The Association of Folic Acid, Iron Nutrition during Pregnancy and Congenital Heart Disease in Northwestern China: A Matched Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Ascertainment of Study Outcomes
2.4. The Assessment of Nutrient Intakes during Pregnancy
2.5. Assessment of Socio-Demographic and Health-Related Characteristics
2.6. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. The Association of Folic Acid or Iron Nutrition with CHD
3.3. Interaction Effect Analysis
3.4. Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Li, B.; Xia, J.; Ji, C.; Liang, Z.; Ma, Y.; Li, S.; Wu, Y.; Wang, Y.; Zhao, Q. Prevalence of congenital heart defect in Guangdong province, 2008–2012. BMC Public Health 2014, 14, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Linde, D.; Konings, E.E.M.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Liu, X.; Zhuang, J.; Chen, G.; Mai, J.; Guo, X.; Ou, Y.; Chen, J.; Gong, W.; Gao, X.; et al. Incidence of Congenital Heart Disease: The 9-Year Experience of the Guangdong Registry of Congenital Heart Disease, China. PLoS ONE 2016, 11, e0159257. [Google Scholar] [CrossRef] [Green Version]
- Van Der Bom, T.; Zomer, A.C.; Zwinderman, A.H.; Meijboom, F.J.; Bouma, B.J.; Mulder, B.J. The changing epidemiology of congenital heart disease. Nat. Rev. Cardiol. 2011, 8, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, N.; Liu, J.; Chen, G.; Zhang, L.; Li, C.; Zheng, X. Depression and its influencing factors among mothers of children with birth defects in China. Matern. Child Health J. 2012, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donofrio, M.T.; Moon-Grady, A.J.; Hornberger, L.K.; Copel, J.A.; Sklansky, M.S.; Abuhamad, A.; Cuneo, B.F.; Huhta, J.C.; Jonas, R.A.; Krishnan, A.; et al. Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation 2014, 129, 2183–2242. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.J.; Lupo, P.J. Maternal smoking during pregnancy and the risk of congenital heart defects in offspring: A systematic review and metaanalysis. Pediatr Cardiol. 2013, 34, 398–407. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, H.; Qu, P.; Zhang, R.; Zeng, L.; Yan, H. Prenatal Alcohol Exposure and Congenital Heart Defects: A Meta-Analysis. PLoS ONE 2015, 10, e0130681. [Google Scholar] [CrossRef] [Green Version]
- Gilboa, S.M.; Desrosiers, T.A.; Lawson, C.; Lupo, P.; Riehle-Colarusso, T.J.; Stewart, P.A.; Van Wijngaarden, E.; Waters, M.A.; Correa, A. Association between maternal occupational exposure to organic solvents and congenital heart defects, National Birth Defects Prevention Study, 1997–2002. Occup. Environ. Med. 2012, 69, 628–635. [Google Scholar] [CrossRef]
- Abu-Saad, K.; Fraser, D. Maternal nutrition and birth outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Cheng, Y.; Dang, S.; Yan, H.; Dibley, M.J.; Chang, S.; Kong, L. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: Double blind cluster randomised controlled trial. BMJ 2008, 337, a2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 1280S–1284S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, A.; Lima, C.A.; Pinkus, J.L.; Pinkus, G.S.; Zon, L.I.; Robine, S.; Andrews, N.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005, 1, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Joseph, K.; Luo, W.; León, J.A.; Lisonkova, S.; Hof, M.V.D.; Evans, J.; Lim, K.; Little, J.; Sauve, R.; et al. Effect of Folic Acid Food Fortification in Canada on Congenital Heart Disease Subtypes. Circulation 2016, 134, 647–655. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, Y.; Pei, L.; Jiang, Y.; Lei, F.; Zeng, L.; Wang, Q.; Li, Q.; Kang, Y.; Shen, Y.; et al. Maternal iron intake during pregnancy and birth outcomes: A cross-sectional study in Northwest China. Br. J. Nutr. 2017, 117, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Dang, S.; Cheng, Y.; Qiu, H.; Mi, B.; Jiang, Y.; Qu, P.; Zeng, L.; Wang, Q.; Li, Q.; et al. Dietary intakes and dietary patterns among pregnant women in Northwest China. Public Health Nutr. 2016, 20, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.M. Association Study of Genetic Polymorphisms Related to Nutrition and Iron Metabolism during Pregnancy and Congenital Heart Disease. Ph.D. Thesis, Xi’an Jiaotong University, Xi’an, China, 2018. [Google Scholar]
- Feng, Y.; Cai, J.; Tong, X.; Chen, R.; Zhu, Y.; Xu, B.; Mo, X. Non-inheritable risk factors during pregnancy for congenital heart defects in offspring: A matched case-control study. Int. J. Cardiol. 2018, 264, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Willett, W.C.; Kleinman, K.; Oken, E.; Gillman, M.W. Changes in dietary intake from the first to the second trimester of pregnancy. Paediatr. Périnat. Epidemiol. 2006, 20, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar] [PubMed]
- Yang, Y. China Food Composition Book 1, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- WS/T 578.3-2017; Dietary Reference Intake of Nutrients for Chinese Residents. Part 3: Trace Elements. National Health and Wellness Commission of the People’s Republic of China: Beijing, China, 2017.
- WS/T 578.5-2018; Dietary Nutrient Reference Intake for Chinese Residents. Part 5: Water-Soluble Vitamins. National Health and Wellness Commission of the People’s Republic of China: Beijing, China, 2018.
- Nicoll, R. Environmental Contaminants and Congenital Heart Defects: A Re-Evaluation of the Evidence. Int. J. Environ. Res. Public Health 2018, 15, 2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Yan, M.; Guo, L.; Liu, D.; Zhang, R.; Yan, H.; Qu, P.; Dang, S. Cooking stoves and risk of congenital heart disease in Northwest China: A case-control study. Sci. Total Environ. 2021, 816, 151564. [Google Scholar] [CrossRef]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data--or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Goldsmith, J.; Ogden, R.T. Nonlinear Mixed-Effects Models for PET Data. IEEE Trans. Biomed. Eng. 2018, 66, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Cao, X.; Lu, Y.; Li, H.; Zhu, Q.; Chen, X.; Jiang, H.; Li, X. A Meta-Analysis of the Relationship Between Maternal Folic Acid Supplementation and the Risk of Congenital Heart Defects. Int. Heart J. 2016, 57, 725–728. [Google Scholar] [CrossRef] [Green Version]
- Van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; Heijer, M.D.; Blom, H.J.; De Walle, H.E. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: A registry-based case-control study in the northern Netherlands. Eur. Heart J. 2009, 31, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Mao, B.; Qiu, J.; Zhao, N.; Shao, Y.; Dai, W.; He, X.; Cui, H.; Lin, X.; Lv, L.; Tang, Z.; et al. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS ONE 2017, 12, e0187996. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Ittu, R.; Marelli, A.J.; Mackie, A.S.; Pilote, L. Prevalence of severe congenital heart disease after folic acid fortification of grain products: Time trend analysis in Quebec, Canada. BMJ 2009, 338, b1673. [Google Scholar] [CrossRef] [Green Version]
- Tierney, B.J.; Ho, T.; Reedy, M.V.; Brauer, P.R. Homocysteine inhibits cardiac neural crest cell formation and morphogenesis in vivo. Dev. Dyn. 2003, 229, 63–73. [Google Scholar] [CrossRef]
- Boot, M.J.; Steegers-Theunissen, R.P.; Poelmann, R.E.; Van Iperen, L.; Lindemans, J.; Gittenberger-de Groot, A.C. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Dev. Dyn. 2003, 227, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Chinese Collaborative Group on Epidemiological Survey of Iron Deficiency in Children, Pregnant Women and Women of Childbearing Age. A Survey on the Prevalence of Iron Deficiency in Pregnant Women and Women of Childbearing Age in China. Chin. J. Hematol. 2004, 16–20. [Google Scholar]
- Fisher, S.A.; Burggren, W.W. Role of hypoxia in the evolution and development of the cardiovascular system. Antioxid. Redox Signal. 2007, 9, 1339–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Shen, Y.; Shi, G.; Liu, Y.; Qu, P.; Zhang, R.; Yan, H.; et al. Iron intake and iron status during pregnancy and risk of congenital heart defects: A case-control study. Int. J. Cardiol. 2019, 301, 74–79. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, C.; Cheng, L.; Lai, C. Effect of trace elements during pregnancy on congenital heart disease. Chin. J. Mod. Med. 2016, 26, 57–61. [Google Scholar] [CrossRef]
- Lewis, D.P.; Van Dyke, D.C.; Willhite, L.A.; Stumbo, P.J.; Berg, M.J. Phenytoin-folic acid interaction. Ann. Pharmacother. 1995, 29, 726–735. [Google Scholar] [CrossRef]
- Pei, L.-J.; Zhu, H.-P.; Li, Z.-W.; Zhang, W.; Ren, A.-G.; Zhu, J.-H.; Li, Z. Interaction between maternal periconceptional supplementation of folic acid and reduced folate carrier gene polymorphism of neural tube defects. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005, 22, 284–287. [Google Scholar]
- O’Connor, D.L. Interaction of iron and folate during reproduction. Prog. Food Nutr. Sci. 1991, 15, 231–254. [Google Scholar]
Variables | Cases (N = 600) | Controls (N = 1200) | χ2 | p Value |
---|---|---|---|---|
Age, n (%) | 3.085 | 0.079 | ||
<30 years | 378 (63.00) | 806 (67.17) | ||
≥30 years | 222 (37.00) | 394 (32.83) | ||
Ethnicity, n (%) | 10.658 | 0.001 | ||
Han | 585 (97.50) | 1192 (99.33) | ||
Other | 15 (2.50) | 8 (0.67) | ||
Education, n (%) | 88.615 | <0.001 | ||
Senior high school or lower | 264 (44.00) | 270 (22.50) | ||
College or above | 336 (56.00) | 930 (77.50) | ||
Residence, n (%) | 178.249 | <0.001 | ||
Urban | 201 (33.50) | 800 (66.67) | ||
Rural | 399 (66.50) | 400 (33.33) | ||
Wealth index, n (%) | 116.335 | <0.001 | ||
Poor | 313 (52.17) | 331 (27.58) | ||
Moderate | 167 (27.83) | 398 (33.17) | ||
Rich | 120 (20.00) | 471 (39.25) | ||
Cold in early pregnancy, n (%) | 22.227 | <0.001 | ||
No | 415 (69.17) | 951 (79.25) | ||
Yes | 185 (30.83) | 249 (20.75) | ||
Fever in early pregnancy, n (%) | 3.161 | 0.075 | ||
No | 546 (91.00) | 1120 (93.33) | ||
Yes | 54 (9.00) | 80 (6.67) | ||
Drinking, n (%) | 15.298 | <0.001 | ||
No | 582 (97.00) | 1192 (99.33) | ||
Yes | 18 (3.00) | 8 (0.67) | ||
Passive smoke, n (%) | 36.090 | <0.001 | ||
No | 255 (42.50) | 690 (57.50) | ||
Yes | 345 (57.50) | 510 (42.50) | ||
Hair dyeing and perming, n (%) | 13.292 | <0.001 | ||
No | 563 (93.83) | 1168 (97.33) | ||
Yes | 37 (6.17) | 32 (2.67) | ||
Gravidity, n (%) | 24.396 | <0.001 | ||
1 | 236 (39.33) | 620 (51.67) | ||
≥2 | 364 (60.67) | 580 (48.33) |
Variables | Cases n (%) | Controls n (%) | Model 1 a OR (95% CI) | Model 2 b OR (95% CI) | Model 3 c OR (95% CI) |
---|---|---|---|---|---|
Folic acid supplementation | |||||
No | 141 (23.50) | 164 (17.67) | 1.00 | 1.00 | 1.00 |
Yes | 459 (76.50) | 1036 (86.33) | 0.52 (0.40, 0.67) | 0.62 (0.47, 0.84) | 0.60 (0.45, 0.82) |
Iron supplementation | |||||
No | 514 (85.67) | 756 (63.00) | 1.00 | 1.00 | 1.00 |
Yes | 86 (14.33) | 444 (37.00) | 0.29 (0.23, 0.38) | 0.37 (0.28, 0.49) | 0.36 (0.27, 0.48) |
Dietary iron intake | |||||
<29 mg/d | 434 (72.33) | 721 (60.08) | 1.00 | 1.00 | 1.00 |
≥29 mg/d | 166 (27.67) | 479 (39.92) | 0.57 (0.45, 0.70) | 0.69 (0.54, 0.89) | 0.64 (0.46, 0.88) |
Dietary folic acid intake | |||||
<200 μg/d | 421 (70.17) | 771 (64.25) | 1.00 | 1.00 | 1.00 |
≥200 μg/d | 179 (29.83) | 429 (35.75) | 0.76 (0.62, 0.94) | 0.82 (0.64, 1.05) | 1.09 (0.79, 1.50) |
Variables | Folic Acid Supplementation c | N n (%) | Cases n (%) | Controls n (%) | Model 1 d OR (95% CI) | Model 2 e OR (95% CI) |
---|---|---|---|---|---|---|
Iron supplementation a | ||||||
0 | 0 | 228 (12.67) | 120 (20.00) | 108 (9.00) | 1.00 | 1.00 |
1 | 0 | 77 (4.28) | 21 (3.50) | 56 (4.67) | 0.34 (0.19, 0.60) | 0.32 (0.16, 0.60) |
0 | 1 | 1042 (57.89) | 394 (65.67) | 648 (54.00) | 0.54 (0.41, 0.73) | 0.59 (0.42, 0.83) |
1 | 1 | 453 (25.16) | 65 (10.83) | 388 (32.33) | 0.15 (0.11, 0.22) | 0.22 (0.15, 0.34) |
Dietary iron intake b | ||||||
0 | 0 | 209 (11.61) | 109 (18.17) | 100 (8.33) | 1.00 | 1.00 |
1 | 0 | 96 (5.33) | 32 (5.33) | 64 (5.33) | 0.42 (0.25, 0.70) | 0.60 (0.33, 1.09) |
0 | 1 | 946 (52.56) | 325 (54.17) | 621 (51.75) | 0.47 (0.34, 0.64) | 0.59 (0.41, 0.84) |
1 | 1 | 549 (30.50) | 134 (22.33) | 415 (34.58) | 0.28 (0.20, 0.40) | 0.41 (0.28, 0.62) |
Variables | Interactions | Model 1 d | Model 2 e |
---|---|---|---|
Multiplication model | Folic acid supplementation × Iron supplementation | 0.26 (0.20, 0.35) | 0.35 (0.26, 0.48) |
Additive model | RERI a | 0.27 (0.02, 0.53) | 0.32 (0.02, 0.61) |
S b | 0.76 (0.61, 0.94) | 0.71 (0.55, 0.92) | |
AP c | 1.79 (−0.25, 3.83) | 1.44 (−0.23, 3.11) | |
Multiplication model | Folic acid supplementation × Dietary iron intake | 0.54 (0.43, 0.68) | 0.66 (0.50, 0.85) |
Additive model | RERI | 0.40 (0.14, 0.66) | 0.22 (−0.19, 0.63) |
S | 0.64 (0.52, 0.80) | 0.73 (0.45, 1.17) | |
AP | 1.42 (0.20, 2.64) | 0.54 (−0.56, 1.63) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.-X.; Zhao, Y.; Zhao, D.-D.; Dang, S.-N.; Zhang, R.; Duan, X.-Y.; Rong, P.-X.; Dang, Y.-S.; Pei, L.-L.; Qu, P.-F. The Association of Folic Acid, Iron Nutrition during Pregnancy and Congenital Heart Disease in Northwestern China: A Matched Case-Control Study. Nutrients 2022, 14, 4541. https://doi.org/10.3390/nu14214541
Yan M-X, Zhao Y, Zhao D-D, Dang S-N, Zhang R, Duan X-Y, Rong P-X, Dang Y-S, Pei L-L, Qu P-F. The Association of Folic Acid, Iron Nutrition during Pregnancy and Congenital Heart Disease in Northwestern China: A Matched Case-Control Study. Nutrients. 2022; 14(21):4541. https://doi.org/10.3390/nu14214541
Chicago/Turabian StyleYan, Ming-Xin, Yan Zhao, Dou-Dou Zhao, Shao-Nong Dang, Ruo Zhang, Xin-Yu Duan, Pei-Xi Rong, Yu-Song Dang, Lei-Lei Pei, and Peng-Fei Qu. 2022. "The Association of Folic Acid, Iron Nutrition during Pregnancy and Congenital Heart Disease in Northwestern China: A Matched Case-Control Study" Nutrients 14, no. 21: 4541. https://doi.org/10.3390/nu14214541