Gut Dysbiosis and Plasma Trimethylamine Oxide Are Associated with Subclinical Coronary Atherosclerosis in Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Liver Stiffness and Steatosis Measurement
2.3. CAC Quantification Using a Multisection CT Scan
2.4. Fecal Collection, DNA Extraction, and Sequencing
2.5. Gut Microbiota Data Processing and Analysis
2.6. Fecal BCoAT Gene Assessment
2.7. Plasma Biomarker Measurement
2.8. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Patients
3.2. The Alpha and Beta Diversities of Gut Microbiota
3.3. Gut Bacterial Compositional Analysis
3.4. Fecal BCoAT Level
3.5. Plasma Biomarker Levels
3.6. Univariate and Multivariate Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Hsu, C.; Caussy, C.; Imajo, K.; Chen, J.; Singh, S.; Kaulback, K.; Le, M.D.; Hooker, J.; Tu, X.; Bettencourt, R.; et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clin. Gastroenterol. Hepatol. 2019, 17, 630–637.e638. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef]
- Kawai, K.; Finn, A.V.; Virmani, R.; Subclinical Atherosclerosis, C. Subclinical Atherosclerosis: Part 1: What Is it? Can it Be Defined at the Histological Level? Arterioscler. Thromb. Vasc. Biol. 2024, 44, 12–23. [Google Scholar] [CrossRef]
- Jamalinia, M.; Zare, F.; Lankarani, K.B. Systematic review and meta-analysis: Association between liver fibrosis and subclinical atherosclerosis in nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2023, 58, 384–394. [Google Scholar] [CrossRef]
- Tham, K.W.; Abdul Ghani, R.; Cua, S.C.; Deerochanawong, C.; Fojas, M.; Hocking, S.; Lee, J.; Nam, T.Q.; Pathan, F.; Saboo, B.; et al. Obesity in South and Southeast Asia-A new consensus on care and management. Obes. Rev. 2023, 24, e13520. [Google Scholar] [CrossRef]
- Ye, Q.; Zou, B.; Yeo, Y.H.; Li, J.; Huang, D.Q.; Wu, Y.; Yang, H.; Liu, C.; Kam, L.Y.; Tan, X.X.E.; et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 739–752. [Google Scholar] [CrossRef]
- Tang, A.; Ng, C.H.; Phang, P.H.; Chan, K.E.; Chin, Y.H.; Fu, C.E.; Zeng, R.W.; Xiao, J.; Tan, D.J.H.; Quek, J.; et al. Comparative Burden of Metabolic Dysfunction in Lean NAFLD vs Non-lean NAFLD—A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 1750–1760. [Google Scholar] [CrossRef]
- Tilg, H.; Cani, P.D.; Mayer, E.A. Gut microbiome and liver diseases. Gut 2016, 65, 2035–2044. [Google Scholar] [CrossRef]
- Jayakumar, S.; Loomba, R. Review article: Emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment. Pharmacol. Ther. 2019, 50, 144–158. [Google Scholar] [CrossRef]
- Kobayashi, T.; Iwaki, M.; Nakajima, A.; Nogami, A.; Yoneda, M. Current Research on the Pathogenesis of NAFLD/NASH and the Gut-Liver Axis: Gut Microbiota, Dysbiosis, and Leaky-Gut Syndrome. Int. J. Mol. Sci. 2022, 23, 11689. [Google Scholar] [CrossRef]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Kim, M.; Huda, M.N.; Bennett, B.J. Sequence meets function-microbiota and cardiovascular disease. Cardiovasc. Res. 2022, 118, 399–412. [Google Scholar] [CrossRef]
- Folsom, A.R.; Kronmal, R.A.; Detrano, R.C.; O’Leary, D.H.; Bild, D.E.; Bluemke, D.A.; Budoff, M.J.; Liu, K.; Shea, S.; Szklo, M.; et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: The Multi-Ethnic Study of Atherosclerosis (MESA). Arch. Intern. Med. 2008, 168, 1333–1339. [Google Scholar] [CrossRef]
- Gu, Q.; Cen, L.; Lai, J.; Zhang, Z.; Pan, J.; Zhao, F.; Yu, C.; Li, Y.; Chen, C.; Chen, W.; et al. A meta-analysis on the diagnostic performance of magnetic resonance imaging and transient elastography in nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2021, 51, e13446. [Google Scholar] [CrossRef]
- Chattranukulchai, P.; Vassara, M.; Siwamogsatham, S.; Buddhari, W.; Tumkosit, M.; Ketloy, C.; Shantavasinkul, P.; Apornpong, T.; Lwin, H.M.S.; Kerr, S.J.; et al. High-Sensitivity Troponins and Subclinical Coronary Atherosclerosis Evaluated by Coronary Calcium Score Among Older Asians Living With Well-Controlled Human Immunodeficiency Virus. Open Forum Infect. Dis. 2023, 10, ofad234. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Development of a Semiquantitative Degenerate Real-Time PCR-Based Assay for Estimation of Numbers of Butyryl-Coenzyme A (CoA) CoA Transferase Genes in Complex Bacterial Samples. Appl. Environ. Microbiol. 2007, 73, 2009–2012. [Google Scholar] [CrossRef]
- Vanuytsel, T.; Tack, J.; Farre, R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front. Nutr. 2021, 8, 717925. [Google Scholar] [CrossRef]
- Schumann, R.R.; Leong, S.R.; Flaggs, G.W.; Gray, P.W.; Wright, S.D.; Mathison, J.C.; Tobias, P.S.; Ulevitch, R.J. Structure and function of lipopolysaccharide binding protein. Science 1990, 249, 1429–1431. [Google Scholar] [CrossRef]
- Ocque, A.J.; Stubbs, J.R.; Nolin, T.D. Development and validation of a simple UHPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. J. Pharm. Biomed. Anal. 2015, 109, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Behari, J.; Wang, R.; Luu, H.N.; McKenzie, D.; Molinari, M.; Yuan, J.M. Severe obesity is associated with worse outcomes than lean metabolic dysfunction-associated steatotic liver disease. Hepatol. Commun. 2024, 8, e0468. [Google Scholar] [CrossRef]
- Ma, G.; Xu, G.; Huang, H. Correlation between metabolic dysfunction-associated steatotic liver disease and subclinical coronary atherosclerosis in eastern China. Diabetol. Metab. Syndr. 2025, 17, 16. [Google Scholar] [CrossRef]
- Simon, T.G.; Roelstraete, B.; Hagstrom, H.; Sundstrom, J.; Ludvigsson, J.F. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: Results from a nationwide histology cohort. Gut 2022, 71, 1867–1875. [Google Scholar] [CrossRef]
- Doshi, A.; Gandhi, H.; Patel, K.N.; Majmundar, M.; Doshi, R. Aspirin for Primary Prevention in Patients With Elevated Coronary Artery Calcium Score: A Systematic Review of Current Evidences. Am. J. Cardiol. 2024, 220, 9–15. [Google Scholar] [CrossRef]
- Sasidharan Pillai, S.; Gagnon, C.A.; Foster, C.; Ashraf, A.P. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, 109, 2709–2719. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Zhao, Y.; Zou, Y.; Chen, M.; Zhou, S.; Wang, Z. The relationship of Megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota. Sci. Rep. 2022, 12, 22001. [Google Scholar] [CrossRef]
- Maya-Lucas, O.; Murugesan, S.; Nirmalkar, K.; Alcaraz, L.D.; Hoyo-Vadillo, C.; Pizano-Zarate, M.L.; Garcia-Mena, J. The gut microbiome of Mexican children affected by obesity. Anaerobe 2019, 55, 11–23. [Google Scholar] [CrossRef]
- Wu, C.; Yang, F.; Zhong, H.; Hong, J.; Lin, H.; Zong, M.; Ren, H.; Zhao, S.; Chen, Y.; Shi, Z.; et al. Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption. Cell Host Microbe 2024, 32, 1301–1314. [Google Scholar] [CrossRef]
- Pinart, M.; Dotsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021, 14, 12. [Google Scholar] [CrossRef]
- Kaakoush, N.O. Sutterella Species, IgA-degrading Bacteria in Ulcerative Colitis. Trends Microbiol. 2020, 28, 519–522. [Google Scholar] [CrossRef]
- Squillario, M.; Bonaretti, C.; La Valle, A.; Di Marco, E.; Piccolo, G.; Minuto, N.; Patti, G.; Napoli, F.; Bassi, M.; Maghnie, M.; et al. Gut-microbiota in children and adolescents with obesity: Inferred functional analysis and machine-learning algorithms to classify microorganisms. Sci. Rep. 2023, 13, 11294. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Amiar, M.R.; Ocana-Wilhelmi, L.; Soler-Humanes, R.; Arranz-Salas, I.; Garrido-Sanchez, L.; Gutierrez-Repiso, C.; Tinahones, F.J. Non-alcoholic fatty liver disease in patients with morbid obesity: The gut microbiota axis as a potential pathophysiology mechanism. J. Gastroenterol. 2024, 59, 329–341. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef]
- Oduaran, O.H.; Tamburini, F.B.; Sahibdeen, V.; Brewster, R.; Gomez-Olive, F.X.; Kahn, K.; Norris, S.A.; Tollman, S.M.; Twine, R.; Wade, A.N.; et al. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiol. 2020, 20, 330. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Huang, F.Q.; Lao, X.; Lu, Y.; Gao, X.; Alolga, R.N.; Yin, K.; Zhou, X.; Wang, Y.; Liu, B.; et al. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilm. Microbiomes 2022, 8, 11. [Google Scholar] [CrossRef]
- Crost, E.H.; Coletto, E.; Bell, A.; Juge, N. Ruminococcus gnavus: Friend or foe for human health. FEMS Microbiol. Rev. 2023, 47, fuad014. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed]
- Toya, T.; Corban, M.T.; Marrietta, E.; Horwath, I.E.; Lerman, L.O.; Murray, J.A.; Lerman, A. Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 2020, 15, e0227147. [Google Scholar] [CrossRef]
- Grahnemo, L.; Nethander, M.; Coward, E.; Gabrielsen, M.E.; Sree, S.; Billod, J.M.; Engstrand, L.; Abrahamsson, S.; Langhammer, A.; Hveem, K.; et al. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome. Lancet Diabetes Endocrinol. 2022, 10, 481–483. [Google Scholar] [CrossRef]
- Zhai, L.; Xiao, H.; Lin, C.; Wong, H.L.X.; Lam, Y.Y.; Gong, M.; Wu, G.; Ning, Z.; Huang, C.; Zhang, Y.; et al. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat. Commun. 2023, 14, 4986. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Amiri, P.; Hosseini, S.A.; Ghaffari, S.; Tutunchi, H.; Ghaffari, S.; Mosharkesh, E.; Asghari, S.; Roshanravan, N. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front. Pharmacol. 2021, 12, 837509. [Google Scholar] [CrossRef]
- Tilves, C.; Yeh, H.C.; Maruthur, N.; Juraschek, S.P.; Miller, E.; White, K.; Appel, L.J.; Mueller, N.T. Increases in Circulating and Fecal Butyrate are Associated With Reduced Blood Pressure and Hypertension: Results From the SPIRIT Trial. J. Am. Heart Assoc. 2022, 11, e024763. [Google Scholar] [CrossRef]
- Baragetti, A.; Severgnini, M.; Olmastroni, E.; Dioguardi, C.C.; Mattavelli, E.; Angius, A.; Rotta, L.; Cibella, J.; Caredda, G.; Consolandi, C.; et al. Gut Microbiota Functional Dysbiosis Relates to Individual Diet in Subclinical Carotid Atherosclerosis. Nutrients 2021, 13, 304. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, K.; Jiang, Y.; Zhu, C.; Suo, C.; Cui, M.; Wang, Y.; Yuan, Z.; Xue, J.; Wang, J.; et al. The gut microbiome in subclinical atherosclerosis: A population-based multiphenotype analysis. Rheumatology 2021, 61, 258–269. [Google Scholar] [CrossRef]
- Yang, H.T.; Jiang, Z.H.; Yang, Y.; Wu, T.T.; Zheng, Y.Y.; Ma, Y.T.; Xie, X. Faecalibacterium prausnitzii as a potential Antiatherosclerotic microbe. Cell Commun. Signal 2024, 22, 54. [Google Scholar] [CrossRef]
- Lewis, C.V.; Taylor, W.R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1227–H1233. [Google Scholar] [CrossRef]
- Kitai, T.; Kim, Y.H.; Kiefer, K.; Morales, R.; Borowski, A.G.; Grodin, J.L.; Tang, W.H.W. Circulating intestinal fatty acid-binding protein (I-FABP) levels in acute decompensated heart failure. Clin. Biochem. 2017, 50, 491–495. [Google Scholar] [CrossRef]
- Thomas, M.S.; Fernandez, M.L. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr. Atheroscler. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Senthong, V.; Kiatchoosakun, S.; Wongvipaporn, C.; Phetcharaburanin, J.; Tatsanavivat, P.; Sritara, P.; Phrommintikul, A. Gut microbiota-generated metabolite, trimethylamine-N-oxide, and subclinical myocardial damage: A multicenter study from Thailand. Sci. Rep. 2021, 11, 14963. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lu, Y.; Yuan, S.; Cai, X.; He, Y.; Chen, J.; Wu, Q.; He, D.; Fang, A.; Bo, Y.; et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: An umbrella review and updated meta-analysis. Am. J. Clin. Nutr. 2022, 116, 230–243. [Google Scholar] [CrossRef]
- Bogiatzi, C.; Gloor, G.; Allen-Vercoe, E.; Reid, G.; Wong, R.G.; Urquhart, B.L.; Dinculescu, V.; Ruetz, K.N.; Velenosi, T.J.; Pignanelli, M.; et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis 2018, 273, 91–97. [Google Scholar] [CrossRef]
- Roberts, A.B.; Gu, X.; Buffa, J.A.; Hurd, A.G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S.M.; Cody, D.B.; Levison, B.S.; et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 2018, 24, 1407–1417. [Google Scholar] [CrossRef]
- Wu, H.; Chiou, J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients 2021, 13, 2878. [Google Scholar] [CrossRef]
Characteristics | Low BMI (<30 kg/m2) (n = 151) | High BMI (≥30 kg/m2) (n = 51) | p-Value |
---|---|---|---|
Age (years) | 58.8 ± 12.7 | 51.4 ± 13.9 | 0.001 * |
Gender Male Female | 80 (53.0) 71 (47.0) | 24 (47.1) 27 (52.9) | 0.284 |
BMI (kg/m2) | 25.9 ± 2.2 | 33.7 ± 4.8 | <0.001 * |
Presence of type 2 diabetes | 99 (65.6) | 33 (64.7) | 1.000 |
Presence of hypertension | 90 (59.6) | 24 (47.1) | 0.142 |
Presence of dyslipidemia | 98 (64.9) | 33 (64.7) | 1.000 |
Statin use | 62 (41.1) | 23 (45.1) | 0.626 |
Smoking | 11 (7.3) | 6 (11.6) | 0.447 |
Hemoglobin (g/dL) | 13.8 ± 1.6 | 14.0 ± 1.9 | 0.636 |
White blood count (103/µL) | 6.5 ± 1.9 | 7.7 ± 2.1 | 0.011 * |
Platelet count (103/µL) | 241.5 ± 71.9 | 270.3 ± 70.1 | 0.019 * |
Serum creatinine (mg/dL) | 0.9 ± 1.0 | 1.0 ± 1.6 | 0.552 |
Estimated glomerular filtration rate (eGFR) (mL/min/1.73 m2) | 91.2 ± 20.7 | 96.0 ± 25.0 | 0.189 |
Total bilirubin (mg/dL) | 0.8 ± 0.3 | 0.7 ± 0.3 | 0.846 |
Serum albumin (g/dL) | 4.3 ± 0.3 | 4.4 ± 0.4 | 0.235 |
Aspartate aminotransferase (IU/L) | 28.8 ± 14.6 | 27.2 ± 10.3 | 0.469 |
Alanine aminotransferase (IU/L) | 35.5 ± 23.1 | 38.6 ± 19.6 | 0.390 |
Alkaline phosphatase (IU/L) | 74.7 ± 27.5 | 68.2 ± 16.3 | 0.286 |
Magnetic resonance elastography (kPa) | 2.9 ± 1.2 | 2.7 ± 1.1 | 0.349 |
Proton density fat fraction (%) | 11.2 ± 7.5 | 15.0 ± 7.1 | 0.002 * |
Coronary artery calcification (AU) | 204.0 ± 378.6 | 450.3 ± 511.5 | 0.015 * |
Factors | Category | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Age (years) | ≥60 vs. <60 | 4.27 (1.83–9.94) | 0.001 * | 9.20 (2.30–36.87) | 0.002 * |
Gender | Male vs. Female | 0.85 (0.38–1.88) | 0.686 | ||
BMI (kg/m2) | ≥30 vs. <30 | 2.45 (1.05–5.71) | 0.038 * | 5.07 (1.41–18.21) | 0.013 * |
Diabetes | Yes vs. No | 4.41 (1.81–10.79) | 0.001 * | 3.89 (1.20–12.58) | 0.023 * |
Hypertension | Yes vs. No | 4.31 (1.84–10.07) | 0.001 * | 0.78 (0.20–2.98) | 0.716 |
Dyslipidemia | Yes vs. No | 1.58 (0.68–3.69) | 0.287 | ||
Smoking | Yes vs. No | 2.24 (0.68–7.36) | 0.184 | ||
Aspartate aminotransferase (IU/L) | ≥40 vs. <40 | 2.28 (0.78–6.69) | 0.134 | ||
Alanine aminotransferase (IU/L) | ≥40 vs. <40 | 0.80 (0.34–1.88) | 0.612 | ||
Albumin (g/dL) | <4.0 vs. ≥4.0 | 2.82 (0.28–28.56) | 0.379 | ||
Platelet count (109/L) | <150 vs. ≥150 | 3.04 (0.88–10.49) | 0.078 | ||
eGFR (mL/min/1.73 m2) | <90 vs. ≥90 | 2.18 (0.92–5.18) | 0.077 | ||
Liver steatosis grade | S2-S3 vs. S1 | 0.70(0.30–1.61) | 0.397 | ||
Liver fibrosis stage | F3-F4 vs. F0-F2 | 5.38 (1.93–14.94) | 0.001 * | 5.30 (1.37–20.56) | 0.016 * |
Fecal BCoAT level | Low vs. High | 2.30 (1.02–5.17) | 0.044 * | 1.19 (0.40–3.59) | 0.752 |
Plasma I-FABP (ng/mL) | ≥1000 vs. <1000 | 3.39 (1.30–8.83) | 0.012 * | 1.35 (0.32–5.60) | 0.683 |
Plasma LBP (ng/mL) | ≥15,000 vs. <15,000 | 1.34 (0.60–3.00) | 0.470 | ||
Plasma choline (µM) | ≥40 vs. <40 | 0.96 (0.43–2.13) | 0.917 | ||
Plasma betaine (µM) | ≥40 vs. <40 | 1.35 (0.59–3.06) | 0.480 | ||
Plasma TMAO (µM) | ≥5.0 vs. <5.0 | 7.76 (2.41–25.01) | 0.001 * | 5.26 (1.20–23.97) | 0.032 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.; Kongsomboonchoke, P.; Chayanupatkul, M.; Tumkosit, M.; Chattranukulchai, P.; Prombutara, P.; Tangkijvanich, P. Gut Dysbiosis and Plasma Trimethylamine Oxide Are Associated with Subclinical Coronary Atherosclerosis in Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2025, 17, 2759. https://doi.org/10.3390/nu17172759
Islam K, Kongsomboonchoke P, Chayanupatkul M, Tumkosit M, Chattranukulchai P, Prombutara P, Tangkijvanich P. Gut Dysbiosis and Plasma Trimethylamine Oxide Are Associated with Subclinical Coronary Atherosclerosis in Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients. 2025; 17(17):2759. https://doi.org/10.3390/nu17172759
Chicago/Turabian StyleIslam, Kittiya, Pattida Kongsomboonchoke, Maneerat Chayanupatkul, Monravee Tumkosit, Pairoj Chattranukulchai, Pinidphon Prombutara, and Pisit Tangkijvanich. 2025. "Gut Dysbiosis and Plasma Trimethylamine Oxide Are Associated with Subclinical Coronary Atherosclerosis in Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease" Nutrients 17, no. 17: 2759. https://doi.org/10.3390/nu17172759
APA StyleIslam, K., Kongsomboonchoke, P., Chayanupatkul, M., Tumkosit, M., Chattranukulchai, P., Prombutara, P., & Tangkijvanich, P. (2025). Gut Dysbiosis and Plasma Trimethylamine Oxide Are Associated with Subclinical Coronary Atherosclerosis in Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients, 17(17), 2759. https://doi.org/10.3390/nu17172759