Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Pre- and Post-Visit Procedures
2.4. Three-Dimensional Optical Imaging
2.5. Ultrasound Assessment
2.6. Ultrasound Analysis
2.7. Maximal Muscle Strength
2.8. Signal Processing
2.9. Eccentric Muscle Damage Exercise Protocol
2.10. Vertical Jump Assessment
2.11. Subjective Ratings of Soreness Assessment
2.12. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Strength Recovery
3.3. Muscle Characteristics
3.4. Subjective Ratings
3.5. Thigh Measurements
3.6. Vertical Jump
4. Discussion
4.1. Primary Findings
4.2. Muscular Characteristics
4.3. Maximal and Rapid Strength
4.4. Vertical Jump Performance
4.5. Subjective Ratings of Soreness
4.6. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOMS | Delayed-onset muscle soreness |
EMD | Eccentric muscle damage |
sMLCT | Structured medium- and long-chain triglycerides |
CON | Control |
ASA24 | Automated Self-Administered Dietary Assessment Tool |
3DO | Three-dimensional optical imaging |
VAS | Visual analog scales |
VL | Vastus lateralis |
B-mode | Brightness mode |
CSA | Cross-sectional area |
MVC | Maximal voluntary contraction |
PT | Peak torque |
RT | Rapid torque |
REML | Restricted log-likelihood |
References
- Cheung, K.; Hume, P.A.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, D.L.; Reid, W.D.; McKenzie, D.C. Delayed muscle soreness: The inflammatory response to muscle injury and its clinical implications. Sports Med. 1995, 20, 24–40. [Google Scholar] [CrossRef]
- Caballero-García, A.; Córdova-Martínez, A. Muscle recovery and nutrition. Nutrients 2022, 14, 2416. [Google Scholar] [CrossRef]
- Romain, C.; Freitas, T.T.; Martínez-Noguera, F.J.; Laurent, C.; Gaillet, S.; Chung, L.H.; Alcaraz, P.E.; Cases, J. Supplementation with a Polyphenol-Rich Extract, TensLess®, Attenuates Delayed Onset Muscle Soreness and Improves Muscle Recovery from Damages After Eccentric Exercise. Phytother. Res. 2017, 31, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Pumpa, K.L.; Fallon, K.E.; Bensoussan, A.; Papalia, S. The effects of Lyprinol® on delayed onset muscle soreness and muscle damage in well trained athletes: A double-blind randomised controlled trial. Complement. Ther. Med. 2011, 19, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Nasir, Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2021, 35, 1768–1781. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Tang, T.-K.; Chan, E.-S.; Phuah, E.-T.; Lai, O.-M.; Tan, C.-P.; Wang, Y.; Ab Karim, N.A.; Mat Dian, N.H.; Tan, J.S. Medium chain triglyceride and medium-and long chain triglyceride: Metabolism, production, health impacts and its applications—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4169–4185. [Google Scholar] [CrossRef]
- Clegg, M.E. Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Int. J. Food Sci. Nutr. 2010, 61, 653–679. [Google Scholar] [CrossRef]
- Wanten, G.; Janssen, F.; Naber, A. Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length. Eur. J. Clin. Investig. 2002, 32, 285–289. [Google Scholar] [CrossRef]
- Wanten, G.J.; Calder, P.C. Immune modulation by parenteral lipid emulsions. Am. J. Clin. Nutr. 2007, 85, 1171–1184. [Google Scholar] [CrossRef]
- Nelson, J.L. A pilot intervention study to evaluate compliance to a peptide-based oral nutritional supplement in an adult population with impaired gastrointestinal function. Clin. Nutr. Exp. 2019, 28, 123–130. [Google Scholar] [CrossRef]
- McKenna, M.C.; Hubbard, V.S.; Bieri, J.G. Linoleic acid absorption from lipid supplements in patients with cystic fibrosis with pancreatic insufficiency and in control subjects. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 45–51. [Google Scholar] [PubMed]
- Van Hubbard, S.; McKenna, M.C. Absorption of safflower oil and structured lipid preparations in patients with cystic fibrosis. Lipids 1987, 22, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ni, Q.; Pei, Y.; Ren, Y.; Feng, Y. Meta-analysis of the efficacy and safety of structured triglyceride lipid emulsions in parenteral nutrition therapy in China. Clin. Nutr. 2019, 38, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Zaniolo, O.; Schuster, H.; Schlotzer, E.; Pradelli, L. Structured triglycerides versus physical mixtures of medium-and long-chain triglycerides for parenteral nutrition in surgical or critically ill adult patients: Systematic review and meta-analysis. Clin. Nutr. 2017, 36, 150–161. [Google Scholar] [CrossRef]
- Byrne, C.; Eston, R. The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J. Sports Sci. 2002, 20, 417–425. [Google Scholar] [CrossRef]
- Molina, R.; Denadai, B.S. Dissociated time course recovery between rate of force development and peak torque after eccentric exercise. Clin. Physiol. Funct. Imaging 2012, 32, 179–184. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Warren, G.L.; Lowe, D.A.; Armstrong, R.B. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999, 27, 43–59. [Google Scholar] [CrossRef]
- Jenkins, N.D.; Housh, T.J.; Traylor, D.A.; Cochrane, K.C.; Bergstrom, H.C.; Lewis, R.W.; Schmidt, R.J.; Johnson, G.O.; Cramer, J.T. The rate of torque development: A unique, non-invasive indicator of eccentric-induced muscle damage? Int. J. Sports Med. 2014, 35, 1190–1195. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- McKay, B.D.; Yeo, N.M.; Jenkins, N.D.; Miramonti, A.A.; Cramer, J.T. Exertional rhabdomyolysis in a 21-year-old healthy woman: A case report. J. Strength Cond. Res. 2017, 31, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Sakamoto, K.; Newton, M.; Sacco, P. How long does the protective effect on eccentric exercise-induced muscle damage last? Med. Sci. Sports Exerc. 2001, 33, 1490–1495. [Google Scholar] [CrossRef]
- Booth, M. Assessment of physical activity: An international perspective. Res. Q. Exerc. Sport 2000, 71 (Suppl. S2), 114–120. [Google Scholar] [CrossRef]
- Young, H.J.; Jenkins, N.T.; Zhao, Q.; Mccully, K.K. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve 2015, 52, 963–971. [Google Scholar] [CrossRef]
- Harris, A.J. Lateral dominance, directional confusion, and reading disability. J. Psychol. 1957, 44, 283–294. [Google Scholar] [CrossRef]
- Thompson, B.J.; Ryan, E.D.; Herda, T.J.; Costa, P.B.; Herda, A.A.; Cramer, J.T. Age-related changes in the rate of muscle activation and rapid force characteristics. AGE 2014, 36, 839–849. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Software: Nlme-Linear and Nonlinear Mixed Effects Models; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means, R Package Version 1.10.5. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 4 May 2025).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, R Package Version 2.8.17. 2024. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 4 May 2025).
- Swenson, E.S.; Selleck, K.M.; Babayan, V.K.; Blackburn, G.L.; Bistrian, B.R. Persistence of metabolic effects after long-term oral feeding of a structured triglyceride derived from medium-chain triglyceride and fish oil in burned and normal rats. Metabolism 1991, 40, 484–490. [Google Scholar] [CrossRef]
- Mok, K.T.; Maiz, A.; Yamazaki, K.; Sobrado, J.; Babayan, V.K.; Moldawer, L.L.; Bistrian, B.R.; Blackburn, G.L. Structured medium-chain and long-chain triglyceride emulsions are superior to physical mixtures in sparing body protein in the burned rat. Metabolism 1984, 33, 910–915. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Abernethy, P.J. Acute adaptation to low volume eccentric exercise. Med. Sci. Sports Exerc. 2001, 33, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, N.P.; Allen, T.; Morgan, D.L.; Proske, U. Damage to human muscle from eccentric exercise after training with concentric exercise. J. Physiol. 1998, 512, 615. [Google Scholar] [CrossRef]
- Smith, L.L. Acute inflammation: The underlying mechanism in delayed onset muscle soreness? Med. Sci. Sports Exerc. 1991, 23, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Mota, J.A.; DeFranco, R.N.; Grue, K.A.; Jacobo, A.U.; Chung, E.; Moon, J.R.; DeFreitas, J.M.; Beck, T.W. The time course of short-term hypertrophy in the absence of eccentric muscle damage. Eur. J. Appl. Physiol. 2017, 117, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Sakamoto, K. Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med. Sci. Sports Exerc. 2001, 33, 22–29. [Google Scholar] [CrossRef]
- Wong, V.; Spitz, R.W.; Bell, Z.W.; Viana, R.B.; Chatakondi, R.N.; Abe, T.; Loenneke, J.P. Exercise induced changes in echo intensity within the muscle: A brief review. J. Ultrasound 2020, 23, 457–472. [Google Scholar] [CrossRef]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef]
- Burt, D.G.; Lamb, K.; Nicholas, C.; Twist, C. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption. Eur. J. Sport Sci. 2014, 14, 337–344. [Google Scholar] [CrossRef]
- Hicks, K.; Onambélé, G.; Winwood, K.; Morse, C. Muscle damage following maximal eccentric knee extensions in males and females. PLoS ONE 2016, 11, e0150848. [Google Scholar] [CrossRef]
- Romero-Parra, N.; Cupeiro, R.; Alfaro-Magallanes, V.M.; Rael, B.; Rubio-Arias, J.Á.; Peinado, A.B.; Benito, P.J. Exercise-induced muscle damage during the menstrual cycle: A systematic review and meta-analysis. J. Strength Cond. Res. 2021, 35, 549–561. [Google Scholar] [CrossRef]
- Brusco, C.M.; Radaelli, R.; Neske, R.; Peñailillo, L.E.; Pinto, R.S. Rate of torque development as an indirect marker of muscle damage in the knee flexors. Sport Sci. Health 2022, 18, 75–83. [Google Scholar] [CrossRef]
- Cossich, V.; Maffiuletti, N.A. Early vs. late rate of torque development: Relation with maximal strength and influencing factors. J. Electromyogr. Kinesiol. 2020, 55, 102486. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Heckel, Z.; Atlasz, T.; Tékus, É.; Kőszegi, T.; Laczkó, J.; Váczi, M. Monitoring exercise-induced muscle damage indicators and myoelectric activity during two weeks of knee extensor exercise training in young and old men. PLoS ONE 2019, 14, e0224866. [Google Scholar] [CrossRef] [PubMed]
- Margaritelis, N.V.; Theodorou, A.A.; Baltzopoulos, V.; Maganaris, C.N.; Paschalis, V.; Kyparos, A.; Nikolaidis, M.G. Muscle damage and inflammation after eccentric exercise: Can the repeated bout effect be removed? Physiol. Rep. 2015, 3, e12648. [Google Scholar] [CrossRef]
- McHugh, M.P.; Connolly, D.A.; Eston, R.G.; Gleim, G.W. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999, 27, 157–170. [Google Scholar] [CrossRef]
- Thompson, B.J.; Ryan, E.D.; Sobolewski, E.J.; Smith, D.B.; Akehi, K.; Conchola, E.C.; Buckminster, T. Relationships between rapid isometric torque characteristics and vertical jump performance in Division I collegiate American football players: Influence of body mass normalization. J. Strength Cond. Res. 2013, 27, 2737–2742. [Google Scholar] [CrossRef]
- Thompson, B.J.; Stock, M.S.; Shields, J.E.; Luera, M.J.; Munayer, I.K.; Mota, J.A.; Carrillo, E.C.; Olinghouse, K.D. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices. J. Strength Cond. Res. 2015, 29, 1–10. [Google Scholar] [CrossRef]
- Eston, R.; Byrne, C.; Twist, C. Muscle function after exercise-induced muscle damage: Considerations for athletic performance in children and adults. J. Exerc. Sci. Fit. 2003, 1, 85–96. [Google Scholar]
- van Ingen Schenau, G.J.; Bobbert, M.F.; de Haan, A. Mechanics and energetics of the stretch-shortening cycle: A stimulating discussion. J. Appl. Biomech. 1997, 13, 484–496. [Google Scholar] [CrossRef]
- Radaelli, R.; Bottaro, M.; Wilhelm, E.N.; Wagner, D.R.; Pinto, R.S. Time course of strength and echo intensity recovery after resistance exercise in women. J. Strength Cond. Res. 2012, 26, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, M.E.; Clarkson, P.M. The effects of eccentric exercise on motor performance in young and older women. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 183–186. [Google Scholar] [CrossRef] [PubMed]
- VanDusseldorp, T.A.; Escobar, K.A.; Johnson, K.E.; Stratton, M.T.; Moriarty, T.; Cole, N.; McCormick, J.J.; Kerksick, C.M.; Vaughan, R.A.; Dokladny, K. Effect of branched-chain amino acid supplementation on recovery following acute eccentric exercise. Nutrients 2018, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Dierking, J.K.; Bemben, M.G.; Bemben, D.A.; Anderson, M.A. Validity of diagnostic ultrasound as a measure of delayed onset muscle soreness. J. Orthop. Sports Phys. Ther. 2000, 30, 116–125. [Google Scholar] [CrossRef]
- Newham, D.; Mills, K.; Quigley, B.; Edwards, R. Pain and fatigue after concentric and eccentric muscle contractions. Clin. Sci. 1983, 64, 55–62. [Google Scholar] [CrossRef]
- Hedayatpour, N.; Falla, D.; Arendt-Nielsen, L.; Farina, D. Sensory and electromyographic mapping during delayed-onset muscle soreness. Med. Sci. Sports Exerc. 2008, 40, 326. [Google Scholar] [CrossRef]
All (n = 40) | CON (n = 20) | sMLCT (n = 20) | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p 1 | |
Age (year) | 22.3 | 3.4 | 22.3 | 3.4 | 22.2 | 3.5 | 0.93 |
Height (cm) | 162.0 | 5.4 | 161.9 | 4.9 | 162.1 | 6.0 | 0.93 |
Weight (kg) | 61.7 | 9.3 | 60.3 | 10.3 | 63.1 | 8.3 | 0.84 |
BMI (kg/m2) | 23.5 | 3.4 | 23.0 | 3.5 | 24.1 | 3.3 | 0.84 |
BF% | 33.3 | 7.1 | 30.8 | 6.8 | 35.9 | 6.6 | 0.14 |
FFMI (kg/m2) | 15.1 | 1.6 | 15.1 | 1.9 | 15.2 | 1.3 | 0.93 |
WHR | 0.7 | 0.1 | 0.7 | 0.0 | 0.7 | 0.1 | 0.93 |
All (n = 40) | CON (n = 20) | sMLCT (n = 20) | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p 1 | |
Exercise Habits | |||||||
Exercise Frequency (days/week) | 1.7 | 1.2 | 1.8 | 1.0 | 1.6 | 1.4 | 0.69 |
Years of Exercise | 1.5 | 2.0 | 2.2 | 2.5 | 0.9 | 1.0 | 0.10 |
RT Frequency (days/week) | 0.1 | 0.2 | 0.1 | 0.3 | 0.0 | 0.0 | 0.24 |
RT Duration (min/session) | 1.2 | 5.3 | 2.4 | 7.3 | 0.0 | 0.0 | 0.24 |
ET Frequency (days/week) | 1.0 | 1.4 | 1.0 | 0.9 | 1.0 | 1.7 | 1.00 |
ET Duration (min/session) | 15.9 | 17.8 | 20.1 | 19.2 | 11.6 | 15.7 | 0.24 |
CT Frequency (days/week) | 0.1 | 0.4 | 0.2 | 0.5 | 0.0 | 0.0 | 0.24 |
CT Duration (min/session) | 2.3 | 10.4 | 4.6 | 14.5 | 0.0 | 0.0 | 0.24 |
Activity Expenditure (kcal/week) | 2547.9 | 4376.9 | 3307.1 | 5793.1 | 1788.7 | 2133.0 | 0.32 |
Nutritional Intake | |||||||
Energy (kcal) | 1431.0 | 416.4 | 1596.9 | 426.9 | 1265.1 | 340.1 | 0.08 |
Protein (g) | 62.0 | 18.7 | 67.0 | 18.6 | 56.9 | 17.9 | 0.20 |
Fat (g) | 62.7 | 20.0 | 70.8 | 18.8 | 54.7 | 18.1 | 0.08 |
Carbohydrate (g) | 158.4 | 53.0 | 176.4 | 57.0 | 140.3 | 42.9 | 0.10 |
Water (g) | 726.0 | 323.5 | 800.6 | 345.6 | 651.4 | 289.3 | 0.24 |
Saturated Fats (g) | 22.0 | 8.0 | 25.1 | 8.7 | 18.9 | 6.1 | 0.08 |
Monounsaturated Fats (g) | 20.7 | 7.0 | 23.1 | 6.5 | 18.3 | 6.9 | 0.10 |
Polyunsaturated Fats (g) | 14.1 | 5.6 | 15.9 | 4.3 | 12.2 | 6.2 | 0.10 |
Outcome | Term | F-Ratio | p |
---|---|---|---|
Torque at 25 ms (Nm) | condition | 0.71 | 0.64 |
time | 1.37 | 0.56 | |
condition × time | 2.88 | 0.06 | |
Torque at 50 ms (Nm) | condition | 0.01 | 0.92 |
time | 7.11 | <0.001 * | |
condition × time | 1.12 | 0.63 | |
Torque at 100 ms (Nm) | condition | 0.42 | 0.67 |
time | 7.29 | <0.001 * | |
condition × time | 1.25 | 0.59 | |
Torque at 200 ms (Nm) | condition | 0.65 | 0.64 |
time | 11.49 | <0.001 * | |
condition × time | 0.49 | 0.78 | |
Torque at 250 ms (Nm) | condition | 0.51 | 0.66 |
time | 13.69 | <0.001 * | |
condition × time | 0.51 | 0.78 | |
Peak Torque (Nm) | condition | 0.28 | 0.72 |
time | 15.40 | <0.001 * | |
condition × time | 3.08 | 0.05 | |
VL CSA at 25% (cm2) | condition | 0.12 | 0.87 |
time | 2.50 | 0.19 | |
condition × time | 0.24 | 0.91 | |
VL CSA at 50% (cm2) | condition | 0.22 | 0.82 |
time | 1.64 | 0.37 | |
condition × time | 0.92 | 0.72 | |
VL CSA at 75% (cm2) | condition | 1.82 | 0.37 |
time | 0.82 | 0.72 | |
condition × time | 1.05 | 0.69 | |
EI at 25% (au) | condition | 3.57 | 0.19 |
time | 0.81 | 0.72 | |
condition × time | 2.46 | 0.19 | |
EI at 50% (au) | condition | 3.71 | 0.19 |
time | 5.33 | <0.001 * | |
condition × time | 0.35 | 0.91 | |
EI at 75% (au) | condition | 3.40 | 0.19 |
time | 3.91 | 0.04 * | |
condition × time | 0.26 | 0.91 | |
Soreness (rank) | condition | 0.00 | 1.00 |
time | 36.91 | <0.001 * | |
condition × time | 1.68 | 0.34 | |
Pain, Proximal (rank) | condition | 0.00 | 1.00 |
time | 2.30 | 0.15 | |
condition × time | 1.13 | 0.64 | |
Pain, Middle (rank) | condition | 0.00 | 1.00 |
time | 7.01 | <0.001 * | |
condition × time | 0.90 | 0.78 | |
Pain, Distal (rank) | condition | 0.00 | 1.00 |
time | 8.70 | <0.001 * | |
condition × time | 0.20 | 1.00 | |
Squatting Pain (rank) | condition | 0.00 | 1.00 |
time | 28.70 | <0.001 * | |
condition × time | 2.57 | 0.12 | |
Thigh Circumference (cm) | condition | 1.44 | 0.36 |
time | 5.47 | <0.001 * | |
condition × time | 0.40 | 0.81 | |
Leg Volume (L) | condition | 0.63 | 0.52 |
time | 6.12 | <0.001 * | |
condition × time | 1.59 | 0.36 | |
Average VJ Power (W) | condition | 0.05 | 0.88 |
time | 8.15 | <0.001 * | |
condition × time | 1.14 | 0.42 | |
Peak VJ Power (W) | condition | 4.35 | 0.12 |
time | 1.55 | 0.33 | |
condition × time | 1.12 | 0.42 | |
Average VJ Velocity (m/s) | condition | 0.03 | 0.88 |
time | 7.71 | <0.001 * | |
condition × time | 1.28 | 0.42 | |
Peak VJ Velocity (m/s) | condition | 4.05 | 0.12 |
time | 2.52 | 0.12 | |
condition × time | 1.68 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasquez, C.M.; Rodriguez, C.; Wohlgemuth, K.J.; Tinsley, G.M.; Mota, J.A. Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise. Nutrients 2025, 17, 1604. https://doi.org/10.3390/nu17101604
Velasquez CM, Rodriguez C, Wohlgemuth KJ, Tinsley GM, Mota JA. Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise. Nutrients. 2025; 17(10):1604. https://doi.org/10.3390/nu17101604
Chicago/Turabian StyleVelasquez, Carina M., Christian Rodriguez, Kealey J. Wohlgemuth, Grant M. Tinsley, and Jacob A. Mota. 2025. "Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise" Nutrients 17, no. 10: 1604. https://doi.org/10.3390/nu17101604
APA StyleVelasquez, C. M., Rodriguez, C., Wohlgemuth, K. J., Tinsley, G. M., & Mota, J. A. (2025). Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise. Nutrients, 17(10), 1604. https://doi.org/10.3390/nu17101604