Not tested | Seven parameters representing patient well-being were evaluated (thirst, hunger, mouth dryness, nausea and vomiting, fatigue, anxiety, and sleep quality) on a numeric rating scale (NRS, 0–10) were lower in the 2nd group than in the 1st group postoperatively. |
Lipids | So J/2020 [36] | Humans (21 patients) | Group 1: supplementation with 3 g/day EPA (eicosapentaenoic acid) Group 2: 3 g/day DHA (docosahexaenoic acid) in a random order; two phases of 10-week supplementation separated by a 10-week washout | Not tested | EPA and DHA had distinct effects on monocyte inflammatory response, with a broader effect of DHA in attenuating pro-inflammatory cytokines. |
Lipids | Nevin KG/2010 [40] | Animal (rats) | Group 1—control; Group 2—treated with 0.5 mL VCO (virgin coconut oil); Group 3—treated with 1 mL VCO Treatment was administered for 10 days, and effects were monitored for an additional 14 days following treatment | Not tested | The granulation tissue weights of the treated animals (132.7 mg for group 2, and 157.7 mg for group 2) were significantly changed compared to the control group (59.0 mg). |
3. Micronutrients
3.1. Calcium
3.2. Magnesium
3.3. Fluoride
3.4. Potassium, Sodium
3.5. Resveratrol
3.6. Vitamin D
3.7. Vitamin K2
3.8. Vitamin C
3.9. Vitamin A
3.10. Vitamin E
3.11. B Vitamins
3.12. Zinc
Micronutrient | Author/Year | Animal/Human Study | Interventions | Bone Status | Wound Status |
---|---|---|---|---|---|
Calcium | Bristow SM/2014 [44] | Humans (97 postmenopausal women) | Group 1: 38 people, Ca (1 g/d) as citrate or carbonate; Group 2: 39 people, microcrystalline hydroxyapatite (MCH) preparations; Group 3 (control): 20 people, Ca-free placebo 3-month intervention period | The citrate–carbonate and MCH doses produced comparable decreases in bone resorption over 8 h and bone turnover, significatly more that the control group. | Not tested |
Magnesium | Razzaghi R/2018 [52] | Humans (70 patients with diabetic foot ulcer) | Group 1: 35 patients, 250 mg/day magnesium supplements as magnesium oxide; Group 2 (control): 35 patients, placebo for 12 weeks of supplementation | Not tested | Magnesium supplementation resulted in a significant increase in serum magnesium (+0.3 ± 0.3 vs. −0.1 ± 0.2 mg/dL, p < 0.001) and significant reductions in ulcer length (−1.8 ± 2.0 vs. −0.9 ± 1.1 cm, p = 0.01), width (−1.6 ± 2.0 vs. −0.8 ± 0.9 cm, p = 0.02), and depth. |
Fluoride | Grey A/2013 [59] | Humans (180 postmenopausal women with osteopenia) | Group 1: 45 women, 2.5 mg fluoride; Group 2: 45 women, 5 mg fluoride; Group 3: 10 mg fluoride; Group 4 (control): 45 women received placebo 1-year intervention period | Compared to placebo, none of the doses of fluoride altered BMD at any site. The bone formation marker, procollagen type I N-terminal propeptide, increased significantly in the 5 mg and 10 mg fluoride groups compared to placebo (p = 0.04 and 0.005, respectively) | Not tested |
Potassium | Granchi/2018 [64] | Humans (40 postmenopausal women) | Group 1: 20 women treated with: K citrate (30 mEq day−1), calcium carbonate (500 mg day−1), and vitamin D (400 IU day−1) Group 2 (placebo): 20 women treated with calcium carbonate (500 mg day−1) and vitamin D (400 IU day−1) 3- and 6-month measurements taken over a 6-month trial period | In patients with low 24 h citrate excretion at baseline, 30% mean decreases in BAP (bone alkaline phosphatase) and CTX (carboxy-terminal telopeptide of type I collagen) were observed at 6 months. A significant reduction was also evident when low citrate (BAP: −25%; CTX: −35%) and a low pH (BAP: −25%; CTX: −30%) were found in fasting-morning urine. | Not tested |
Vitamin D | Halschou-Jensen/2023 [77] | Humans (48 patients with diabetic foot ulcers) | Group 1: 24 people, high-dose vitamin D (170 μg/day) Group 2: 24 people, low-dose vitamin D (20 μg/day) for 48 weeks | Not tested | Significantly higher rate of ulcer healing in the high-dose group, with 21 of 30 (70%) healed ulcers compared to 12 of 34 (35%) in the low-dose group (p = 0.012). |
Vitamin D | Slobogean GP/2022 [79] | Humans (102 patients with an acute tibial or femoral shaft fracture managed with a reamed, locked intramedullary nail) | Group 1: 25 patients, 150,000 IU vit. D3 Group 2: 24 patients, 4000 IU vit. D3 Group 3: 24 patients, 600 IU vit. D3 Group 4 (control): 27 patients, placebo 12-month treatment period | No clinically important or statistically significant differences were detected in RUST or FIX-IT scores between groups when measured at 3 months and over 12 months. | Not tested |
Vitamin K2 | Knapen MH/2013 [81] | Humans (325 healthy postmeno-pausal women) | Group 1: 161 women received 180 μg menaquinone-4, MK-4/day) capsule; Group 2 (control): 164 women received placebo 3-year treatment period | K2 did not affect the DXA-BMD, but BMC and the FNW increased relative to placebo. In the K2-treated group, hip bone strength remained unchanged during the 3-year intervention period, whereas in the placebo group, bone strength decreased significantly | Not tested |
Vitamin C | Ekrol I/2014 [89] | Humans (336 patients with acute frature of the distal aspect of the radius) | Group 1: 169 patients received 500 mg of vitamin C Group 2 (control): 167 patients received placebo for 50 days after fracture | There were no significant differences in patient or fracture characteristics between the treatment groups. There was no significant difference in the time to fracture healing. | Not tested |
Vitamin E | Vallibhakara SA/2021 [98] | Humans (52 osteopenic post-menopausal women) | Group 1: 26 women, mixed-tocopherol 400 IU/day Group 2 (control): 26 women, placebo tablet 12-week supplementation period | In the placebo group, the CTX had increased by 35.3% at 12 weeks of supplementation versus baseline (p < 0.001), while in the vitamin E group, there was no significant change in bone resorption markers (p < 0.898). | Not tested |
Vitamin B | Clements M/2022 [101] | Humans (167 adults both with lower B12 status and normal level) | Group 1: 103 patients received combined B-vitamin (folic acid (200 μg), vitamin B12 (10 μg), vitamin B6 (10 mg), and riboflavin (5 mg)) Group 2: 102 patients received an active placebo (vit.D) for 2 years | In conclusion, the findings indicate that low-dose B-vitamin intervention for 2 years had no overall effect on BMD. | Not tested |
Zinc | Sadighi A/2008 [106] | Humans (60 patients with traumatic bone fracture) | Group 1: 30 patients, 1 tablet of 50 mg zinc each day Group 2 (control): 30 patients, placebo tablet. 60-day treatment | The effects of zinc supplementation on serum zinc, alkaline phosphatase activity, and fracture healing of bones were assessed | Not tested |
Zinc | Momen-Heravi M/2017 [108] | Humans (60 patients with diabetic foot ulcer) | Group 1: 30 patients, 50 mg elemental zinc in tablet per day Group 2 (control): 30 patients, placebo for 12 weeks. | Not tested | Compared with the placebo, zinc supplementation was associated with significant reductions in ulcer length and width. |
Vitamin/Mineral | Daily Dietary Guideline | Food Sources | |
---|---|---|---|
Males | Females | ||
Zinc [108] | 11 mg | 8 mg | Oysters, beef, fortified cereals |
Calcium [22,46] | 1000 mg | 1200 mg | Plain yogurt, mozzarella, sardines |
Magnesium [49,53] | 420 mg | 320 mg | Pumpkin seeds, chia seeds, almonds, spinach |
Fluoride [56] | 4 mg | 3 mg | Black tea, coffee, raisins |
Potassium [66] | 3400 mg | 2600 mg | Dried apricots, lentils, acorn squash |
Sodium [66] | <2300 mg | Deli meat, pizza, soups, prepackaged meals | |
Resveratrol [67] | <500 mg | Peanut butter, blueberries, grape skin | |
Vitamin D [31] | 15 mcg (600 IU) | Cod liver oil, trout, salmon, sardines | |
Vitamin K [82] | 120 mcg | 90 mcg | Natto, collards, turnip greens, kale, spinach |
Vitamin C [84] | 90 mg | 75 mg | Red pepper, orange, kiwi, broccoli |
Vitamin A [92] | 900 mcg RAE | 700 mcg RAE | Beef liver, sweet potato, spinach, carrots |
Vitamin B6 [96] | 1.7 mg | 1.5 mg | Chickpeas, beef liver, tuna, salmon, potatoes |
Vitamin B9 (Folate) [100] | 400 mcg DFE | Beef liver, spinach, rice, asparagus | |
Vitamin B12 (Cobalamin) [100] | 2.4 mcg | Fish, meat, poultry, eggs, clams, oysters, dairy product | |
Vitamin E [96] | 15 mg | Sunflower seeds, almonds, sunflower oil, safflower oil, peanut butter |
4. Alcohol and Nicotine
5. Dietary Application
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Varma, P.; Stineman, M.G.; Dillingham, T.R. Physical medicine and rehabilitation clinics of North America epidemiology of limb loss. Phys. Med. Rehabil. Clin. N. Am. 2014, 25, 1. [Google Scholar] [CrossRef]
- Penn-Barwell, J.G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 2011, 42, 1474–1479. [Google Scholar] [CrossRef]
- Isaacs-Itua, A.; Sedki, I. Management of lower limb amputations. Br. J. Hosp. Med. 2018, 79, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Pezzin, L.E.; Dillingham, T.R.; MacKenzie, E.J.; Ephraim, P.; Rossbach, P. Use and satisfaction with prosthetic limb devices and related services. Archives of physical medicine and rehabilitation. Arch. Phys. Med. Rehabil. 2004, 85, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Sions, J.M.; Beisheim-Ryan, E.H.; Pohlig, R.T.; Seth, M. Adults with unilateral lower-limb amputation: Greater spatial extent of pain is associated with worse adjustment, greater activity restrictions, and less prosthesis satisfaction. Scand. J. Pain 2022, 22, 578–586. [Google Scholar] [CrossRef]
- Abraham, C.M. Suppl 1: A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent. J. 2014, 8, 50. [Google Scholar] [CrossRef]
- Hoellwarth, J.S.; Tetsworth, K.; Rozbruch, S.R.; Handal, M.B.; Coughlan, A.; Al Muderis, M. Osseointegration for amputees: Current implants, techniques, and future directions. JBJS Rev. 2020, 8, e0043. [Google Scholar] [CrossRef]
- Alam, S.H.; Hoellwarth, J.S.; Tetsworth, K.; Oomatia, A.; Taylor, T.N.; Al Muderis, M. Development of an evidence-based diagnostic algorithm for infection in patients with transcutaneous osseointegration following amputation. J. Bone Jt. Infect. 2024, 9, 49–57. [Google Scholar] [CrossRef]
- WHO Micronutrients. Available online: https://www.who.int/nutrition/topics/micronutrients/en/ (accessed on 12 December 2023).
- Karpouzos, A.; Diamantis, E.; Farmaki, P.; Savvanis, S.; Troupis, T. Nutritional aspects of bone health and fracture healing. J. Osteoporos. 2017, 2017, 4218472. [Google Scholar] [CrossRef]
- Thomson, S.; Thomson, A.; Tetsworth, K.; Lu, W.; Zreiqat, H.; Al Muderis, M. Radiographic evaluation of bone remodeling around osseointegration implants among transfemoral amputees. J. Orthop. Trauma 2019, 33, e303–e308. [Google Scholar] [CrossRef]
- LaPelusa, A.; Kaushik, R. Physiology, Proteins. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555990/ (accessed on 14 November 2022).
- Dolan, E.; Sale, C. Protein and bone health across the lifespan. Proc. Nutr. Soc. 2019, 78, 45–55. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; Zhou, S.; Shen, S.; Chen, W. The effect of a compound protein on wound healing and nutritional status. Evid. -Based Complement. Altern. Med. 2022, 2022, 4231516. [Google Scholar] [CrossRef]
- Schurch, M.A.; Rizzoli, R.; Slosman, D.; Vadas, L.; Vergnaud, P.; Bonjour, J.P. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture: A randomized, double-blind, pla-cebo-controlled trial. Ann. Intern. Med. 1998, 128, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.T.; Tucker, K.L.; Dawson-Hughes, B.; Cupples, L.A.; Felson, D.T.; Kiel, D.P. Effect of dietary protein on bone loss in elderly men and women: The framingham osteoporosis study. J. Bone Miner. Res. 2000, 15, 2504–2512. [Google Scholar] [CrossRef]
- Li, Z.; Treyzon, L.; Chen, S.; Yan, E.; Thames, G.; Carpenter, C.L. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: An outpatient randomized controlled trial. Nutr. J. 2010, 9, 72. [Google Scholar] [CrossRef]
- Beasley, J.M.; LaCroix, A.Z.; Larson, J.C.; Huang, Y.; Neuhouser, M.L.; Tinker, L.F.; Jackson, R.; Snetselaar, L.; Johnson, K.C.; Eaton, C.B.; et al. Biomarker-calibrated protein intake and bone health in the Women’s Health Initiative clinical trials and observa-tional study. Am. J. Clin. Nutr. 2014, 99, 934–940. [Google Scholar] [CrossRef]
- Tidermark, J.; Ponzer, S.; Carlsson, P.; Söderqvist, A.; Brismar, K.; Tengstrand, B.; Cederholm, T. Effects of protein-rich supplementation and nandrolone in lean elderly women with femoral neck fractures. Clin. Nutr. 2004, 23, 587–596. [Google Scholar] [CrossRef]
- Flodin, L.; Cederholm, T.; Al-Ani, A.N.; Ackermann, P.W.; Saaf, M.; Samnegard, E.; Dalen, N.; Hedstrom, M. Additive effects of nutritional supplementation, together with isphosphonates, on bone mineral density after hip fracture: A 12-month randomized controlled study. Clin. Interv. Aging 2014, 9, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B.; Harris, S.S. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am. J. Clin. Nutr. 2002, 75, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.P.; Jacobson, E.H.; Layman, D.K.; He, X.; Kris-Etherton, P.M.; Evans, E.M. A Diet High in Protein, Dairy, and Calcium Attenuates Bone Loss over Twelve Months of Weight Loss and Maintenance Relative to a Conventional High-Carbohydrate Diet in Adults3. J. Nutr. 2008, 138, 1096–1100. [Google Scholar] [CrossRef]
- Ansari, M.; Darvishi, A. A review of the current state of natural biomaterials in wound healing applications. Front. Bioeng. Biotechnol. 2024, 12, 1309541. [Google Scholar] [CrossRef] [PubMed]
- Atallah, R.M.; Reetz, D.M.; Verdonschot, N.; de Kleuver, M.; Frölke, J.P.M.; Leijendekkers, R.A. Have Surgery and Implant Modifications Been Associated with Reduction in Soft Tissue Complications in Transfemoral Bone-anchored Prostheses? Clin. Orthop. Relat. Res. 2023, 481, 1373–1384. [Google Scholar] [CrossRef]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. The effect of amino acids on wound healing: A systematic review and meta-analysis on arginine and glutamine. Nutrients 2021, 13, 2498. [Google Scholar] [CrossRef]
- Baum, J.I.; Kim, I.-Y.; Wolfe, R.R. Protein consumption and the elderly: What is the optimal level of intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Mohd Safee, M.K.; Abu Osman, N.A. Effect of lower limb muscle fatigue on fall risk for transfemoral amputee: A pilot study. Occup. Ther. Int. 2021, 15, 2021. [Google Scholar] [CrossRef]
- Zoltick, E.S.; Sahni, S.; McLean, R.R.; Quach, L.; Casey, V.A.; Hannan, M.T. Dietary protein intake and subsequent falls in older men and women: The Framingham study. J. Nutr. Health Aging 2010, 15, 147–152. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Hirsch, K.R.; Saylor, H.E.; Gould, L.M.; Blue, M.N. Nutritional considerations and strategies to facilitate injury re-covery and rehabilitation. J. Athl. Train. 2020, 55, 918–930. [Google Scholar] [CrossRef]
- Chandel, N.S. Carbohydrate metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef]
- Demling, R.H. Nutrition, anabolism, and the wound healing process: An overview. Eplasty 2009, 9, e9. [Google Scholar]
- Ferrari, S.; Abrahamsen, B.; Napoli, N.; Akesson, K.; Chandran, M.; Eastell, R.; Fuleihan, G.E.-H.; Josse, R.; Kendler, D.; Kraenzlin, M.; et al. Diagnosis and management of bone fragility in diabetes: An emerging challenge. Osteoporos. Int. 2018, 29, 2585–2596. [Google Scholar] [CrossRef]
- Carter, J.D.; Vasey, F.B.; Valeriano, J. The effect of a low-carbohydrate diet on bone turnover. Osteoporos. Int. 2006, 17, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Meng, G.; Yang, C.; Sun, Y.; Zhong, W.; Lu, Y. Effect of preoperative oral carbohydrate on the postoperative recovery quality of patients undergoing daytime oral surgery: A randomized controlled trial. Perioper. Med. 2024, 13, 102. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Wolfe, R.R.; Ferrando, A.A. Pre-and post-surgical nutrition for preservation of muscle mass, strength, and functionality following orthopedic surgery. Nutrients 2021, 13, 1675. [Google Scholar] [CrossRef]
- So, J.; Wu, D.; Lichtenstein, A.H.; Tai, A.K.; Matthan, N.R.; Maddipati, K.R.; Lamon-Fava, S. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2021, 316, 90–98. [Google Scholar] [CrossRef]
- Romero-Márquez, J.M.; Varela-López, A.; Navarro-Hortal, M.D.; Badillo-Carrasco, A.; Forbes-Hernández, T.Y.; Giampieri, F.; Domínguez, I.; Madrigal, L.; Battino, M.; Quiles, J.L. Molecular interactions between dietary lipids and bone tissue during aging. Int. J. Mol. Sci. 2021, 22, 6473. [Google Scholar] [CrossRef] [PubMed]
- Jannas-Vela, S.; Espinosa, A.; Candia, A.A.; Flores-Opazo, M.; Peñailillo, L.; Valenzuela, R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023, 15, 871. [Google Scholar] [CrossRef]
- Feskanich, D.; Willett, W.C.; Colditz, G.A. Calcium, vitamin D, milk consumption, and hip fractures: A prospective study among postmenopausal women. Am. J. Clin. Nutr. 2003, 77, 504–511. [Google Scholar] [CrossRef]
- Nevin, K.; Rajamohan, T. Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats. Ski. Pharmacol. Physiol. 2010, 23, 290–297. [Google Scholar] [CrossRef]
- Beto, J.A. The role of calcium in human aging. Clin. Nutr. Res. 2015, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Theobald, H.E. Dietary calcium and health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- North American Menopause Society. The role of calcium in peri-and postmenopausal women: Consensus opinion of The North American Menopause Society. Menopause 2001, 8, 84–95. [Google Scholar] [CrossRef]
- Bristow, S.M.; Gamble, G.D.; Stewart, A.; Horne, L.; House, M.E.; Aati, O.; Mihov, B.; Horne, A.M.; Reid, I.R. Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: A randomised controlled trial in postmenopausal women. Br. J. Nutr. 2014, 112, 1611–1620. [Google Scholar] [CrossRef]
- Cunningham, C.; O’ Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef]
- Cashman, K.D. Diet, Nutrition and Bone Health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium, inflammation, and obesity in chronic disease. Nutr. Rev. 2010, 68, 333–340. [Google Scholar] [CrossRef]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium in Disease Prevention and Overall Health. Adv. Nutr. Int. Rev. J. 2013, 4, 378S–383S. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, R.; Pidar, F.; Momen-Heravi, M.; Bahmani, F.; Akbari, H.; Asemi, Z. Magnesium Supplementation and the Effects on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2017, 181, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.R.; Keast, D.R. White potatoes, including french fries, contribute shortfall nutrients to children’s and adolescents’ diets. Nutr. Res. 2011, 31, 270–277. [Google Scholar] [CrossRef]
- Ata, M.A.; Shaikh, S.S.; Iqbal, T.; Hina Jamil, D.; Khan, R.; Qazi, M.B.; Riwan, T. Inverse Correlation between Serum C-Reactive Protein and Magnesium Levels in Smokers and Nonsmokers. N. Am. J. Med. Sci. 2015, 7, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.M. Magnesium homeostasis and alcohol consumption. Magnes Res. 2008, 21, 197–204. [Google Scholar]
- Fordyce, F.M. Encyclopedia of Environmental Health. In Fluorine: Human Health Risks, 2nd ed.; Nriagu, J.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 776–785. [Google Scholar]
- Everett, E.T. Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J. Dent. Res. 2011, 90, 552–560. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, H.; Liu, H.; Ji, H.; Fei, W.; Luo, E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif. 2019, 52, e12613. [Google Scholar] [CrossRef]
- Grey, A.; Garg, S.; Dray, M.; Purvis, L.; Horne, A.; Callon, K.; Gamble, G.; Bolland, M.; Reid, I.R.; Cundy, T. Low-dose fluoride in postmenopausal women: A Randomized controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 2301–2307. [Google Scholar] [CrossRef]
- Richards, A.; Mosekilde, L.; Søgaard, C. Normal age-related changes in fluoride content of vertebral trabecular bone—Relation to bone quality. Bone 1994, 15, 21–26. [Google Scholar] [CrossRef]
- Jha, S.K.; Mishra, V.K.; Sharma, D.K.; Damodaran, T. Fluoride in the environment and its metabolism in humans. Rev. Environ. Contam. Toxicol. 2011, 211, 121–142. [Google Scholar]
- Plawecki, K.; Chapman-Novakofski, K. Bone health nutrition issues in aging. Nutrients 2010, 2, 1086–1105. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kwon, S.J.; Ha, Y.C. Association between urinary sodium excretion and bone health in male and female adults. Ann. Nutr. Metab. 2016, 68, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Granchj, D.; Caudarella, R.; Ripamonti, C. Potassium citrate supplementation decreases the biomechanical markers of bone loss in a group of osteopenic women: The result of a randomized, double-blind, placebo-controlled pilot study. Nutrients 2018, 10, 1293. [Google Scholar] [CrossRef]
- Jehle, S.; Hulter, H.N.; Krapf, R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 207–217. [Google Scholar] [CrossRef]
- Drewnowski, A.; Fulgoni, V., III. Comparing the nutrient rich foods index with “go,”“slow,” and “whoa” foods. J. Am. Diet. Assoc. 2011, 111, 280–284. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Niesen, D.B.; Hessler, C.; Seeram, N.P. Beyond resveratrol: A review of natural stilbenoids identified from 2009–2013. J. Berry Res. 2013, 3, 181–196. [Google Scholar] [CrossRef]
- Subedi, L.; Lee, T.H.; Wahedi, H.M.; Baek, S.H.; Kim, S.Y. Resveratrol-enriched rice attenuates UVB-ROS-induced skin aging via downregulation of inflammatory cascades. Oxidative Med. Cell. Longev. 2017, 2017, 8379539. [Google Scholar] [CrossRef]
- Çetinkalp, Ş.; Gökçe, E.H.; Şimşir, I.; Tuncay Tanrıverdi, S.; Doğan, F.; Biray Avcı, Ç.; Eroğlu, İ.; Utku, T.; Gündüz, C.; Özer, Ö. Comparative evaluation of clinical efficacy and safety of collagen laminin–based dermal matrix combined with resveratrol microparticles (Dermalix) and standard wound Care for Diabetic Foot Ulcers. Int. J. Low. Extrem. Wounds 2021, 20, 217–226. [Google Scholar] [CrossRef]
- Khanna, S.; Venojarvi, M.; Roy, S.; Sharma, N.; Trikha, P.; Bagchi, D.; Bagchi, M.; Sen, C.K. Dermal wound healing properties of re-dox-active grape seed proanthocyanidins. Free Radic. Biol. Med. 2002, 33, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Min, K.-K.; Neupane, S.; Adhikari, N.; Sohn, W.; An, S.; An, C.; Lee, Y.; Kim, Y.; Park, J.; Lee, J.; et al. Effects of resveratrol on bone-healing capacity in the mouse tooth extraction socket. J. Periodontal. Res. 2019, 55, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, N.A.; Appelman-Dijkstra, N.M.; Schipper, I.B. The role of vitamin D in human fracture healing: A systematic review of the literature. Influ. Vitam. D Osteoporos. Fract. Health 2014, 64, 17. [Google Scholar]
- Hoikka, V.; Alhava, E.M.; Aro, A.; Karjalainen, P.; Rehnberg, V. Treatment of osteoporosis with 1-alpha-hydroxycholecalciferol and calcium. Acta Medica Scand. 1980, 207, 221–224. [Google Scholar] [CrossRef]
- Diachkova, E.; Trifonova, D.; Morozova, E.; Runova, G.; Ashurko, I.; Ibadulaeva, M.; Fadeev, V.; Tarasenko, S. Vitamin D and its role in oral diseases development. Scoping review. Dent. J. 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-W.; Lee, H.-C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef]
- Halschou-Jensen, P.M.; Sauer, J.; Bouchelouche, P.; Fabrin, J.; Brorson, S.; Ohrt-Nissen, S. Improved Healing of Diabetic Foot Ulcers After High-dose Vitamin D: A Randomized Double-blinded Clinical Trial. Int. J. Low. Extrem. Wounds 2021, 22, 466–474. [Google Scholar] [CrossRef]
- Muresan, G.C.; Hedesiu, M.; Lucaciu, O.; Boca, S.; Petrescu, N. Effect of Vitamin D on Bone Regeneration: A Review. Medicina 2022, 58, 1337. [Google Scholar] [CrossRef]
- Slobogean, G.P.; Bzovsky, S.; O’Hara, N.N.; Marchand, L.S.; Hannan, Z.D.; Demyanovich, H.K.; Connelly, D.W.; Adachi, J.D.; Thabane, L.; Sprague, S.; et al. Effect of Vitamin D3 Supplementation on Acute Fracture Healing: A Phase II Screening Randomized Double-Blind Controlled Trial. JBMR Plus 2022, 7, e10705. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Tsugawa, N.; Kuwabara, A.; Kamao, M.; Tanaka, K.; Okano, T. High prevalence of hypovitaminosis D and K in patients with hip fracture. Asia Pac. J. Clin. Nutr. 2011, 20, 56–61. [Google Scholar] [PubMed]
- Knapen, M.H.J.; Schurgers, L.J.; Vermeer, C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos. Int. 2007, 18, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Iki, M.; Tamaki, J.; Kouda, K.; Yura, A.; Kadowaki, E.; Sato, Y.; Moon, J.-S.; Tomioka, K.; Okamoto, N.; et al. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: The Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos. Int. 2011, 23, 705–714. [Google Scholar] [CrossRef]
- AlHajri, L.; Ayoub, A.; Ahmed, H.; AlMulla, M. Effect of Vitamin K2 Alone or in Combination on Various Bone Turnover Markers Amongst Postmenopausal Females. J. Bone Metab. 2021, 28, 11–26. [Google Scholar] [CrossRef]
- Oakes, B.; Bolia, I.K.; Weber, A.E.; Petrigliano, F.A. Vitamin C in orthopedic practices: Current concepts, novel ideas, and future perspectives. J. Orthop. Res. 2020, 39, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Marini, J.C.; Cabral, W.A.; Barnes, A.M.; Chang, W. Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 2007, 6, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Moores, J. Vitamin C: A wound healing perspective. Br. J. Community Nurs. 2013, 18, S6–S11. [Google Scholar] [CrossRef]
- Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. The long history of vitamin C: From alleged prevention of the common cold to perspectives investigation to counter COVID-19. Front. Immunol. 2020, 11, 574029. [Google Scholar] [CrossRef] [PubMed]
- Ekrol, I.; Duckworth, A.D.; Ralston, S.H.; Court-Brown, C.M.; McQueen, M.M. The influence of vitamin C on the outcome of distal radial fractures: A double-blind, randomized controlled trial. J. Bone Joint Surg. Am. 2014, 96, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, L.; Lin, Y.F.; Xie, G.F. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis. Clin. Implant. Dent. Relat. Res. 2018, 20, 793–798. [Google Scholar] [CrossRef]
- Barrios-Garay, K.; Toledano-Serrabona, J.; Gay-Escoda, C.; Sánchez-Garcés, M. Clinical effect of vitamin C supplementation on bone healing: A systematic review. Med. Oral Patol. Oral Y Cir. Bucal 2022, 27, e205–e215. [Google Scholar] [CrossRef]
- Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and wound healing. Nutr. Clin. Pract. 2019, 34, 839–849. [Google Scholar] [CrossRef]
- Cruz, A.C.C.; Cardozo, F.T.G.d.S.; Magini, R.d.S.; Simões, C.M.O. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J. Appl. Oral Sci. 2019, 27, e20180317. [Google Scholar] [CrossRef] [PubMed]
- Polcz, M.E.; Barbul, A. The Role of Vitamin A in Wound Healing. Nutr. Clin. Pract. 2019, 34, 695–700. [Google Scholar] [CrossRef]
- Yee, M.M.F.; Chin, K.-Y.; Ima-Nirwana, S.; Wong, S.K. Vitamin A and Bone Health: A Review on Current Evidence. Molecules 2021, 26, 1757. [Google Scholar] [CrossRef]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Mohamed, I.N.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.W.; Burnett, J.R.; Croft, K.D. Vitamin E in human health and disease. Crit. Rev. Clin. Lab. Sci. 2008, 45, 417–450. [Google Scholar] [CrossRef]
- Vallibhakara, S.A.-O.; Nakpalat, K.; Sophonsritsuk, A.; Tantitham, C.; Vallibhakara, O. Effect of Vitamin E Supplement on Bone Turnover Markers in Postmenopausal Osteopenic Women: A Double-Blind, Randomized, Placebo-Controlled Trial. Nutrients 2021, 13, 4226. [Google Scholar] [CrossRef]
- Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takitani, K.; Negishi-Koga, T.; Sunamura, S.; Kodama, T.; et al. Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat. Med. 2012, 18, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef]
- Clements, M.; Heffernan, M.; Ward, M.; Hoey, L.; Doherty, L.C.; Mendes, R.H.; Clarke, M.M.; Hughes, C.F.; Love, I.; Murphy, S.; et al. A 2-Year Randomized Controlled Trial with Low-Dose B-Vitamin Supplementation Shows Benefits on Bone Mineral Density in Adults With Lower B12 Status. J. Bone Miner. Res. 2022, 37, 2443–2455. [Google Scholar] [CrossRef]
- Ilesanmi-Oyelere, B.L.; Kruger, M.C. B vitamins and homocysteine as determinants of bone health: A literature review of human studies. J. Hum. Nutr. Diet. 2023, 36, 1031–1044. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Clark, C.C.; Taghizadeh, M.; Djafarnejad, S. Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J. Trace Elem. Med. Biol. 2019, 57, 126417. [Google Scholar] [CrossRef] [PubMed]
- O’connor, J.P.; Kanjilal, D.; Teitelbaum, M.; Lin, S.S.; Cottrell, J.A. Zinc as a Therapeutic Agent in Bone Regeneration. Materials 2020, 13, 2211. [Google Scholar] [CrossRef]
- Sadighi, A.; Mahdavi-Roshan, M.; Moradi, A.; Ostadrahimi, A. The effects of zinc supplementation on serum zinc, alkaline phosphatase activity and fracture healing of bones. Saudi Med. J. 2008, 29, 1276–1279, Erratum in Saudi Med. J. 2008, 29, 1836. [Google Scholar]
- Windisch, W.; Wher, U.; Rambeck, W.; Erben, R. Effect of Zn deficiency and subsequent Zn repletion on bone mineral composition and markers of bone tissue metabolism in 65Zn-labelled, young-adult rats. J. Anim. Physiol. Anim. Nutr. 2002, 86, 214–221. [Google Scholar] [CrossRef]
- Momen-Heravi, M.; Barahimi, E.; Razzaghi, R.; Bahmani, F.; Gilasi, H.R.; Asemi, Z. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2017, 25, 512–520. [Google Scholar] [CrossRef]
- Berner, L.A.; Keast, D.R.; Bailey, R.L.; Dwyer, J.T. Fortified foods are major contributors to nutrient intakes in diets of US children and adolescents. J. Acad. Nutr. Diet. 2014, 114, 1009–1022.e8. [Google Scholar] [CrossRef]
- England, E.; Cheng, C. Nutrition: Micronutrients. FP Essent 2024, 539, 13–17. [Google Scholar]
- Fini, M.; Giavaresi, G.; Salamanna, F.; Veronesi, F.; Martini, L.; De Mattei, M.; Tschon, M. Harmful lifestyles on orthopedic implantation surgery: A descriptive review on alcohol and tobacco use. J. Bone Miner. Metab. 2011, 29, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Giampieri, F.; Chisari, E.; Micek, A.; Paladino, N.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; La Vignera, S.; Musumeci, G.; et al. Alcohol consumption, bone mineral density, and risk of osteoporotic fractures: A dose–response meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 1515. [Google Scholar] [CrossRef]
- Rosa, D.F.; Sarandy, M.M.; Novaes, R.D.; Freitas, M.B.; Pelúzio, M.D.C.G.; Gonçalves, R.V. High-Fat Diet and Alcohol Intake Promotes Inflammation and Impairs Skin Wound Healing in Wistar Rats. Mediat. Inflamm. 2018, 2018, 4658583. [Google Scholar] [CrossRef]
- Yuan, S.; Michaëlsson, K.; Wan, Z.; Larsson, S.C. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: A Mendelian randomization study. Calcif. Tissue Int. 2019, 105, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Hom, D.B.; Davis, M.E. Reducing risks for poor surgical wound healing. Facial Plast. Surg. Clin. N. Am. 2023, 31, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Thieman, T.; Westmark, D.; Sutton, A. Electronic cigarettes and cutaneous wound healing: A systematic review. J. Am. Acad. Dermatol. 2022, 88, 911–912. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Youn, J.Y.; Zhang, Y.; Makino, A.; Yuan, J.X.-J.; Cai, H. Flavored and nicotine-containing E-cigarettes induce impaired angiogenesis and diabetic wound healing via increased endothelial oxidative stress and reduced NO bioavailability. Antioxidants 2022, 11, 904. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, L.; Yang, C. The effect of preoperative smoking and smoke cessation on wound healing and infection in post-surgery subjects: A meta-analysis. Int. Wound J. 2022, 19, 2101–2106. [Google Scholar] [CrossRef]
- Sørensen, L.T. Wound healing and infection in surgery: The pathophysiological impact of smoking, smoking cessation, and nicotine replacement therapy: A systematic review. Ann. Surg. 2012, 255, 1069–1079. [Google Scholar] [CrossRef]
(a) | |
Breakfast | ¾ cup Greek yogurt with ¼ cup berries and 1 tbsp chia seeds |
Snack | ¼ cup of almonds |
Lunch | 3 oz of tuna salad or turkey on whole-grain bread with 1 cup of vegetables and 2 tbsp hummus |
Snack | 12 oz Protein shake |
Dinner | 3 oz of grilled chicken with 1 cup of vegetables and side salad (1 cup) with 2 tbsp of oil-based dressing |
(b) | |
Breakfast | 1 cup cooked oatmeal with ¼ cup blueberries |
Snack | 1 hard-boiled egg |
Lunch | Salad (2 cups of greens of choice) with ¼ cup chickpeas, ¼ cup quinoa, 5 cherry tomatoes, ½ cup chopped cucumbers, 2 tbsp feta, and 2 tbsp balsamic vinegar |
Snack | 2 tbsp nut butter and 1 cup celery |
Dinner | 3 oz broiled salmon with ½ cup brown rice and 1 cup vegetables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnuk-Scardaccione, A.; Cima, M.S. Limb Osseointegration—How Important Is the Role of Nutrition in the Process? Nutrients 2025, 17, 606. https://doi.org/10.3390/nu17040606
Wnuk-Scardaccione A, Cima MS. Limb Osseointegration—How Important Is the Role of Nutrition in the Process? Nutrients. 2025; 17(4):606. https://doi.org/10.3390/nu17040606
Chicago/Turabian StyleWnuk-Scardaccione, Agnieszka, and Megan Shawl Cima. 2025. "Limb Osseointegration—How Important Is the Role of Nutrition in the Process?" Nutrients 17, no. 4: 606. https://doi.org/10.3390/nu17040606
APA StyleWnuk-Scardaccione, A., & Cima, M. S. (2025). Limb Osseointegration—How Important Is the Role of Nutrition in the Process? Nutrients, 17(4), 606. https://doi.org/10.3390/nu17040606