Impact of Nutritional Status on Survival and Development of Hodgkin’s Lymphoma: A Scoping Review
Abstract
1. Introduction
1.1. Nutritional Status in the Course of Cancer
1.2. Objectives and Rationale
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.2.1. Population
2.2.2. Concept
2.2.3. Context
2.2.4. Types of Studies
2.3. Search Strategy
2.4. Extraction of Data
2.5. Critical Appraisal Process
2.6. Process for Including Publications to the Review
3. Nutritional Factors Influencing the Development and Mortality of Hodgkin Lymphoma
3.1. Excessive Consumption of Saturated Fats and Processed Meat Products
3.2. High Glycemic Index and Excess of Simple Sugars
3.3. Overweight and Obesity
4. Effect of Nutritional Status on Mortality in Hodgkin Lymphoma
5. Protective Factors That Reduce the Risk of Development and Early Mortality in Hodgkin Lymphoma
5.1. A Diet Rich in Vegetables and Fruits
5.2. Dietary Fiber Intake
5.3. Omega-3 Fatty Acids
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HL | Hodgkin lymphoma |
| PG-SGA | Patient-Generated Subjective Global Assessment |
| BMI | Body Mass Index |
| BIA | Bioimpedance |
| RQ | Review Question |
| PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-analysis for Scoping Reviews |
| IL-6 | Interleukin-6 |
| TNF | tumor necrosis factor |
| IG | Glycemic Index |
| IGF-1 | Insulin-like growth factor-1 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| EPIC | European Prospective Investigation into Cancer and Nutrition |
| ABVD | adriamycin, bleomynic, vinblastine, dacarbazine |
| CRP | C-reactive protein |
| NK-cells | natural-killer cells |
| SCFA | short-chain fatty acid |
| ESPEN | European Society for Clinical Nutrition and Metabolism |
| EPA | Eicosapentaenoic acid |
| DHA | Docosahexaenoic acid |
| RCT | randomized controlled trial |
References
- Kaseb, H.; Babiker, H.M. Hodgkin Lymphoma. 2023 Jun 26. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Hudnall, S.D.; Betancourt, E.; Barnhart, E.; Patel, J. Comparative flow immunophenotypic features of the inflammatory infiltrates of Hodgkin lymphoma and lymphoid hyperplasia. Cytom. B Clin. Cytom. 2008, 74, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, J. Pathological diagnosis of Hodgkin lymphoma. Nihon Rinsho. 2014, 72, 450–455. (In Japanese) [Google Scholar] [PubMed]
- Randall, M.P.; Spinner, M.A. Optimizing Treatment for Relapsed/Refractory Classic Hodgkin Lymphoma in the Era of Immunotherapy. Cancers 2023, 15, 4509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Momotow, J.; Borchmann, S.; Eichenauer, D.A.; Engert, A.; Sasse, S. Hodgkin Lymphoma-Review on Pathogenesis, Diagnosis, Current and Future Treatment Approaches for Adult Patients. J. Clin. Med. 2021, 10, 1125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rancea, M.; Monsef, I.; von Tresckow, B.; Engert, A.; Skoetz, N. High-dose chemotherapy followed by autologous stem cell transplantation for patients with relapsed/refractory Hodgkin lymphoma. Cochrane Database Syst. Rev. 2013, 2013, CD009411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ullah, F.; Dima, D.; Omar, N.; Ogbue, O.; Ahmed, S. Advances in the treatment of Hodgkin lymphoma: Current and future approaches. Front. Oncol. 2023, 13, 1067289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eichenauer, D.A.; Fuchs, M. Treatment of Nodular Lymphocyte-Predominant Hodgkin Lymphoma: Where Do We Stand? Where Do We Go? Cancers 2023, 15, 3310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eichenauer, D.A.; Hartmann, S. Nodular lymphocyte-predominant Hodgkin lymphoma: Current management strategies and evolving approaches to individualize treatment. Expert. Rev. Hematol. 2023, 16, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Leo, Q.J.; Ollberding, N.J.; Wilkens, L.R.; Kolonel, L.N.; Henderson, B.E.; Le Marchand, L.; Maskarinec, G. Nutritional factors and non-Hodgkin lymphoma survival in an ethnically diverse population: The Multiethnic Cohort. Eur. J. Clin. Nutr. 2016, 70, 41–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leo, Q.J.; Ollberding, N.J.; Wilkens, L.R.; Kolonel, L.N.; Henderson, B.E.; Le Marchand, L.; Maskarinec, G. Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: The Multiethnic Cohort study. Cancer Causes Control 2014, 25, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erber, E.; Maskarinec, G.; Gill, J.K.; Park, S.Y.; Kolonel, L.N. Dietary patterns and the risk of non-Hodgkin lymphoma: The Multiethnic Cohort. Leuk. Lymphoma 2009, 50, 1269–1275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos Chaves, M.; Boléo-Tomé, C.; Monteiro-Grillo, I.; Camilo, M.; Ravasco, P. The diversity of nutritional status in cancer: New insights. Oncologist. 2010, 15, 523–530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, C.; Lavinhas, C.; Fernandes, L.; Camilo, M.; Ravasco, P. Nutritional risk and status of surgical patients; the relevance of nutrition training of medical students. Nutr. Hosp. 2012, 27, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Long, J.; Tan, R.; Mai, H.; Lu, W.; Yan, F.; Peng, J. A multicentre assessment of malnutrition, nutritional risk, and application of nutritional support among hospitalized patients in Guangzhou hospitals. Asia Pac. J. Clin. Nutr. 2013, 22, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.I.; Correia, M.; Camilo, M.; Ravasco, P. Length of stay in surgical patients: Nutritional predictive parameters revisited. Br. J. Nutr. 2013, 109, 322–328. [Google Scholar] [CrossRef] [PubMed]
- De Groot, L.M.; Lee, G.; Ackerie, A.; van der Meij, B.S. Malnutrition Screening and Assessment in the Cancer Care Ambulatory Setting: Mortality Predictability and Validity of the Patient-Generated Subjective Global Assessment Short form (PG-SGA SF) and the GLIM Criteria. Nutrients 2020, 12, 2287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nitichai, N.; Angkatavanich, J.; Somlaw, N.; Voravud, N.; Lertbutsayanukul, C. Validation of the Scored Patient-Generated Subjective Global Assessment (PG-SGA) in Thai Setting and Association with Nutritional Parameters in Cancer Patients. Asian Pac. J. Cancer Prev. 2019, 20, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mathies, V.; Kipp, A.P.; Hammersen, J.; Schrenk, K.G.; Scholl, S.; Schnetzke, U.; Hochhaus, A.; Ernst, T. Standardizing Nutritional Care for Cancer Patients: Implementation and Evaluation of a Malnutrition Risk Screening. Oncol. Res. Treat. 2025, 48, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Araújo dos Santos, C.; de Oliveira Barbosa Rosa, C.; Queiroz Ribeiro, A.; Lanes Ribeiro Rde, C. Patient-generated subjective global assessment and classic anthropometry: Comparison between the methods in detection of malnutrition among elderly with cancer. Nutr. Hosp. 2015, 31, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, J.; Madubhashini, P.; Miller, M. Agreement between the Malnutrition Universal Screening Tool and the Patient-Generated Subjective Global Assessment for Cancer Outpatients Receiving Chemotherapy: A Cross-Sectional Study. Nutr. Cancer. 2018, 70, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.; Cindy, S.; Catalin, T.; McArthur, A.; Aromataris, E. Systematic review or scoping re-view? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Peters, M.; Godfrey, C.; McInerney, P.; Baldini Soares, C.; Khalil, H.; Parker, D. The Joanna Briggs Institute Reviewers’ Manual 2015: Methodology for JBI scoping reviews. Joanne Briggs Inst. 2015, 1–24. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Ghafoor, T. Prognostic factors in pediatric Hodgkin lymphoma: Experience from a developing country. Leuk. Lymphoma 2020, 61, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, V.; Hunutlu, F.Ç.; Pinar, I.E.; Göktuğ, M.R.; Ali, R.; Özkocaman, V.; Özkalemkaş, F. The clinical impacts of the controlling nutritional status score on patients with Hodgkin lymphoma. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9916–9927. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, S.; Mattana, M.; Santoro, M.; Carlisi, M.; Buscemi, S.; Siragusa, S. Host-related factors and cancer: Malnutrition and non-Hodgkin lymphoma. Hematol. Oncol. 2022, 40, 320–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bojková, B.; Winklewski, P.J.; Wszedybyl-Winklewska, M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int. J. Mol. Sci. 2020, 21, 4114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christiansen, E.; Schnider, S.; Palmvig, B.; Tauber-Lassen, E.; Pedersen, O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 1997, 20, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Shrapnel, W.S.; Calvert, G.D.; Nestel, P.J.; Truswell, A.S. Diet and coronary heart disease. The National Heart Foundation of Australia. Med. J. Aust. 1992, 156, S9–S16. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, M.E.; Ordovas, J.M.; Osada, J.; Fasulo, J.; Robins, S.J.; Nicolosi, R.J.; Schaefer, E.J. Dietary monounsaturated and polyunsaturated fatty acids are comparable in their effects on hepatic apolipoprotein mRNA abundance and liver lipid concentrations when substituted for saturated fatty acids in cynomolgus monkeys. J. Nutr. 1995, 125, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Q.; Qiu, Y.; Mu, Y.; Zhang, X.J.; Liu, L.; Hou, X.H.; Zhang, L.; Xu, X.N.; Ji, A.L.; Cao, R.; et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr. Res. 2013, 33, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Qian, M.; Hou, Y.; Liang, M.; Chen, Y.; Wang, C.; Zhang, J. Association of saturated fatty acids with cancer risk: A systematic review and meta-analysis. Lipids Health Dis. 2024, 23, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forbes, C.; Shirran, L.; Bagnall, A.M.; Duffy, S.; ter Riet, G. A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer. Health Technol. Assess. 2001, 5, 1–110. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.B.; Razzaque, M.S. Phosphate toxicity and tumorigenesis. Biochim. Biophys. Acta Rev. Cancer. 2018, 1869, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Epner, M.; Yang, P.; Wagner, R.W.; Cohen, L. Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers 2022, 14, 6042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, R.R.; Chan, C.B.; Louie, J.C.Y. Current WHO recommendation to reduce free sugar intake from all sources to below 10% of daily energy intake for supporting overall health is not well supported by available evidence. Am. J. Clin. Nutr. 2022, 116, 15–39, Erratum in Am. J. Clin. Nutr. 2022, 116, 1187. https://doi.org/10.1093/ajcn/nqac231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rice, B.J.; Buras, M.R.; Kosiorek, H.E.; Coppola, K.E.; Amin, S.B.; Verona, P.M.; Cook, C.B.; Karlin, N.J. Survival and glycemic control in patients with coexisting lymphoma and diabetes: A case-control analysis. Future Sci. OA 2020, 7, FSO641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiedmeier, J.E.; Mountjoy, L.J.; Buras, M.R.; Kosiorek, H.E.; Coppola, K.E.; Verona, P.M.; Cook, C.B.; Karlin, N.J. Mortality and glycemic control among patients with acute and chronic myeloid leukemia and diabetes: A case-control study. Future Sci. OA 2020, 7, FSO639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ederaine, S.A.; Dominguez, J.L.; Harvey, J.A.; Mangold, A.R.; Cook, C.B.; Kosiorek, H.; Buras, M.; Coppola, K.; Karlin, N.J. Survival and glycemic control in patients with co-existing squamous cell carcinoma and diabetes mellitus. Future Sci. OA 2021, 7, FSO683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Li, G.; Liu, F.; Shi, R.; Wen, J.; Wu, W.; Dai, J. Analysis of the efficacy and prognostic factors of gemcitabine combined with oxaliplatin in non-Hodgkin lymphoma. Oncol. Lett. 2025, 30, 603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alsharif, A.T.; Aldawsari, M.; Babateen, E.M.; Kouther, M.A.; Aljahdali, F.F.; Absi, A.; Aldosary, T.; Ahmed, M.E. The Impact of Obesity on Hodgkin’s Lymphoma Patients Treated with Uniform Chemotherapy Protocol at Princess Noorah Oncology Center, National Guard Health Affairs, Jeddah, Saudi Arabia: Retrospective Matched Cohort. Cureus 2022, 14, e25002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paoli, D.; Rizzo, F.; Fiore, G.; Pallotti, F.; Pulsoni, A.; Annechini, G.; Lombardo, F.; Lenzi, A.; Gandini, L. Spermatogenesis in Hodgkin’s lymphoma patients: A retrospective study of semen quality before and after different chemotherapy regimens. Hum. Reprod. 2016, 31, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Ding, Y.; Zhang, H.; Guo, W.; Li, Y.; Jin, Z.; Qu, C.; Xia, F. Body mass index-associated responses to an ABVD-like regimen in newly-diagnosed patients with Hodgkin lymphoma. Front. Pharmacol. 2023, 14, 1195907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kılıçkap, S.; Barışta, I.; Ulger, S.; Celik, I.; Selek, U.; Yıldız, F.; Kars, A.; Ozışık, Y.; Tekuzman, G. Clinical Features and Prognostic Factors of Hodgkin’s Lymphoma: A Single Center Experience. Balkan Med. J. 2013, 30, 178–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meyer, R.M.; Gospodarowicz, M.K.; Connors, J.M.; Pearcey, R.G.; Wells, W.A.; Winter, J.N.; Horning, S.J.; Dar, A.R.; Shustik, C.; Stewart, D.A.; et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N. Engl. J. Med. 2012, 366, 399–408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdullah, M.; Alam, S.; Zafar, W.; Majid, A. Diffusion Lung Capacity Changes In Hodgkin Lymphoma Patients Before And After Abvd Chemotherapy. J. Ayub Med. Coll. Abbottabad. 2016, 28, 289–292. [Google Scholar] [PubMed]
- Alkhayat, N.; Alshahrani, M.; Elyamany, G.; Sedick, Q.; Ibrahim, W.; Hamzi, H.; Binhassan, A.; Othman, M.; Alshieban, S.; Aljabry, M.S.; et al. Clinicopathologic features and therapy outcome in childhood Hodgkin’s lymphoma: A report from tertiary care center in Saudi Arabia. J. Egypt. Natl. Canc Inst. 2021, 33, 21. [Google Scholar] [CrossRef] [PubMed]
- Mehreen, A.; Wali, R.M.; Sindhu, I.I.; Asad, M.; Ria, S. Retrospective analysis of clinical features and treatment outcomes of children with Hodgkin’s Lymphoma treated with different chemotherapy protocols at a tertiary care center in Pakistan. J. Pak. Med. Assoc. 2019, 69, 1266–1272. [Google Scholar] [PubMed]
- Lu, G.; Li, Q. The controlling nutritional status score as a predictor of survival in hematological malignancies: A systematic review and meta-analysis. Front. Nutr. 2024, 11, 1402328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petermann-Rocha, F.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Frailty, sarcopenia, cachexia and malnutrition as comorbid conditions and their associations with mortality: A prospective study from UK Biobank. J. Public Health 2022, 44, e172–e180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Semań, T.; Krupa-Nurcek, S.; Szczupak, M.; Kobak, J.; Widenka, K. Impact of Sarcopenia and Nutritional Status on Survival of Patients with Aortic Dissection: A Scoping Review. Nutrients 2025, 17, 3088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Meza-Valderrama, D.; Marco, E.; Dávalos-Yerovi, V.; Muns, M.D.; Tejero-Sánchez, M.; Duarte, E.; Sánchez-Rodríguez, D. Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients 2021, 13, 761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, W.; Ren, K.; Chen, X.; Li, N.; Zhou, H.; Jiang, M.; Yu, Y.; Zou, L. A controlling nutritional status score is an independent predictor for patients with newly diagnosed nasal-type extranodal NK/T-cell lymphoma based on asparaginase-containing regimens. Cancer Med. 2023, 12, 9439–9448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, W.; Ren, K.; Chen, X.; Li, N.; Luo, Q.; Hai, T.; Zhou, H.; Zou, L. Comparison of the clinical efficacies of two L-asparaginase-based chemotherapy regimens for newly diagnosed nasal-type extranodal NK/T-cell lymphoma. Cancer Med. 2023, 12, 9458–9470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, X.; Zheng, T.; Foss, F.; Holford, T.R.; Ma, S.; Zhao, P.; Dai, M.; Kim, C.; Zhang, Y.; Bai, Y.; et al. Vegetable and fruit intake and non-Hodgkin lymphoma survival in Connecticut women. Leuk. Lymphoma 2010, 51, 1047–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, X.; Zheng, T.; Lan, Q.; Zhang, Y.; Kilfoy, B.A.; Qin, Q.; Rothman, N.; Zahm, S.H.; Holford, T.R.; Leaderer, B.; et al. Genetic polymorphisms in nitric oxide synthase genes modify the relationship between vegetable and fruit intake and risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1429–1438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ollberding, N.J.; Aschebrook-Kilfoy, B.; Caces, D.B.; Smith, S.M.; Weisenburger, D.D.; Chiu, B.C. Dietary intake of fruits and vegetables and overall survival in non-Hodgkin lymphoma. Leuk. Lymphoma 2013, 54, 2613–2619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Hunter, D.J.; Rosner, B.A.; Giovannucci, E.L.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 477–485. [Google Scholar] [PubMed]
- Zheng, T.; Holford, T.R.; Leaderer, B.; Zhang, Y.; Zahm, S.H.; Flynn, S.; Tallini, G.; Zhang, B.; Zhou, K.; Owens, P.H.; et al. Diet and nutrient intakes and risk of non-Hodgkin’s lymphoma in Connecticut women. Am. J. Epidemiol. 2004, 159, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; O’Connor, H.M.; Fredericksen, Z.S.; Liebow, M.; Thompson, C.A.; Macon, W.R.; Micallef, I.N.; Wang, A.H.; Slager, S.L.; Habermann, T.M.; et al. Food-frequency questionnaire-based estimates of total antioxidant capacity and risk of non-Hodgkin lymphoma. Int. J. Cancer 2012, 131, 1158–1168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larsson, S.C.; Bergkvist, L.; Wolk, A. Fruit and vegetable consumption and incidence of gastric cancer: A prospective study. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, T.; Foss, F.M.; Ma, S.; Holford, T.R.; Boyle, P.; Leaderer, B.; Zhao, P.; Dai, M.; Zhang, Y. Alcohol consumption and non-Hodgkin lymphoma survival. J. Cancer Surviv. 2010, 4, 101–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, E.T.; Bälter, K.M.; Torrång, A.; Smedby, K.E.; Melbye, M.; Sundström, C.; Glimelius, B.; Adami, H.O. Nutrient intake and risk of non-Hodgkin’s lymphoma. Am. J. Epidemiol. 2006, 164, 1222–1232, Erratum in Am. J. Epidemiol. 2007, 165, 848.. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.M.; Chang, E.T.; Zhang, Y.; Fung, T.T.; Batista, J.L.; Ambinder, R.F.; Zheng, T.; Mueller, N.E.; Birmann, B.M. Dietary pattern and risk of hodgkin lymphoma in a population-based case-control study. Am. J. Epidemiol. 2015, 182, 405–416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Li, Q.; Bassig, B.A.; Chang, E.T.; Dai, M.; Qin, Q.; Zhang, Y.; Zheng, T. Subtype of dietary fat in relation to risk of Hodgkin lymphoma: A population-based case-control study in Connecticut and Massachusetts. Cancer Causes Control 2013, 24, 485–494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasperzyk, J.L.; Chang, E.T.; Birmann, B.M.; Kraft, P.; Zheng, T.; Mueller, N.E. Nutrients and genetic variation involved in one-carbon metabolism and Hodgkin lymphoma risk: A population-based case-control study. Am. J. Epidemiol. 2011, 174, 816–827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.X.; Ho, S.C.; Lin, F.Y.; Chen, Y.M.; Cheng, S.Z.; Fu, J.H. Dietary fat intake and risk of breast cancer: A case-control study in China. Eur. J. Cancer Prev. 2011, 20, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ollberding, N.J.; Aschebrook-Kilfoy, B.; Caces, D.B.; Smith, S.M.; Weisenburger, D.D.; Chiu, B.C. Dietary patterns and the risk of non-Hodgkin lymphoma. Public Health Nutr. 2014, 17, 1531–1537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solimini, A.G.; Lombardi, A.M.; Palazzo, C.; De Giusti, M. Meat intake and non-Hodgkin lymphoma: A meta-analysis of observational studies. Cancer Causes Control 2016, 27, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Betiati Dda, S.; de Oliveira, P.F.; Camargo Cde, Q.; Nunes, E.A.; Trindade, E.B. Effects of omega-3 fatty acids on regulatory T cells in hematologic neoplasms. Rev. Bras. Hematol. Hemoter. 2013, 35, 119–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thanarajasingam, G.; Maurer, M.J.; Habermann, T.M.; Nowakowski, G.S.; Bennani, N.N.; Thompson, C.A.; Cerhan, J.R.; Witzig, T.E. Low Plasma Omega-3 Fatty Acid Levels May Predict Inferior Prognosis in Untreated Diffuse Large B-Cell Lymphoma: A New Modifiable Dietary Biomarker? Nutr. Cancer 2018, 70, 1088–1090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stenson, M.; Pedersen, A.; Hasselblom, S.; Nilsson-Ehle, H.; Karlsson, B.G.; Pinto, R.; Andersson, P.O. Serum nuclear magnetic resonance-based metabolomics and outcome in diffuse large B-cell lymphoma patients—A pilot study. Leuk. Lymphoma 2016, 57, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Katoh, D.; Ochi, Y.; Yabushita, T.; Ono, Y.; Hiramoto, N.; Yoshioka, S.; Yonetani, N.; Matsushita, A.; Hashimoto, H.; Kaji, S.; et al. Peripheral Blood Lymphocyte-to-Monocyte Ratio at Relapse Predicts Outcome for Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma in the Rituximab Era. Clin. Lymphoma Myeloma Leuk. 2017, 17, e91–e97. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Ryu, K.J.; Park, C.; Hong, M.; Ko, Y.H.; Kim, W.S.; Kim, S.J. Clinical impact of serum survivin positivity and tissue expression of EBV-encoded RNA in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Oncotarget 2017, 8, 13782–13791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamamoto, M.; Watanabe, K.; Fukuda, T.; Miura, O. Prediction of Prognosis for Patients with Diffuse Large B-Cell Lymphoma Refractory to or in First Relapse After Initial R-CHOP Therapy: A Single-Institution Study. Anticancer. Res. 2017, 37, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Sugita, Y.; Ohwada, C.; Kawaguchi, T.; Muto, T.; Tsukamoto, S.; Takeda, Y.; Mimura, N.; Takeuchi, M.; Sakaida, E.; Shimizu, N.; et al. Prognostic impact of serum soluble LR11 in newly diagnosed diffuse large B-cell lymphoma: A multicenter prospective analysis. Clin. Chim. Acta 2016, 463, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Sobue, T.; Zha, L.; Kitamura, T.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Tsugane, S.; Sawada, N. Association between Meat, Fish, and Fatty Acid Intake and Non-Hodgkin Lymphoma Incidence: The Japan Public Health Center-Based Prospective Study. J. Nutr. 2022, 152, 1895–1906. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, B.; O’Connor, H.M.; Wang, A.H.; Liebow, M.; Thompson, C.A.; Fredericksen, Z.S.; Macon, W.R.; Slager, S.L.; Call, T.G.; Habermann, T.M.; et al. Trans fatty acid intake is associated with increased risk and n3 fatty acid intake with reduced risk of non-hodgkin lymphoma. J. Nutr. 2013, 143, 672–681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]


| Author, Year | Country | Participants | Findings |
|---|---|---|---|
| Ghafoor T. et al., 2019 [25] | Pakistan | Pediatric patients with Hodgkin lymphoma |
|
| Gürsoy V. et al., 2023 [26] | Turkey | Patients with Hodgkin lymphoma |
|
| Mancuso S. et al., 2022 [27] | Italy | Patients with Hodgkin lymphoma |
|
| Factor | Key Findings | References |
|---|---|---|
| Excessive consumption of saturated fats and processed meat products | Excessive consumption of saturated fats and processed meat products may promote the development of Hodgkin’s lymphoma by inducing chronic inflammation, deregulating the immune system, and being exposed to mutagenic compounds present in canned meat. This type of diet can lead to disorders of the lymphoid microenvironment, increasing the risk of cancerous transformation of lymphatic cells. | [4,28,29,30,31,32,33,34,35] |
| High glycemic index and excess of simple sugars | A high glycemic index and excess simple sugars may promote the development of Hodgkin’s lymphoma by inducing insulin resistance, chronic inflammation, and activating the IGF-1 pathway, which stimulates the proliferation of cancer cells. In addition, a diet rich in refined sugars weakens immunity and promotes oxidative stress, which may increase the risk of lymphocyte transformation towards cancer. | [15,16,26,36,37,38,39,40,41,42] |
| Overweight and obesity | Overweight and obesity can increase the risk of developing Hodgkin’s lymphoma by inducing chronic inflammation, impaired immune function, and overproduction of pro-inflammatory cytokines by adipose tissue. Additionally, obesity promotes insulin resistance and deregulation of the IGF-1 pathway, which may promote lymphoid cell proliferation and tumor transformation. | [14,27,43,44,45,46,47,48,49,50] |
| A diet rich in vegetables and fruits | A diet rich in vegetables and fruits may reduce the risk of developing Hodgkin’s lymphoma thanks to the presence of antioxidants, fiber, and anti-inflammatory compounds that support immunity and protect cells from DNA damage. Regular consumption of these products promotes immune balance and reduces the influence of environmental factors that promote the transformation of cancer lymphocytes. | [10,26,27,59,60,61,62,63,64,65,66] |
| Dietary fiber intake | Dietary fiber intake may reduce the risk of developing Hodgkin’s lymphoma by supporting the gut microbiota, reducing chronic inflammation, and improving cellular immunity. In addition, fiber has a positive effect on metabolism and immune balance, limiting factors that promote the transformation of cancer lymphocytes. | [8,25,67,68,69,70,71,72,73] |
| Omega-3 fatty acids | Omega-3 fatty acids may reduce the risk of developing Hodgkin lymphoma through their anti-inflammatory, immunomodulatory and supportive effects on metabolic balance and the lymphoid microenvironment. Their presence in the diet promotes the reduction of cancer cell proliferation and improves immunity, which may protect against cancerous transformation of lymphocytes. | [74,75,76,77,78,79,80,81,82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa-Nurcek, S.; Wiśniewska, D.; Klimas, M.; Winiarska, M.; Jucha, D.; Jamro, A. Impact of Nutritional Status on Survival and Development of Hodgkin’s Lymphoma: A Scoping Review. Nutrients 2025, 17, 3777. https://doi.org/10.3390/nu17233777
Krupa-Nurcek S, Wiśniewska D, Klimas M, Winiarska M, Jucha D, Jamro A. Impact of Nutritional Status on Survival and Development of Hodgkin’s Lymphoma: A Scoping Review. Nutrients. 2025; 17(23):3777. https://doi.org/10.3390/nu17233777
Chicago/Turabian StyleKrupa-Nurcek, Sabina, Dominika Wiśniewska, Michał Klimas, Martyna Winiarska, Dominik Jucha, and Arkadiusz Jamro. 2025. "Impact of Nutritional Status on Survival and Development of Hodgkin’s Lymphoma: A Scoping Review" Nutrients 17, no. 23: 3777. https://doi.org/10.3390/nu17233777
APA StyleKrupa-Nurcek, S., Wiśniewska, D., Klimas, M., Winiarska, M., Jucha, D., & Jamro, A. (2025). Impact of Nutritional Status on Survival and Development of Hodgkin’s Lymphoma: A Scoping Review. Nutrients, 17(23), 3777. https://doi.org/10.3390/nu17233777

