Metabolomic Diversity of Human Milk Cells over the Course of Lactation—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Cytochemical and Immunocytochemical Characterization of HM Cells
2.3. Metabolomic Fingerprinting of HM Cells
2.4. Data Processing and Analysis
3. Results
3.1. Immunocytochemical Analysis
3.2. Metabolomic Analysis of HM Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-155008-6.
- Poulimeneas, D.; Bathrellou, E.; Antonogeorgos, G.; Mamalaki, E.; Kouvari, M.; Kuligowski, J.; Gormaz, M.; Panagiotakos, D.B.; Yannakoulia, M. NUTRISHIELD Consortium Feeding the Preterm Infant: An Overview of the Evidence. Int. J. Food Sci. Nutr. 2021, 72, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.; Embleton, N.D.; McGuire, W. Formula versus Donor Breast Milk for Feeding Preterm or Low Birth Weight Infants. Cochrane Database Syst. Rev. 2019, 7, CD002971. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Tonkin, E.; Damarell, R.A.; McPhee, A.J.; Suganuma, M.; Suganuma, H.; Middleton, P.F.; Makrides, M.; Collins, C.T. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients 2018, 10, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten-Doménech, I.; Ramos-Garcia, V.; Piñeiro-Ramos, J.D.; Gormaz, M.; Parra-Llorca, A.; Vento, M.; Kuligowski, J.; Quintás, G. Current Practice in Untargeted Human Milk Metabolomics. Metabolites 2020, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Gridneva, Z.; George, A.D.; Suwaydi, M.A.; Sindi, A.S.; Jie, M.; Stinson, L.F.; Geddes, D.T. Environmental Determinants of Human Milk Composition in Relation to Health Outcomes. Acta Paediatr. 2022, 111, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, K.O.; Meng, F.; Lanfranchi, E.; Young, J.F.; Stanton, C.; Ryan, C.A.; Kelly, A.L.; Sundekilde, U.K. Dynamic Changes in the Human Milk Metabolome Over 25 Weeks of Lactation. Front. Nutr. 2022, 9, 917659. [Google Scholar] [CrossRef] [PubMed]
- Ten-Doménech, I.; Ramos-Garcia, V.; Moreno-Torres, M.; Parra-Llorca, A.; Gormaz, M.; Vento, M.; Kuligowski, J.; Quintás, G. The Effect of Holder Pasteurization on the Lipid and Metabolite Composition of Human Milk. Food Chem. 2022, 384, 132581. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, S.K.; Gao, P.; Haining, T.K.J.; Retchin, M.R.; Golan, Y.; Drake, R.S.; Kolb, K.; Mead, B.E.; Ahituv, N.; Martinez, M.E.; et al. Cellular and Transcriptional Diversity over the Course of Human Lactation. Proc. Natl. Acad. Sci. USA 2022, 119, e2121720119. [Google Scholar] [CrossRef]
- Witkowska-Zimny, M.; Kaminska-El-Hassan, E. Cells of Human Breast Milk. Cell. Mol. Biol. Lett. 2017, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Cabinian, A.; Sinsimer, D.; Tang, M.; Zumba, O.; Mehta, H.; Toma, A.; Sant’Angelo, D.; Laouar, Y.; Laouar, A. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer’s Patches of the Nursed Infant. PLoS ONE 2016, 11, e0156762. [Google Scholar] [CrossRef] [Green Version]
- Aydın, M.Ş.; Yiğit, E.N.; Vatandaşlar, E.; Erdoğan, E.; Öztürk, G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci. Rep. 2018, 8, 14289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerfler, R.; Melamed, J.R.; Whitehead, K.A. The Effect of Infant Gastric Digestion on Human Maternal Milk Cells. Mol. Nutr. Food Res. 2022, 66, e2200090. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Zhang, L.; Zhou, Q.; Li, S.; Han, J.; Jiang, S.; Han, X.; Yang, Y.; Hong, S.; Cao, Y. Impacts of Enriched Human Milk Cells on Fecal Metabolome and Gut Microbiome of Premature Infants with Stage I Necrotizing Enterocolitis: A Pilot Study. Mol. Nutr. Food Res. 2022, 66, e2100342. [Google Scholar] [CrossRef] [PubMed]
- Ten-Doménech, I.; Martínez-Sena, T.; Moreno-Torres, M.; Sanjuan-Herráez, J.D.; Castell, J.V.; Parra-Llorca, A.; Vento, M.; Quintás, G.; Kuligowski, J. Comparing Targeted vs. Untargeted MS2 Data-Dependent Acquisition for Peak Annotation in LC–MS Metabolomics. Metabolites 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and Considerations for the Use of System Suitability and Quality Control Samples in Mass Spectrometry Assays Applied in Untargeted Clinical Metabolomic Studies. Metab. Off. J. Metab. Soc. 2018, 14, 72. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sena, T.; Luongo, G.; Sanjuan-Herráez, D.; Castell, J.V.; Vento, M.; Quintás, G.; Kuligowski, J. Monitoring of System Conditioning after Blank Injections in Untargeted UPLC-MS Metabolomic Analysis. Sci. Rep. 2019, 9, 9822. [Google Scholar] [CrossRef] [Green Version]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open Source Software for Rapid Proteomics Tools Development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 2012, 84, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, P.D.; Russell, J.D.; Coon, J.J. LipiDex: An Integrated Software Package for High-Confidence Lipid Identification. Cell Syst. 2018, 6, 621–625.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuligowski, J.; Sánchez-Illana, Á.; Sanjuán-Herráez, D.; Vento, M.; Quintás, G. Intra-Batch Effect Correction in Liquid Chromatography-Mass Spectrometry Using Quality Control Samples and Support Vector Regression (QC-SVRC). Analyst 2015, 140, 7810–7817. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward Understanding the Origin and Evolution of Cellular Organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Gleeson, J.P.; Chaudhary, N.; Fein, K.C.; Doerfler, R.; Hredzak-Showalter, P.; Whitehead, K.A. Profiling of Mature-Stage Human Breast Milk Cells Identifies Six Unique Lactocyte Subpopulations. Sci. Adv. 2022, 8, eabm6865. [Google Scholar] [CrossRef]
- Trend, S.; de Jong, E.; Lloyd, M.L.; Kok, C.H.; Richmond, P.; Doherty, D.A.; Simmer, K.; Kakulas, F.; Strunk, T.; Currie, A. Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry. PLoS ONE 2015, 10, e0135580. [Google Scholar] [CrossRef] [Green Version]
- Hassiotou, F.; Hepworth, A.R.; Metzger, P.; Tat Lai, C.; Trengove, N.; Hartmann, P.E.; Filgueira, L. Maternal and Infant Infections Stimulate a Rapid Leukocyte Response in Breastmilk. Clin. Transl. Immunol. 2013, 2, e3. [Google Scholar] [CrossRef]
- Kudo, R.; Igarashi, K.; Soga, T.; Ishikawa, T.; Saito, Y. Comprehensive Metabolome Analysis of Intracellular Metabolites in Cultured Cells. STAR Protoc. 2022, 3, 101531. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Yu, J.; He, X. Single-Cell Metabolomics in Hematopoiesis and Hematological Malignancies. Front. Oncol. 2022, 12, 931393. [Google Scholar] [CrossRef]
- Ahn, E.H.; Schroeder, J.J. Induction of Apoptosis by Sphingosine, Sphinganine, and C2-Ceramide in Human Colon Cancer Cells, but Not by C2-Dihydroceramide. ANTICANCER Res. 2010, 30, 2881–2884. [Google Scholar] [PubMed]
- Taha, T.A.; Mullen, T.D.; Obeid, L.M. A House Divided: Ceramide, Sphingosine, and Sphingosine-1-Phosphate in Programmed Cell Death. Biochim. Biophys. Acta BBA-Biomembr. 2006, 1758, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröer, S.; Gauthier-Coles, G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J. Nutr. 2022, 152, 16–28. [Google Scholar] [CrossRef]
- van Sadelhoff, J.; van de Heijning, B.; Stahl, B.; Amodio, S.; Rings, E.; Mearin, M.; Garssen, J.; Hartog, A. Longitudinal Variation of Amino Acid Levels in Human Milk and Their Associations with Infant Gender. Nutrients 2018, 10, 1233. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Esparza, N.C.; Vásquez-Garibay, E.M.; Guzmán-Mercado, E.; Larrosa-Haro, A.; Comas-Basté, O.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Influence of Breastfeeding Factors on Polyamine Content in Human Milk. Nutrients 2021, 13, 3016. [Google Scholar] [CrossRef]
- Kusano, T.; Suzuki, H. (Eds.) Chapter 23. N1, N12 -Diacetylspermine in Human Urine: Performance as a Tumor Marker, Quantifi Cation, Production, and Excretion. In Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism; Springer: Tokyo, Japan, 2015; pp. 305–314. ISBN 978-4-431-55211-6. [Google Scholar]
- Tse, R.T.-H.; Wong, C.Y.-P.; Chiu, P.K.-F.; Ng, C.-F. The Potential Role of Spermine and Its Acetylated Derivative in Human Malignancies. Int. J. Mol. Sci. 2022, 23, 1258. [Google Scholar] [CrossRef]
- Liu, X.; Quan, S.; Fu, Y.; Wang, W.; Zhang, W.; Wang, X.; Zhang, C.; Xiang, D.; Zhang, L.; Wang, C. Study on Amniotic Fluid Metabolism in the Second Trimester of Trisomy 21. J. Clin. Lab. Anal. 2020, 34, e23089. [Google Scholar] [CrossRef]
- Gong, S.; Sovio, U.; Aye, I.L.M.H.; Gaccioli, F.; Dopierala, J.; Johnson, M.D.; Wood, A.M.; Cook, E.; Jenkins, B.J.; Koulman, A.; et al. Placental Polyamine Metabolism Differs by Fetal Sex, Fetal Growth Restriction, and Preeclampsia. JCI Insight 2018, 3, e120723. [Google Scholar] [CrossRef] [Green Version]
- Sovio, U.; Goulding, N.; McBride, N.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Lawlor, D.A.; Smith, G.C.S. A Maternal Serum Metabolite Ratio Predicts Fetal Growth Restriction at Term. Nat. Med. 2020, 26, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Delgado, P.; Dudzik, D.; Miguel, V.; Lamas, S.; Barbas, C. Data-Dependent Normalization Strategies for Untargeted Metabolomics—A Case Study. Anal. Bioanal. Chem. 2020, 412, 6391–6405. [Google Scholar] [CrossRef] [PubMed]
Colostrum | Transitional Milk | Mature Milk | |
---|---|---|---|
Total cell count (cells/HPF in 500 μL) | 706 | 196 (137) | 16 (30) |
Glandular epithelial cells (%) | 82 | 94 (2) | 98 (2) |
Leukocytes (%) | 18 | 5 (4) | 1 (1) |
Keratinocytes (%) | 0 | 1 (2) | 1 (1) |
Pathway | Class | p-Value | FDR | Impact | Total Compounds | Significant Hits | Metabolites |
---|---|---|---|---|---|---|---|
Purine metabolism | Nucleotide metabolism | 0.0005 | 0.006 | 0.13 | 65 | 3 | AMP, GMP, dGMP |
Arginine and proline metabolism | Amino acid metabolism | 0.001 | 0.006 | 0.05 | 38 | 3 | Creatine, Spermidine, Spermine |
Citrate cycle (TCA cycle) | Carbohydrate metabolism | 0.003 | 0.006 | 0.04 | 20 | 2 | Isocitrate, Phosphoenolpyruvate |
Phenylalanine, tyrosine and tryptophan biosynthesis | Amino acid metabolism | 0.003 | 0.006 | 1.0 | 4 | 2 | L-Phenylalanine, L-Tyrosine |
Phenylalanine metabolism | Amino acid metabolism | 0.003 | 0.006 | 0.4 | 10 | 2 | L-Phenylalanine, L-Tyrosine |
Beta-Alanine metabolism | Metabolism of other amino acids | 0.003 | 0.006 | 0.06 | 21 | 2 | Spermine, Spermidine |
Glutathione metabolism | Metabolism of other amino acids | 0.003 | 0.006 | 0.007 | 28 | 2 | Spermidine, Spermine |
Glyoxylate and dicarboxylate metabolism | Carbohydrate metabolism | 0.004 | 0.006 | 0.08 | 32 | 2 | 4-Hydroxy-2-oxoglutarate, Isocitrate |
Aminoacyl-tRNA biosynthesis | Translation | 0.004 | 0.006 | 0 | 48 | 5 | L-Phenylalanine, L-Methionine, L-Leucine, L-Tryptophan, L-Tyrosine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ten-Doménech, I.; Cascant-Vilaplana, M.M.; Navarro-Esteve, V.; Felderer, B.; Moreno-Giménez, A.; Rienda, I.; Gormaz, M.; Moreno-Torres, M.; Pérez-Guaita, D.; Quintás, G.; et al. Metabolomic Diversity of Human Milk Cells over the Course of Lactation—A Preliminary Study. Nutrients 2023, 15, 1100. https://doi.org/10.3390/nu15051100
Ten-Doménech I, Cascant-Vilaplana MM, Navarro-Esteve V, Felderer B, Moreno-Giménez A, Rienda I, Gormaz M, Moreno-Torres M, Pérez-Guaita D, Quintás G, et al. Metabolomic Diversity of Human Milk Cells over the Course of Lactation—A Preliminary Study. Nutrients. 2023; 15(5):1100. https://doi.org/10.3390/nu15051100
Chicago/Turabian StyleTen-Doménech, Isabel, Mari Merce Cascant-Vilaplana, Víctor Navarro-Esteve, Birgit Felderer, Alba Moreno-Giménez, Iván Rienda, María Gormaz, Marta Moreno-Torres, David Pérez-Guaita, Guillermo Quintás, and et al. 2023. "Metabolomic Diversity of Human Milk Cells over the Course of Lactation—A Preliminary Study" Nutrients 15, no. 5: 1100. https://doi.org/10.3390/nu15051100
APA StyleTen-Doménech, I., Cascant-Vilaplana, M. M., Navarro-Esteve, V., Felderer, B., Moreno-Giménez, A., Rienda, I., Gormaz, M., Moreno-Torres, M., Pérez-Guaita, D., Quintás, G., & Kuligowski, J. (2023). Metabolomic Diversity of Human Milk Cells over the Course of Lactation—A Preliminary Study. Nutrients, 15(5), 1100. https://doi.org/10.3390/nu15051100