Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobson, J.L.; Jacobson, S.W.; Sokol, R.J.; Martier, S.S.; Ager, J.W.; Kaplan-Estrin, M.G. Teratogenic Effects of Alcohol on Infant Development. Alcohol Clin. Exp. Res. 1993, 17, 174–183. [Google Scholar] [CrossRef]
- Jones, K.L. The Effects of Alcohol on Fetal Development. Birth Defects Res. Part C Embryo Today Rev. 2011, 93, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Dejong, K.; Olyaei, A.; Lo, J.O. Alcohol Use in Pregnancy. Clin. Obstet. Gynecol. 2019, 62, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Smith, D.W.; Ulleland, C.N.; Streissguth, P. Pattern of Malformation in Offspring of Chronic Alcoholic Mothers. Lancet Lond. Engl. 1973, 1, 1267–1271. [Google Scholar] [CrossRef]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 2018, 319, 474–482. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; Gossage, J.P.; Marais, A.-S.; Hendricks, L.S.; Snell, C.L.; Tabachnick, B.G.; Stellavato, C.; Buckley, D.G.; Brooke, L.E.; Viljoen, D.L. Maternal Risk Factors for Fetal Alcohol Syndrome and Partial Fetal Alcohol Syndrome in South Africa: A Third Study. Alcohol Clin. Exp. Res. 2008, 32, 738–753. [Google Scholar] [CrossRef]
- Chasnoff, I.J.; Wells, A.M.; King, L. Misdiagnosis and Missed Diagnoses in Foster and Adopted Children with Prenatal Alcohol Exposure. Pediatrics 2015, 135, 264–270. [Google Scholar] [CrossRef]
- Spohr, H.-L.; Steinhausen, H.-C. Fetal Alcohol Spectrum Disorders and Their Persisting Sequelae in Adult Life. Dtsch. Ärztebl. Int. 2008, 105, 693–698. [Google Scholar] [CrossRef]
- May, P.A.; Blankenship, J.; Marais, A.-S.; Gossage, J.P.; Kalberg, W.O.; Joubert, B.; Cloete, M.; Barnard, R.; De Vries, M.; Hasken, J.; et al. Maternal Alcohol Consumption Producing Fetal Alcohol Spectrum Disorders (FASD): Quantity, Frequency, and Timing of Drinking. Drug Alcohol Depend. 2013, 133, 502–512. [Google Scholar] [CrossRef]
- Oei, J.L. Alcohol Use in Pregnancy and Its Impact on the Mother and Child. Addiction 2020, 115, 2148–2163. [Google Scholar] [CrossRef]
- Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A.-S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; et al. Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 2016, 138, e20154256. [Google Scholar] [CrossRef]
- Carter, R.C.; Jacobson, J.L.; Molteno, C.D.; Dodge, N.C.; Meintjes, E.M.; Jacobson, S.W. Fetal Alcohol Growth Restriction and Cognitive Impairment. Pediatrics 2016, 138, e20160775. [Google Scholar] [CrossRef]
- Amos-Kroohs, R.M.; Fink, B.A.; Smith, C.J.; Chin, L.; Van Calcar, S.C.; Wozniak, J.R.; Smith, S.M. Abnormal Eating Behaviors Are Common in Children with Fetal Alcohol Spectrum Disorder. J. Pediatr. 2016, 169, 194–200.e1. [Google Scholar] [CrossRef] [PubMed]
- Sampson, P.D.; Bookstein, F.L.; Barr, H.M.; Streissguth, A.P. Prenatal Alcohol Exposure, Birthweight, and Measures of Child Size from Birth to Age 14 Years. Am. J. Public Health 1994, 84, 1421–1428. [Google Scholar] [CrossRef]
- Carter, R.C.; Jacobson, J.L.; Sokol, R.J.; Avison, M.J.; Jacobson, S.W. Fetal Alcohol-Related Growth Restriction from Birth through Young Adulthood and Moderating Effects of Maternal Prepregnancy Weight. Alcohol Clin. Exp. Res. 2013, 37, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Day, N.L.; Leech, S.L.; Richardson, G.A.; Cornelius, M.D.; Robles, N.; Larkby, C. Prenatal Alcohol Exposure Predicts Continued Deficits in Offspring Size at 14 Years of Age. Alcohol. Clin. Exp. Res. 2002, 26, 1584–1591. [Google Scholar] [CrossRef]
- Fuglestad, A.J.; Boys, C.J.; Chang, P.-N.; Miller, B.S.; Eckerle, J.K.; Deling, L.; Fink, B.A.; Hoecker, H.L.; Hickey, M.K.; Jimenez-Vega, J.M.; et al. Overweight and Obesity Among Children and Adolescents with Fetal Alcohol Spectrum Disorders. Alcohol Clin. Exp. Res. 2014, 38, 2502–2508. [Google Scholar] [CrossRef] [PubMed]
- Druce, M. The Regulation of Appetite. Arch. Dis. Child. 2005, 91, 183–187. [Google Scholar] [CrossRef]
- Wynne, K.; Stanley, S.; McGowan, B.; Bloom, S. Appetite Control. J. Endocrinol. 2005, 184, 291–318. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, K.; Maryniak, A.; Borkowska, M.; Śmigiel, R.; Dylag, K.A. Diagnosis of Fetal Alcohol Spectrum Disorders (FASDs): Guidelines of Interdisciplinary Group of Polish Professionals. Int. J. Environ. Res. Public. Health 2021, 18, 7526. [Google Scholar] [CrossRef] [PubMed]
- Astley, S.J. Validation of the Fetal Alcohol Spectrum Disorder (Fasd) 4-Digit Diagnostic Code. J. Popul. Ther. Clin. Pharmacol. 2013, 20, e416–e467. [Google Scholar]
- Cook, J.L.; Green, C.R.; Lilley, C.M.; Anderson, S.M.; Baldwin, M.E.; Chudley, A.E.; Conry, J.L.; LeBlanc, N.; Loock, C.A.; Lutke, J.; et al. Fetal Alcohol Spectrum Disorder: A Guideline for Diagnosis across the Lifespan. CMAJ 2016, 188, 191–197. [Google Scholar] [CrossRef]
- Bertrand, J.; Floyd, R.L.; Weber, M.K. Guidelines for Identifying and Referring Persons with Fetal Alcohol Syndrome. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2005, 54, 1–14. [Google Scholar]
- Podgórski, R.; Galiniak, S.; Mazur, A.; Domin, A. The Association of the Hypothalamic-Pituitary-Adrenal Axis with Appetite Regulation in Children with Fetal Alcohol Spectrum Disorders (FASDs). Nutrients 2023, 15, 1366. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, S.L. Hypothalamic Proopiomelanocortin Processing and the Regulation of Energy Balance. Eur. J. Pharmacol. 2011, 660, 213–219. [Google Scholar] [CrossRef]
- Sohn, J.-W. Network of Hypothalamic Neurons That Control Appetite. BMB Rep. 2015, 48, 229–233. [Google Scholar] [CrossRef]
- Beck, B. Neuropeptides and Obesity. Nutrition 2000, 16, 916–923. [Google Scholar] [CrossRef]
- Iwasa, T.; Matsuzaki, T.; Kinouchi, R.; Gereltsetseg, G.; Murakami, M.; Nakazawa, H.; Yasui, T.; Irahara, M. Changes in the Responsiveness of Serum Leptin and Hypothalamic Neuropeptide Y mRNA Levels to Food Deprivation in Developing Rats. Int. J. Dev. Neurosci. 2011, 29, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.J.; Green, P.; Tapoulal, N.; Lewandowski, A.J.; Leeson, P.; Herring, N. The Role of Neuropeptide Y in Cardiovascular Health and Disease. Front. Physiol. 2018, 9, 1281. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Feder, A.; Wegener, G.; Bailey, C.; Saxena, S.; Charney, D.; Mathé, A.A. Central Functions of Neuropeptide Y in Mood and Anxiety Disorders. Expert Opin. Ther. Targets 2011, 15, 1317–1331. [Google Scholar] [CrossRef] [PubMed]
- Schmeltzer, S.N.; Herman, J.P.; Sah, R. Neuropeptide Y (NPY) and Posttraumatic Stress Disorder (PTSD): A Translational Update. Exp. Neurol. 2016, 284, 196–210. [Google Scholar] [CrossRef]
- Thorsell, A.; Mathé, A.A. Neuropeptide Y in Alcohol Addiction and Affective Disorders. Front. Endocrinol. 2017, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Nyström, F.; Nilsson, P.; Olsson, A.G.; Karlberg, B.E.; Ohman, K.P. A Population Study of Plasma Neuropeptide Y: Correlations with Components of the Metabolic Syndrome. Blood Press. 1996, 5, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Gendall, K.A.; Kaye, W.H.; Altemus, M.; McConaha, C.W.; La Via, M.C. Leptin, Neuropeptide Y, and Peptide YY in Long-Term Recovered Eating Disorder Patients. Biol. Psychiatry 1999, 46, 292–299. [Google Scholar] [CrossRef]
- Sedlackova, D.; Kopeckova, J.; Papezova, H.; Hainer, V.; Kvasnickova, H.; Hill, M.; Nedvidkova, J. Comparison of a High-Carbohydrate and High-Protein Breakfast Effect on Plasma Ghrelin, Obestatin, NPY and PYY Levels in Women with Anorexia and Bulimia Nervosa. Nutr. Metab. 2012, 9, 52. [Google Scholar] [CrossRef]
- Baltazi, M.; Katsiki, N.; Savopoulos, C.; Iliadis, F.; Koliakos, G.; Hatzitolios, A.I. Plasma Neuropeptide Y (NPY) and Alpha-Melanocyte Stimulating Hormone (a-MSH) Levels in Patients with or without Hypertension and/or Obesity: A Pilot Study. Am. J. Cardiovasc. Dis. 2011, 1, 48–59. [Google Scholar]
- Baranowska, B.; Radzikowska, M.; Wasilewska-Dziubińska, E.; Kapliński, A.; Roguski, K.; Płonowski, A. Neuropeptide Y, Leptin, Galanin and Insulin in Women with Polycystic Ovary Syndrome. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 1999, 13, 344–351. [Google Scholar] [CrossRef]
- Guevara, A.; Gates, H.; Urbina, B.; French, R. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival. Front. Physiol. 2018, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Tungalagsuvd, A.; Munkhzaya, M.; Mayila, Y.; Kuwahara, A.; Irahara, M. The Effects of Prenatal Undernutrition and a High-Fat Postnatal Diet on Central and Peripheral Orexigenic and Anorexigenic Factors in Female Rats. Endocr. J. 2017, 64, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Thangaratnarajah, C.; Dinger, K.; Vohlen, C.; Klaudt, C.; Nawabi, J.; Lopez Garcia, E.; Kwapiszewska, G.; Dobner, J.; Nüsken, K.D.; van Koningsbruggen-Rietschel, S.; et al. Novel Role of NPY in Neuroimmune Interaction and Lung Growth after Intrauterine Growth Restriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L491–L506. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Borrás-Novell, C.; Casanova, M.A.; Pascual Tutusaus, M.; Ferrero Martínez, S.; Gómez Roig, M.D.; García-Algar, O. The Effects of Alcohol and Drugs of Abuse on Maternal Nutritional Profile during Pregnancy. Nutrients 2018, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Dinparastisaleh, R.; Mirsaeidi, M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals 2021, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Shelkar, G.P.; Kale, A.D.; Singh, U.; Singru, P.S.; Subhedar, N.K.; Kokare, D.M. Alpha-Melanocyte Stimulating Hormone Modulates Ethanol Self-Administration in Posterior Ventral Tegmental Area through Melanocortin-4 Receptors. Addict. Biol. 2015, 20, 302–315. [Google Scholar] [CrossRef]
- Kokare, D.M.; Kyzar, E.J.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood. Int. J. Neuropsychopharmacol. 2017, 20, 758–768. [Google Scholar] [CrossRef]
- Rainero, I.; De Gennaro, T.; Visentin, G.; Brunetti, E.; Cerrato, P.; Torre, E.; Portaleone, P.; Pinessi, L. Effects of Chronic Ethanol Treatment on Alpha-MSH Concentrations in Rat Brain and Pituitary. Neuropeptides 1990, 15, 139–141. [Google Scholar] [CrossRef]
- Katsuki, A.; Sumida, Y.; Murashima, S.; Furuta, M.; Araki-Sasaki, R.; Tsuchihashi, K.; Hori, Y.; Yano, Y.; Adachi, Y. Elevated Plasma Levels of Alpha-Melanocyte Stimulating Hormone (Alpha-MSH) Are Correlated with Insulin Resistance in Obese Men. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000, 24, 1260–1264. [Google Scholar] [CrossRef][Green Version]
- Hoggard, N.; Johnstone, A.M.; Faber, P.; Gibney, E.R.; Elia, M.; Lobley, G.; Rayner, V.; Horgan, G.; Hunter, L.; Bashir, S.; et al. Plasma Concentrations of α-MSH, AgRP and Leptin in Lean and Obese Men and Their Relationship to Differing States of Energy Balance Perturbation. Clin. Endocrinol. 2004, 61, 31–39. [Google Scholar] [CrossRef]
- Mao, Z.; Liu, G.; Chen, J.-J.; Liu, D.; Xu, M.-P.; Zhao, C.; Yang, H.-T.; Yue, Y.-B. Serum α-Melanocyte-Stimulating Hormone May Act as a Protective Biomarker for Non-Traumatic Osteonecrosis of the Femoral Head. Ann. Clin. Biochem. 2018, 55, 453–460. [Google Scholar] [CrossRef]
- Du, X.; Dong, B.; Li, C.; Zhang, F.; Ji, Y.; Zhang, J.; Yin, C. Dynamic Changes of α-Melanocyte-Stimulating Hormone Levels in the Serum of Patients with Craniocerebral Trauma. Exp. Ther. Med. 2017, 14, 2511–2516. [Google Scholar] [CrossRef]
- Donahoo, W.T.; Hernandez, T.L.; Costa, J.L.; Jensen, D.R.; Morris, A.M.; Brennan, M.B.; Hochgeschwender, U.; Eckel, R.H. Plasma α–Melanocyte-Stimulating Hormone: Sex Differences and Correlations with Obesity. Metabolism 2009, 58, 16–21. [Google Scholar] [CrossRef]
- Voisey, J.; van Daal, A. Agouti: From Mouse to Man, from Skin to Fat. Pigment Cell Res. 2002, 15, 10–18. [Google Scholar] [CrossRef]
- Page-Wilson, G.; Meece, K.; White, A.; Rosenbaum, M.; Leibel, R.L.; Smiley, R.; Wardlaw, S.L. Proopiomelanocortin, Agouti-Related Protein, and Leptin in Human Cerebrospinal Fluid: Correlations with Body Weight and Adiposity. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E458–E465. [Google Scholar] [CrossRef] [PubMed]
- Kempf, E.; Landgraf, K.; Stein, R.; Hanschkow, M.; Hilbert, A.; Abou Jamra, R.; Boczki, P.; Herberth, G.; Kühnapfel, A.; Tseng, Y.-H.; et al. Aberrant Expression of Agouti Signaling Protein (ASIP) as a Cause of Monogenic Severe Childhood Obesity. Nat. Metab. 2022, 4, 1697–1712. [Google Scholar] [CrossRef]
- Liu, Y.; Albrecht, E.; Schering, L.; Kuehn, C.; Yang, R.; Zhao, Z.; Maak, S. Agouti Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and Body Fat Deposition in Cattle. Front. Physiol. 2018, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Podgórski, R.; Rachel, M.; Mazur, A. Serum Levels of Hormones Regulating Appetite in Patients with Cystic Fibrosis − a Single-Center, Cross-Sectional Study. Front. Endocrinol. 2022, 13, 992667. [Google Scholar] [CrossRef]
- Han, S.-K.; Gottsch, M.L.; Lee, K.J.; Popa, S.M.; Smith, J.T.; Jakawich, S.K.; Clifton, D.K.; Steiner, R.A.; Herbison, A.E. Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. J. Neurosci. 2005, 25, 11349–11356. [Google Scholar] [CrossRef]
- Zeydabadi Nejad, S.; Ramezani Tehrani, F.; Zadeh-Vakili, A. The Role of Kisspeptin in Female Reproduction. Int. J. Endocrinol. Metab. 2017, 15, e44337. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J.; Anderson, G.M. Balancing Ovulation and Anovulation: Integration of the Reproductive and Energy Balance Axes by Neuropeptides. Hum. Reprod. Update 2012, 18, 313–332. [Google Scholar] [CrossRef]
- Pasquali, R.; Patton, L.; Gambineri, A. Obesity and Infertility. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 482. [Google Scholar] [CrossRef]
- Yang, L.; Demetriou, L.; Wall, M.B.; Mills, E.G.; Wing, V.C.; Thurston, L.; Schaufelberger, C.N.; Owen, B.M.; Abbara, A.; Rabiner, E.A.; et al. The Effects of Kisspeptin on Brain Response to Food Images and Psychometric Parameters of Appetite in Healthy Men. J. Clin. Endocrinol. Metab. 2020, 106, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.S.; Vu, J.P.; Oh, S.; Sanford, D.; Pisegna, J.R.; Germano, P. Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice. Dig. Dis. Sci. 2020, 65, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Luedde, M.; Spehlmann, M.E.; Hippe, H.-J.; Loosen, S.H.; Roy, S.; Vargas Cardenas, D.; Vucur, M.; Frey, N.; Koch, A.; Luedde, T.; et al. Serum Levels of Kisspeptin Are Elevated in Critically Ill Patients. PLoS ONE 2018, 13, e0206064. [Google Scholar] [CrossRef]
- Dudek, M.; Ziarniak, K.; Sliwowska, J.H. Kisspeptin and Metabolism: The Brain and Beyond. Front. Endocrinol. 2018, 9, 145. [Google Scholar] [CrossRef]
- Sitticharoon, C.; Mutirangura, P.; Chinachoti, T.; Iamaroon, A.; Triyasunant, N.; Churintaraphan, M.; Keadkraichaiwat, I.; Maikaew, P.; Sririwichitchai, R. Associations of Serum Kisspeptin Levels with Metabolic and Reproductive Parameters in Men. Peptides 2021, 135, 170433. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.J.; Li, S.J.; Pan, H.; Li, N.; Zhang, D.X.; Wang, L.J.; Yang, H.B.; Wu, Q.; Gong, F.Y. The Changes of Serum Leptin and Kisspeptin Levels in Chinese Children and Adolescents in Different Pubertal Stages. Int. J. Endocrinol. 2016, 2016, e6790794. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.L.; Lehman, M.N.; Smith, J.T.; Coolen, L.M.; de Oliveira, C.V.R.; Jafarzadehshirazi, M.R.; Pereira, A.; Iqbal, J.; Caraty, A.; Ciofi, P.; et al. Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B. Endocrinology 2007, 148, 5752–5760. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Ciofi, P.; Vida, B.; Horvath, M.C.; Keller, E.; Caraty, A.; Bloom, S.R.; Ghatei, M.A.; Dhillo, W.S.; Liposits, Z.; et al. The Kisspeptin System of the Human Hypothalamus: Sexual Dimorphism and Relationship with Gonadotropin-Releasing Hormone and Neurokinin B Neurons. Eur. J. Neurosci. 2010, 31, 1984–1998. [Google Scholar] [CrossRef]
- Bond, J.-A.P.D.; Smith, J.T. Kisspeptin and Energy Balance in Reproduction. Reproduction 2014, 147, R53–R63. [Google Scholar] [CrossRef]
- Demirbilek, H.; Gonc, E.N.; Ozon, A.; Alikasifoglu, A.; Kandemir, N. Evaluation of Serum Kisspeptin Levels in Girls in the Diagnosis of Central Precocious Puberty and in the Assessment of Pubertal Suppression. J. Pediatr. Endocrinol. Metab. JPEM 2012, 25, 313–316. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Liao, B.; Tang, J.; Zhong, J.; Lan, D. The Role of Kisspeptin and MKRN3 in the Diagnosis of Central Precocious Puberty in Girls. Endocr. Connect. 2021, 10, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Akison, L.K.; Moritz, K.M.; Reid, N. Adverse Reproductive Outcomes Associated with Fetal Alcohol Exposure: A Systematic Review. Reprod. Camb. Engl. 2019, 157, 329–343. [Google Scholar] [CrossRef]
- Sliwowska, J.H.; Comeau, W.L.; Bodnar, T.S.; Ellis, L.; Weinberg, J. Prenatal Alcohol Exposure and Pair Feeding Differentially Impact Puberty and Reproductive Development in Female Rats: Role of the Kisspeptin System. Alcohol. Clin. Exp. Res. 2016, 40, 2368–2376. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sliwowska, J.H.; Bodnar, T.S.; Weinberg, J. Prenatal Alcohol Exposure Alters Response of Kisspeptin-Ir Neurons to Estradiol and Progesterone in Adult Female Rats. Alcohol. Clin. Exp. Res. 2014, 38, 2780–2789. [Google Scholar] [CrossRef][Green Version]
- Lee, E.B.; Dilower, I.; Marsh, C.A.; Wolfe, M.W.; Masumi, S.; Upadhyaya, S.; Rumi, M.A.K. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022, 11, 1146. [Google Scholar] [CrossRef]
- De Freitas, R.S.; França, T.F.A.; Pompeia, S. Sex-Specific Association between Urinary Kisspeptin and Pubertal Development. Endocr. Connect. 2022, 11, e220165. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, C.N.; Nijher, G.M.; Narayanaswamy, S.; Silva, A.D.; Abbara, A.; Ghatei, M.A.; Bloom, S.R.; Bridges, N.; Dhillo, W.S. Age-Dependent Elevations in Plasma Kisspeptin Are Observed in Boys and Girls When Compared with Adults. Ann. Clin. Biochem. 2014, 51, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.L.; Enriori, P.J.; Gebhardt, U.; Hinney, A.; Müller, H.L.; Hebebrand, J.; Reinehr, T.; Cowley, M.A. Changes of Peripheral α-Melanocyte–Stimulating Hormone in Childhood Obesity. Metab.—Clin. Exp. 2010, 59, 186–194. [Google Scholar] [CrossRef]
- Dâmaso, A.R.; de Piano, A.; Campos, R.M.d.S.; Corgosinho, F.C.; Siegfried, W.; Caranti, D.A.; Masquio, D.C.L.; Carnier, J.; Sanches, P.; Leão da Silva, P.; et al. Multidisciplinary Approach to the Treatment of Obese Adolescents: Effects on Cardiovascular Risk Factors, Inflammatory Profile, and Neuroendocrine Regulation of Energy Balance. Int. J. Endocrinol. 2013, 2013, 541032. [Google Scholar] [CrossRef]
- Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Tanaka, T.; Furuta, M.; Araki-Sasaki, R.; Hori, Y.; Nakatani, K.; Yano, Y.; et al. Plasma Levels of Agouti-Related Protein Are Increased in Obese Men. J. Clin. Endocrinol. Metab. 2001, 86, 1921–1924. [Google Scholar] [CrossRef]
- Chen, H.; Hansen, M.J.; Jones, J.E.; Vlahos, R.; Bozinovski, S.; Anderson, G.P.; Morris, M.J. Cigarette Smoke Exposure Reprograms the Hypothalamic Neuropeptide Y Axis to Promote Weight Loss. Am. J. Respir. Crit. Care Med. 2006, 173, 1248–1254. [Google Scholar] [CrossRef]
- Chen, H.; Hansen, M.J.; Jones, J.E.; Vlahos, R.; Bozinovski, S.; Anderson, G.P.; Morris, M.J. Regulation of Hypothalamic NPY by Diet and Smoking. Peptides 2007, 28, 384–389. [Google Scholar] [CrossRef]
- Pain, S.; Brot, S.; Gaillard, A. Neuroprotective Effects of Neuropeptide Y against Neurodegenerative Disease. Curr. Neuropharmacol. 2022, 20, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Szczepanik, M.; Trypuć, M.; Pogorzelski, A.; Bobkowski, W.; Grytczuk, M.; Minarowska, A.; Wójciak, R.; Walkowiak, J. Circulating Brain-Derived Neurotrophic Factor, Leptin, Neuropeptide Y, and Their Clinical Correlates in Cystic Fibrosis: A Cross-Sectional Study. Arch. Med. Sci. AMS 2020, 16, 1049–1056. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, J.; Liu, Y.; Liang, H.; Ma, P.; Pan, J. Plasma Neuropeptide Y Levels in Chinese Patients with Primary Insomnia. Sleep Breath. 2015, 19, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Rhie, Y.J.; Lee, K.H.; Eun, S.H.; Choi, B.M.; Chae, H.W.; Kwon, A.R.; Lee, W.J.; Kim, J.H.; Kim, H.-S. Serum Kisspeptin Levels in Korean Girls with Central Precocious Puberty. J. Korean Med. Sci. 2011, 26, 927–931. [Google Scholar] [CrossRef]
- Mancini, A.; Currò, D.; Cipolla, C.; Barini, A.; Bruno, C.; Vergani, E.; Di Segni, C.; Guidi, F.; Nicolotti, N.; Silvestrini, A.; et al. Evaluation of Kisspeptin Levels in Prepubertal Obese and Overweight Children: Sexual Dimorphism and Modulation of Antioxidant Levels. Eur. Rev. 2021, 25, 941–949. [Google Scholar]
FASD | Healthy Controls | p Value | ||
---|---|---|---|---|
Sex (F/M) | 29/28 | 7/16 | ||
Age (years) | Mean ± SD | 8.01 ± 3.95 | 7.45 ± 5.12 | 0.526 |
range | 1.83–16.5 | 0.42–17 | ||
BMI percentile | Mean ± SD | 32.29 ± 31.79 | 60.71 ± 27.03 | 0.037 |
range | 0.1–99.9 | 12–99 | ||
Clinical laboratory markers | ||||
Cholesterol (mg/dL) Norm < 190 | Median | 158 | 155 | 0.929 |
Range | 76–244 | 126–191 | ||
LDL (mg/dL) Norm < 135 | Median | 90.5 | 95 | 0.848 |
Range | 31–163 | 72–104 | ||
HDL (mg/dL) Norm > 40 | Median | 53 | 53 | 0.948 |
Range | 24–108 | 42–59 | ||
Triglycerides (mg/dL) Norm < 150 | Median | 67 | 65 | 0.828 |
Range | 30–241 | 38–141 | ||
Glucose (mg/dL) Norm (70–99) | Median | 85.5 | 87 | 0.829 |
Range | 72–99 | 6–94 | ||
Insulin (mIU/mL) Norm < 15 | Median | 5.03 | 2.05 | 0.156 |
Range | 1.41–16.46 | 1.0–9.03 | ||
HbA1c (%) Normal range (4–6) | Median | 5.38 | 5.41 | 0.801 |
Range | 4.81–5.86 | 5.26–5.55 | ||
HOMA-IR Norm < 2.5 | Median | 1.05 | 0.78 | 0.223 |
Range | 0.27–3.62 | 0.21–2.03 |
FAS | ND-PAE | p Value | ||
---|---|---|---|---|
Sex (F/M) | 14/12 | 15/16 | ||
Age (years) | Mean ± SD | 7.91 ± 4.77 | 8.13 ± 3.32 | 0.843 |
range | 0.42–16 | 2.08–13.5 | ||
BMI percentile | Mean ± SD | 22.12 ± 27.51 | 42.04 ± 33.02 | 0.02 |
range | 0.1–78 | 0.1–99.9 | ||
Clinical Laboratory Markers | ||||
Cholesterol (mg/dL) Norm < 190 | Median | 154. | 161 | 0.110 |
Range | 76–238 | 114–244 | ||
LDL (mg/dL) Norm < 135 | Median | 86 | 75 | 0.365 |
Range | 31–143 | 114–244 | ||
HDL (mg/dL) Norm > 40 | Median | 49.5 | 53 | 0.382 |
Range | 33–80 | 24–108 | ||
Triglycerides (mg/dL) Norm < 150 | Median | 64 | 75 | 0.607 |
Range | 30–229 | 34–241 | ||
Glucose (mg/dL) Norm (70–99) | Median | 82 | 87 | 0.211 |
Range | 72–99 | 74–99 | ||
Insulin (mIU/mL) Norm < 15 mIU/ml | Median | 5.1 | 4.22 | 0.623 |
Range | 1.41–16.46 | 1.56–13.97 | ||
HbA1c (%) Normal range (4–6) | Median | 5.24 | 5.45 | 0.039 |
Range | 4.81–5.86 | 4.89–5.85 | ||
HOMA-IR Norm < 2.5 | Median | 1.07 | 1.29 | 0.79 |
Range | 0.27–3.62 | 0.31–3.53 |
FAS | ND-PAE | p Value | ||
---|---|---|---|---|
Agouti-signaling protein (pg/mL) | Median | 14.02 | 14.59 | 0.59 |
Range | 12.22–35.18 | 12.18–32.28 | ||
Neuropeptide Y (pg/mL) | Median | 316.22 | 303.82 | 0.278 |
Range | 216.75–429.7 | 217.4–430.3 | ||
α-MSH (pg/ml) | Median | 15.44 | 13.65 | 0.071 |
Range | 12.16–18.23 | 10.59–17.99 | ||
KISS1 (ng/mL) | Median | 2.03 | 2.16 | 0.585 |
Range | 1.18–4.04 | 1.09–3.65 |
Hormone | FASD | |||
---|---|---|---|---|
Female | Male | p Value | ||
Agouti-signaling protein (pg/mL) | Median | 13.86 | 14.27 | 0.856 |
Range | 12.22–32.28 | 12.18–35.18 | ||
Neuropeptide Y (pg/mL) | Median | 306.9 | 307.25 | 0.596 |
Range | 217.4–429.7 | 216.75–450.4 | ||
α-MSH (pg/mL) | Median | 15.43 | 14.27 | 0.173 |
Range | 11.85–18.23 | 10.59–17.99 | ||
KISS1 (ng/mL) | Median | 7.3 | 9.8 | 0.169 |
Range | 3.5–18.9 | 5–26 |
Age | BMI per | Cortisol | ACTH | Ch | LDL | HDL | TGL | Glu | Ins | HOMA-IR | HbA1c | KISS1 | ASP | NPY | α-MSH | POMC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KISS1 | R | −0.119 | 0.244 | −0.008 | 0.095 | 0.115 | 0.066 | −0.025 | 0.151 | −0.151 | 0.04 | 0.049 | 0.064 | 0.046 | 0.042 | −0.065 | 0.121 | |
p | 0.359 | 0.065 | 0.952 | 0.583 | 0.376 | 0.613 | 0.849 | 0.246 | 0.257 | 0.772 | 0.723 | 0.644 | 0.722 | 0.748 | 0.618 | 0.348 | ||
Agouti- signaling protein | R | 0.434 | 0.228 | 0.015 | 0.380 | 0.211 | 0.163 | 0.094 | 0.097 | 0.149 | 0.233 | 0.250 | 0.218 | 0.046 | −0.164 | −0.316 | 0.691 | |
p | <0.001 | 0.086 | 0.913 | 0.022 | 0.103 | 0.209 | 0.47 | 0.459 | 0.264 | 0.089 | 0.068 | 0.113 | 0.722 | 0.203 | 0.013 | <0.001 | ||
Neuropeptide Y | R | −0.109 | −0.163 | 0.036 | 0.092 | −0.011 | −0.045 | −0.078 | 0.006 | −0.23 | −0.137 | −0.152 | −0.356 | 0.042 | −0.164 | 0.025 | −0.145 | |
p | 0.397 | 0.220 | 0.787 | 0.593 | 0.931 | 0.733 | 0.548 | 0.966 | 0.082 | 0.323 | 0.273 | 0.008 | 0.748 | 0.203 | 0.846 | 0.26 | ||
α-MSH | R | −0.323 | −0.288 | 0.096 | −0.134 | −0.202 | −0.111 | −0.17 | −0.035 | −0.213 | −0.12 | −0.150 | −0.302 | −0.065 | −0.316 | 0.025 | −0.171 | |
p | 0.011 | 0.030 | 0.475 | 0.442 | 0.123 | 0.4 | 0.195 | 0.802 | 0.111 | 0.392 | 0.284 | 0.033 | 0.618 | 0.013 | 0.846 | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podgórski, R.; Galiniak, S.; Mazur, A.; Podgórska, D.; Domin, A. Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders. Nutrients 2023, 15, 4215. https://doi.org/10.3390/nu15194215
Podgórski R, Galiniak S, Mazur A, Podgórska D, Domin A. Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders. Nutrients. 2023; 15(19):4215. https://doi.org/10.3390/nu15194215
Chicago/Turabian StylePodgórski, Rafał, Sabina Galiniak, Artur Mazur, Dominika Podgórska, and Agnieszka Domin. 2023. "Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders" Nutrients 15, no. 19: 4215. https://doi.org/10.3390/nu15194215
APA StylePodgórski, R., Galiniak, S., Mazur, A., Podgórska, D., & Domin, A. (2023). Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders. Nutrients, 15(19), 4215. https://doi.org/10.3390/nu15194215