The Association between Diet Quality and Metabolic Syndrome among Older African American Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolic Syndrome Components Measurements, Diagnosis, and z-Score
2.3. Dietary Intake and Diet Quality Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacroix, S.; Cantin, J.; Nigam, A. Contemporary issues regarding nutrition in cardiovascular rehabilitation. Ann. Phys. Rehabil. Med. 2017, 60, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Poor Nutrition|CDC (n.d.). Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/chronic-disease/index.html (accessed on 16 February 2024).
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/current-dietary-guidelines (accessed on 13 August 2024).
- Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the Western Diet: How We Got Here. Mo. Med. 2020, 117, 536–538. [Google Scholar] [PubMed] [PubMed Central]
- Quader, Z.S.; Zhao, L.; Gillespie, C.; Cogswell, M.E.; Terry, A.L.; Moshfegh, A.; Rhodes, D. Sodium Intake among Persons Aged ≥2 Years—United States, 2013–2014. Mmwr. Morb. Mortal. Wkly. Rep. 2017, 66, 324-238. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Moore, L.V.; Park, S.; Harris, D.M.; Blanck, H.M. Adults Meeting Fruit and Vegetable Intake Recommendations—United States, 2019. Mmwr. Morb. Mortal. Wkly. Rep. 2022, 71, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seo, E.H.; Kim, H.; Kwon, O. Association between Total Sugar Intake and Metabolic Syndrome in Middle-Aged Korean Men and Women. Nutrients 2019, 11, 2042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lepping, K.; Adams-Campbell, L.L.; Hicks, J.; Mills, M.; Dash, C. Dietary fiber intake and metabolic syndrome in postmenopausal African American women with obesity. PLoS ONE 2022, 17, e0273911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Kris-Etherton, P.M. Diet Quality Assessment and the Relationship between Diet Quality and Cardiovascular Disease Risk. Nutrients 2021, 13, 4305. [Google Scholar] [CrossRef]
- Healthy Eating Index (HEI)|Food and Nutrition Service. USDA Food and Nutrition Service. Available online: https://www.fns.usda.gov/cnpp/healthy-eating-index-hei (accessed on 16 February 2024).
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kibe, L.W.; Bazargan, M.; Bosah, A.; Schrode, K.M.; Kuo, Y.; Andikrah, E.; Shaheen, M. Diet Quality of Older African Americans: Impact of Knowledge and Perceived Threat of COVID-19. Int. J. Environ. Res. Public Health 2023, 20, 5274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCullough, M.L.; Chantaprasopsuk, S.; Islami, F.; Rees-Punia, E.; Um, C.Y.; Wang, Y.; Leach, C.R.; Sullivan, K.R.; Patel, A.V. Association of Socioeconomic and Geographic Factors with Diet Quality in US Adults. JAMA Netw. Open 2022, 5, e2216406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol. Biomedicines 2022, 10, 2487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaillard, T.R. The Metabolic Syndrome and Its Components in African-American Women: Emerging Trends and Implications. Front. Endocrinol. 2018, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Bentley-Lewis, R.; Koruda, K.; Seely, E.W. The metabolic syndrome in women. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 696–704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 31 May 2023).
- NHANES Tutorials—Weighting Module. (n.d.). CDC. Available online: https://wwwn.cdc.gov/nchs/nhanes/tutorials/weighting.aspx (accessed on 18 April 2024).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire, Examination Protocol, and Laboratory Protocol). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/nchs/nhanes/ (accessed on 29 March 2024).
- Gurka, M.J.; Ice, C.L.; Sun, S.S.; DeBoer, M.D. A confirmatory factor analysis of the metabolic syndrome in adolescents: An examination of sex and racial/ethnic differences. Cardiovasc. Diabetol. 2012, 11, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- USDA. AMPM—USDA Automated Multiple-Pass Method. USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-usda-automated-multiple-pass-method/ (accessed on 29 March 2024).
- HEI Scoring Algorithm|EGRP/DCCPS/NCI/NIH. (13 May 2022). Epidemiology & Genomics Research Program. Available online: https://epi.grants.cancer.gov/hei/hei-scoring-method.html (accessed on 2 October 2023).
- Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity. Biomedicines 2023, 11, 317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saraf-Bank, S.; Haghighatdoost, F.; Esmaillzadeh, A.; Larijani, B.; Azadbakht, L. Adherence to Healthy Eating Index-2010 is inversely associated with metabolic syndrome and its features among Iranian adult women. Eur. J. Clin. Nutr. 2017, 71, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kahrizsangi, M.A.; Jafari, F.; Najam, W.; Safarpour, A.R.; Fattahi, M.R.; Nouri, M.; Ghalandari, H.; Askarpour, M.; Shirazi, M.H.; Amini, M.R.; et al. Adherence to a healthy diet and odds of metabolic syndrome: A cross-sectional study. Clin. Nutr. ESPEN 2023, 56, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Torres, M.; Shi, Z.; Tinker, L.F.; Lampe, J.W.; Allison, M.A.; Barrington, W.; Crane, T.E.; Garcia, D.O.; Hayden, K.M.; Isasi, C.R.; et al. Diet quality indices and risk of metabolic syndrome among postmenopausal women of Mexican ethnic descent in the Women's Health Initiative Observational Study. Nutr. Healthy Aging 2020, 5, 261–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yosaee, S.; Erfani, M.R.; Bazrafshan, M.R.; Entezami, N.; Alinavaz, M.; Akbari, M.; Soltani, S.; Djafarian, K. Correlation between Diet Quality and Metabolic Syndrome. J. Nutr. Food Secur. 2017, 2, 213–220. [Google Scholar]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.A.; Kris-Etherton, P.M. Effects of whole grains on coronary heart disease risk. Curr. Atheroscler. Rep. 2010, 12, 368–376. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef]
Characteristics | n (%) | MetS Prevalence | |
---|---|---|---|
MetS Present n (%) 233 (65.27) | MetS Absent n (%) 124 (34.73) | ||
Age, mean (SD) | 55.2 (5.96) | ||
Age (categorical), n(%) | |||
45–49 | 87 (24.37) | 51 (21.88) | 36 (29.03) |
50–54 | 93 (26.05) | 66 (28.33) | 27 (21.77) |
55–59 | 90 (25.21) | 61 (26.18) | 29 (23.39) |
60–65 | 87 (24.37) | 55 (23.61) | 32 (25.81) |
Education level, n(%) | |||
≤High school | 40 (11.20) | 32 (13.73) | 8 (6.45) |
High school/some college | 233 (65.27) | 153 (65.67) | 80 (64.52) |
≥College | 84 (23.53) | 48 (20.60) | 36 (29.03) |
Income level, n(%) | |||
≤$34,999 | 145 (40.62) | 103 (44.21) | 42 (33.87) |
$35,000–$74,999 | 105 (29.41) | 67 (28.76) | 38 (30.65) |
≥$75,000 | 73 (20.45) | 39 (16.74) | 34 (27.42) |
Missing | 34 (9.52) | 24 (10.29) | 10 (8.06) |
Smoking (in lifetime), n(%) | |||
≥100 cigs. | 142 (39.78) | 98 (42.06) | 44 (35.48) |
Did not smoke 100 cigs. | 215 (60.22) | 135 (57.94) | 80 (64.52) |
Weighted frequencies using constructed 8-year fasting subsample weights |
Food/Nutrient Component | N | Min. | Max. | Mean * | SE | Percent Score |
---|---|---|---|---|---|---|
Total Vegetables | 0 | 5 | 3.41 | 0.07 | 68.2 | |
Greens & Beans | 0 | 5 | 2.31 | 0.11 | 46.2 | |
Total Fruit | 0 | 5 | 2.62 | 0.10 | 52.4 | |
Whole Fruit | 0 | 5 | 2.64 | 0.11 | 52.8 | |
Whole Grains | 0 | 10 | 2.88 | 0.15 | 28.8 | |
Dairy | 0 | 10 | 3.56 | 0.13 | 35.6 | |
Total Protein Foods | 0 | 5 | 4.64 | 0.04 | 92.8 | |
Seafood & Plant Proteins | 0 | 5 | 3.04 | 0.10 | 60.8 | |
Fatty Acid Ratio | 0 | 10 | 6.49 | 0.16 | 64.9 | |
Sodium | 0 | 10 | 4.07 | 0.15 | 40.7 | |
Refined Grains | 0 | 10 | 6.97 | 0.15 | 69.7 | |
Saturated Fats | 0 | 10 | 6.38 | 0.15 | 63.8 | |
Added Sugars | 0 | 10 | 6.36 | 0.16 | 63.6 | |
Total HEI-2015 Score | 357 | 18.2 | 87.3 | 55.4 | 0.63 | 55.4 |
HEI-2015 Quartiles | Metabolic Syndrome | ||||
---|---|---|---|---|---|
MetS Present n (%) | MetS Absent n (%) | p-Value | MetS z-Score, Mean | p-Value | |
Quartile 1 (18.19–45.66) | 61 (26.18) | 29 (23.39) | 0.6691 | 0.856 | 0.0011 * |
Quartile 2 (45.67–54.86) | 61 (26.18) | 28 (22.58) | 0.737 | ||
Quartile 3 (54.87–63.87) | 57 (24.46) | 32 (25.81) | −0.512 | ||
Quartile 4 (63.89–87.29) | 54 (23.18) | 35 (28.23) | −1.05 |
MetS Components | Unadjusted β (95% CI) | p | Age-Adjusted β (95% CI) | p | Multivariable 1 β (95% CI) | p |
---|---|---|---|---|---|---|
Waist circumference | −0.216 (−0.371, −0.060) a | 0.0075 a | −0.217 (−0.372, −0.063) a | 0.0067 a | −0.212 (−0.377, −0.046) a | 0.013 a |
Systolic blood pressure | −0.226 (−0.381, −0.071) a | 0.0051 a | −0.215 (−0.359, −0.072) a | 0.0039 a | −0.205 (−0.348, −0.061) a | 0.006 a |
Diastolic blood pressure | −0.076 (−0.177, 0.025) | 0.1361 | −0.0783 (−0.178, 0.022) | 0.1218 | −0.0758 (−0.175, 0.023) | 0.1301 |
Blood glucose | −0.353 (−0.694, −0.012) a | 0.0430 a | −0.344 (−0.681, −0.0066) a | 0.0458 a | −0.312 (−0.644, 0.0199) | 0.065 |
Triglycerides | −0.663 (−1.06, −0.26) a | 0.0016 a | −0.652 (−1.05, −0.251) a | 0.0019 a | −0.543 (−0.939, −0.148) a | 0.008 a |
HDL-cholesterol | 0.0013 (−0.0007, 0.0033) | 0.1956 | 0.0013 (−0.0007, 0.0033) | 0.1954 | 0.0012 (−0.0008, 0.0032) | 0.2407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, A.; Dash, C.; Adams-Campbell, L.L. The Association between Diet Quality and Metabolic Syndrome among Older African American Women. Nutrients 2024, 16, 3040. https://doi.org/10.3390/nu16173040
Grant A, Dash C, Adams-Campbell LL. The Association between Diet Quality and Metabolic Syndrome among Older African American Women. Nutrients. 2024; 16(17):3040. https://doi.org/10.3390/nu16173040
Chicago/Turabian StyleGrant, Alex, Chiranjeev Dash, and Lucile L. Adams-Campbell. 2024. "The Association between Diet Quality and Metabolic Syndrome among Older African American Women" Nutrients 16, no. 17: 3040. https://doi.org/10.3390/nu16173040
APA StyleGrant, A., Dash, C., & Adams-Campbell, L. L. (2024). The Association between Diet Quality and Metabolic Syndrome among Older African American Women. Nutrients, 16(17), 3040. https://doi.org/10.3390/nu16173040