The Influence of Maternal Vitamin D Supplementation in Pregnancies Associated with Preeclampsia: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Inclusion Criteria
2.2. Ethical Considerations
2.3. Study Variables
2.4. Statistical Analysis
3. Results
3.1. Maternal Background Analysis
3.2. Neonatal and Pregnancy Outcomes
3.3. Analysis at 32 and 36 Weeks of Pregnancy
3.4. Risk Analysis
4. Discussion
4.1. Supporting Literature
4.2. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Le Ray, I.; Zhu, J.; Zhang, J.; Hua, J.; Reilly, M. Preeclampsia Prevalence, Risk Factors, and Pregnancy Outcomes in Sweden and China. JAMA Netw. Open 2021, 4, e218401. [Google Scholar] [CrossRef] [PubMed]
- Behjat Sasan, S.; Zandvakili, F.; Soufizadeh, N.; Baybordi, E. The Effects of Vitamin D Supplement on Prevention of Recurrence of Preeclampsia in Pregnant Women with a History of Preeclampsia. Obstet. Gynecol. Int. 2017, 2017, 8249264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Citu, I.M.; Citu, C.; Margan, M.-M.; Craina, M.; Neamtu, R.; Gorun, O.M.; Burlea, B.; Bratosin, F.; Rosca, O.; Grigoras, M.L.; et al. Calcium, Magnesium, and Zinc Supplementation during Pregnancy: The Additive Value of Micronutrients on Maternal Immune Response after SARS-CoV-2 Infection. Nutrients 2022, 14, 1445. [Google Scholar] [CrossRef]
- Uta, M.; Neamtu, R.; Bernad, E.; Mocanu, A.G.; Gluhovschi, A.; Popescu, A.; Dahma, G.; Dumitru, C.; Stelea, L.; Citu, C.; et al. The Influence of Nutritional Supplementation for Iron Deficiency Anemia on Pregnancies Associated with SARS-CoV-2 Infection. Nutrients 2022, 14, 836. [Google Scholar] [CrossRef]
- Purswani, J.M.; Gala, P.; Dwarkanath, P.; Larkin, H.M.; Kurpad, A.; Mehta, S. The role of vitamin D in pre-eclampsia: A systematic review. BMC Pregnancy Childbirth 2017, 17, 231. [Google Scholar] [CrossRef] [Green Version]
- Steegers, E.A.P.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Ponsonby, A.-L.; Lucas, R.M.; Lewis, S.; Halliday, J. Vitamin D status during pregnancy and aspects of offspring health. Nutrients 2010, 2, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Sizar, O.; Khare, S.; Goyal, A.; Givler, A. Vitamin D Deficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532266 (accessed on 14 May 2022).
- Shin, J.S.; Choi, M.Y.; Longtine, M.S.; Nelson, D.M. Vitamin D effects on pregnancy and the placenta. Placenta 2010, 31, 1027–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simner, C.L.; Ashley, B.; Cooper, C.; Harvey, N.C.; Lewis, R.M.; Cleal, J.K. Investigating a suitable model for the study of vitamin D mediated regulation of human placental gene expression. J. Steroid Biochem. Mol. Biol. 2020, 199, 105576. [Google Scholar] [CrossRef]
- Wagner, C.L.; Hollis, B.W. The Implications of vitamin D status during pregnancy on mother and her developing child. Front. Endocrinol. 2018, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Surapaneni, T.; Bada, V.P.; Nirmalan, C.P.K. Risk for Recurrence of Pre-eclampsia in the Subsequent Pregnancy. J. Clin. Diagn. Res. 2013, 7, 2889–2891. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Goel, P.; Chawla, D.; Huria, A.; Arya, A. Vitamin D Status in Mothers and Their Newborns and Its Association with Pregnancy Outcomes: Experience from a Tertiary Care Center in Northern India. J. Obstet. Gynecol. India 2017, 68, 389–393. [Google Scholar] [CrossRef]
- Hyppönen, E. Vitamin D for the prevention of preeclampsia? A hypothesis. Nutr. Rev. 2005, 63, 225–232. [Google Scholar] [CrossRef]
- Karrar, S.A.; Hong, P.L. Preeclampsia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570611 (accessed on 14 May 2022).
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef] [PubMed]
- Woodd, S.L.; Montoya, A.; Barreix, M.; Pi, L.; Calvert, C.; Rehman, A.M.; Chou, D.; Campbell, O.M.R. Incidence of maternal peripartum infection: A systematic review and meta-analysis. PLOS Med. 2019, 16, e1002984. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Gammill, H.S. Preeclampsia. Hypertension 2005, 46, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
- Redman, C.W.; Sacks, G.P.; Sargent, I.L. Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol. 1999, 180, 499–506. [Google Scholar] [CrossRef]
- Fantone, S.; Mazzucchelli, R.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D.; Tossetta, G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem. Cell Biol. 2020, 154, 339–346. [Google Scholar] [CrossRef]
- Pospechova, K.; Rozehnal, V.; Stejskalova, L.; Vrzal, R.; Pospisilova, N.; Jamborova, G.; May, K.; Siegmund, W.; Dvorak, Z.; Nachtigal, P.; et al. Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Mol. Cell. Endocrinol. 2009, 299, 178–187. [Google Scholar] [CrossRef]
- Cardús, A.; Parisi, E.; Gallego, C.; Aldea, M.; Fernández, E.; Valdivielso, J. 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int. 2006, 69, 1377–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poniedziałek-Czajkowska, E.; Mierzyński, R. Could Vitamin D Be Effective in Prevention of Preeclampsia? Nutrients 2021, 13, 3854. [Google Scholar] [CrossRef]
- Müller, K.; Diamant, M.; Bendtzen, K. Inhibition of production and function of interleukin-6 by 1,25-dihydroxyvitamin D3. Immunol. Lett. 1991, 28, 115–120. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Park, K.M.; Lee, M.J.; Yang, D.H.; Kim, S.H.; Lee, S.-Y. Vitamin D and Hypertension. Electrolytes Blood Press. 2017, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.I.; Koch, C.A.; Tamanna, S.; Rouf, S.; Shamsuddin, L. Vitamin D deficiency and the risk of preeclampsia and eclampsia in Bangladesh. Horm. Metab. Res. 2013, 45, 682–687. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Catov, J.M.; Simhan, H.N.; Holick, M.; Powers, R.W.; Roberts, J.M. Maternal vitamin D deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 2007, 92, 3517–3522. [Google Scholar] [CrossRef] [Green Version]
- Mackay, A.P.; Berg, C.J.; Atrash, H.K. Pregnancy-Related Mortality From Preeclampsia and Eclampsia. Obstet. Gynecol. 2001, 97, 533–538. [Google Scholar] [CrossRef]
- Xu, L.; Lee, M.; Jeyabalan, A.; Roberts, J.M. The relationship of hypovitaminosis D and IL-6 in preeclampsia. Am. J. Obstet. Gynecol. 2013, 210, 149.e1–149.e7. [Google Scholar] [CrossRef] [Green Version]
- Arain, N.; Mirza, W.A.; Aslam, M. Review-vitamin D and the prevention of preeclampsia: A systematic review. Pak. J. Pharm. Sci. 2015, 28, 1015–1021. [Google Scholar]
- Marya, R.; Rathee, S.; Manrow, M. Effect of calcium and vitamin D supplementation on toxaemia of pregnancy. Gynecol. Obstet. Investig. 1987, 24, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Bärebring, L.; Bullarbo, M.; Glantz, A.; Agelii, M.L.; Jagner, Å.; Ellis, J.; Hulthen, L.; Schoenmakers, I.; Augustin, H. Preeclampsia and blood pressure trajectory during pregnancy in relation to vitamin D status. PLoS ONE 2016, 11, e0152198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benachi, A.; Baptiste, A.; Taieb, J.; Tsatsaris, V.; Guibourdenche, J.; Senat, M.-V.; Haidar, H.; Jani, J.; Guizani, M.; Jouannic, J.-M.; et al. Relationship between vitamin D status in pregnancy and the risk for preeclampsia: A nested case-control study. Clin. Nutr. 2020, 39, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Michos, E.D.; Wang, G.; Wang, X.; Mueller, N.T. Associations of Cord Blood Vitamin D and Preeclampsia With Offspring Blood Pressure in Childhood and Adolescence. JAMA Netw Open 2020, 3, 19046. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.M.; Haeri, S.; Camargo, C.A., Jr.; Espinola, J.A.; Stuebe, A.M. A Nested case-control study of midgestation vitamin D deficiency and risk of severe preeclampsia. J. Clin. Endocrinol. Metab. 2010, 95, 5105–5109. [Google Scholar] [CrossRef]
- Shand, A.; Nassar, N.; Von Dadelszen, P.; Innis, S.; Green, T. Maternal vitamin D status in pregnancy and adverse pregnancy outcomes in a group at high risk for pre-eclampsia. BJOG: Int. J. Obstet. Gynaecol. 2010, 117, 1593–1598. [Google Scholar] [CrossRef]
- Raia-Barjat, T.; Prieux, C.; Gris, J.-C.; Chapelle, C.; Laporte, S.; Chauleur, C. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study. J. Matern.-Fetal Neonatal Med. 2017, 32, 248–257. [Google Scholar] [CrossRef]
- Raia-Barjat, T.; Sarkis, C.; Rancon, F.; Thibaudin, L.; Gris, J.-C.; Alfaidy, N.; Chauleur, C. Vitamin D deficiency during late pregnancy mediates placenta-associated complications. Sci. Rep. 2021, 11, 20708. [Google Scholar] [CrossRef]
No Supplementation (n = 59) | Low Dose (n = 63) | High Dose (n = 76) | p-Value * | |
---|---|---|---|---|
Age | 0.255 | |||
<25 | 12 (20.3%) | 14 (22.2%) | 11 (14.5%) | |
25–34 | 38 (64.4%) | 44 (69.8%) | 49 (64.5%) | |
>34 | 9 (15.3%) | 5 (7.9%) | 16 (21.1%) | |
Gravidity | 0.288 | |||
2 | 50 (84.7%) | 48 (76.2%) | 56 (73.7%) | |
>2 | 9 (15.3%) | 15 (23.8%) | 20 (26.3%) | |
Parity | 0.931 | |||
1 | 39 (66.1%) | 46 (73.0%) | 53 (69.7%) | |
2 | 11 (18.6%) | 10 (15.9%) | 14 (18.4%) | |
≥3 | 9 (15.3%) | 7 (11.1%) | 9 (11.8%) | |
Area of residence | 0.958 | |||
Urban | 35 (59.3%) | 38 (60.3%) | 44 (57.9%) | |
Rural | 24 (40.7%) | 25 (39.7%) | 32 (42.1%) | |
Occupation | 0.662 | |||
No occupation | 4 (6.8%) | 7 (11.1%) | 11 (14.5%) | |
Student | 4 (6.8%) | 6 (9.5%) | 6 (7.9%) | |
Employed | 51 (86.4%) | 50 (79.4%) | 59 (77.6%) | |
Level of education | 0.292 | |||
Elementary | 3 (5.1%) | 6 (9.5%) | 10 (13.2%) | |
Middle | 18 (30.5%) | 12 (19.0%) | 14 (18.4%) | |
Higher | 39 66.1%) | 45 (71.4%) | 52 (68.4%) | |
Level of income | 0.963 | |||
Low | 6 (10.2%) | 6 (9.5%) | 8 (10.5%) | |
Middle | 33 (55.9%) | 38 (60.3%) | 41 (53.9%) | |
High | 20 (33.9%) | 19 (30.2%) | 27 (35.5%) | |
Civil status | 0.937 | |||
Married | 54 (91.5%) | 57 (90.5%) | 68 (89.5%) | |
Single | 2 (3.4%) | 3 (4.8%) | 5 (6.6%) | |
Divorced/Widowed | 3 (5.1%) | 3 (4.8%) | 3 (3.9%) |
No Supplementation (n = 59) | Low Dose (n = 63) | High Dose (n = 76) | p-Value * | |
---|---|---|---|---|
History of pregnancy-associated conditions | ||||
Gestational diabetes mellitus | 4 (6.8%) | 4 (6.3%) | 7 (9.2%) | 0.787 |
Abnormal presentation | 6 (10.2%) | 5 (7.9%) | 7 (9.2%) | 0.911 |
PROM | 4 (6.8%) | 6 (9.5%) | 4 (5.3%) | 0.618 |
Anemia | 23 (39.0%) | 24 (38.1%) | 26 (34.2%) | 0.825 |
Peripartum infection | 3 (5.1%) | 5 (7.9%) | 4 (5.3%) | 0.750 |
Other maternal infections | 3 (5.1%) | 2 (3.2%) | 6 (7.9%) | 0.472 |
Comorbidities | ||||
Cardiovascular | 2 (3.4%) | 4 (6.3%) | 4 (5.3%) | 0.752 |
Obesity ** | 7 (11.9%) | 12 (19.0%) | 10 (13.2%) | 0.478 |
Respiratory | 1 (1.7%) | 4 (6.3%) | 3 (3.9%) | 0.426 |
Digestive | 3 (5.1%) | 1 (1.6%) | 3 (3.9%) | 0.561 |
Autoimmune | 0 (0.0%) | 1 (1.6%) | 2 (2.6%) | 0.461 |
Others | 2 (3.4%) | 2 (3.2%) | 5 (6.6%) | 0.554 |
Other supplements taken | ||||
Calcium/Magnesium | 14 (23.7%) | 19 (30.2%) | 25 (32.9%) | 0.501 |
Folate | 45 (76.3%) | 51 (81.0%) | 69 (90.8%) | 0.066 |
Iron | 20 (33.9%) | 31 (49.2%) | 38 (50.0%) | 0.125 |
Probiotics | 12 (20.3%) | 22 (34.9%) | 27 (35.5%) | 0.114 |
No Supplementation (n = 59) | Low Dose (n = 63) | High Dose (n = 76) | p-Value * | |
---|---|---|---|---|
Neonatal characteristics | ||||
Gender (male) | 33 (55.9%) | 32 (50.8%) | 36 (47.4%) | 0.613 |
Abnormal APGAR score | 5 (8.5%) | 4 (6.3%) | 4 (5.3%) | 0.753 |
Birth weight *** (grams), mean ± SD | 2731 ± 552 | 2880 ± 594 | 2926 ± 518 | 0.117 |
Conceived by vitro fertilization | 1 (1.7%) | 0 (0.0%) | 1 (1.3%) | 0.609 |
Delivered by C-section | 28 (47.5%) | 33 (52.4%) | 30 (39.5%) | 0.303 |
Infection after membrane rupture | 5 (8.5%) | 7 (11.1%) | 7 (9.2%) | 0.875 |
Congenital abnormalities | 2 (3.4%) | 2 (3.2%) | 1 (1.3%) | 0.691 |
Prematurity | 8 (13.6%) | 3 (4.8%) | 2 (2.6%) | 0.030 |
NICU admission | 2 (3.4%) | 1 (1.6%) | 1 (1.3%) | 0.667 |
Resuscitation | 4 (6.8%) | 2 (3.2%) | 4 (5.3%) | 0.657 |
Days of hospitalization ** | 4 (3) | 4 (2) | 3 (2) | 0.492 |
Therapy | ||||
Surfactant | 5 (8.5%) | 2 (3.2%) | 2 (2.6%) | 0.221 |
Steroids | 6 (10.2%) | 4 (6.3%) | 4 (5.3%) | 0.524 |
Antibiotics | 18 (30.5%) | 12 (19.0%) | 10 (13.2%) | 0.043 |
No Supplementation (n = 59) | Low Dose (n = 63) | High Dose (n = 76) | p-Value * | |
---|---|---|---|---|
At 32 weeks | ||||
Low vitamin D (<30 ng/mL) | 0.027 | |||
Insufficient < 20 ng/mL (n = 25) | 12 (20.3%) | 8 (12.7%) | 5 (6.6%) | |
Vitamin D deficiency 20–30 ng/mL (n = 37) | 15 (25.4%) | 12 (19.0%) | 10 (13.2%) | |
Normal serum vitamin D >30 ng/mL (n = 136) | 32 (54.2%) | 43 (68.3%) | 61 (80.3%) | |
Hypertension | 0.049 | |||
Hypertensive | 12 (20.3%) | 7 (11.1%) | 5 (6.6%) | |
Non-hypertensive | 47 (79.7%) | 56 (88.9%) | 71 (93.4%) | |
Serum vitamin D, ng/mL (mean ± SD) | 23.9 ± 7.3 | 28.4 ± 8.0 | 33.6 ± 7.1 | <0.001 |
Systolic blood pressure (mean ± SD) | 139.4 ± 33.1 | 130.2 ± 26.6 | 127.4 ± 22.5 | 0.036 |
Dyastolic blood pressure (mean ± SD) | 85.2 ± 14.6 | 80.4 ± 11.6 | 79.1 ± 10.2 | 0.012 |
At 36 weeks | ||||
Vitamin D deficiency (<30) | 0.006 | |||
Insufficient < 20 ng/mL (n = 25) | 14 (23.7%) | 7 (11.1%) | 4 (5.3%) | |
Vitamin Ddeficiency 20–30 g/mL (n = 47) | 17 (28.8%) | 15 (23.8%) | 15 (19.7%) | |
Normal serum vitamin D >30 ng/mL (n = 126) | 28 (47.5%) | 41 (65.1%) | 57 (75.0%) | |
Hypertension | 0.002 | |||
Hypertensive | 15 (25.4%) | 7 (11.1%) | 4 (5.3%) | |
Non-hypertensive | 10 (74.6%) | 22 (88.9%) | 20 (94.7%) | |
Serum vitamin D, ng/mL (mean ± SD) | 22.5 ± 8.1 | 29.1 ± 7.7 | 35.6 ± 8.3 | <0.001 |
Systolic blood pressure (mean ± SD) | 141.4 ± 38.9 | 129.4 ± 30.5 | 127.3 ± 28.7 | 0.034 |
Dyastolic blood pressure (mean ± SD) | 86.4 ± 15.9 | 81.2 ± 10.6 | 80.5 ± 9.4 | 0.012 |
Preeclampsia | 11 (18.6%) | 6 (9.5%) | 4 (5.3%) | 0.041 |
Risk Factors | OR | 95% CI | p-Value |
---|---|---|---|
Insufficient vitamin D serum levels (<20 ng/mL) | 2.52 | 1.86–3.90 | <0.001 |
No vitamin D supplementation | 1.46 | 1.12–1.86 | 0.042 |
Parity > 2 | 1.89 | 1.42–2.31 | 0.008 |
Gestational diabetes mellitus | 1.66 | 1.09–2.24 | 0.017 |
Cardiovascular comorbidities | 2.18 | 1.58–2.93 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahma, G.; Neamtu, R.; Nitu, R.; Gluhovschi, A.; Bratosin, F.; Grigoras, M.L.; Silaghi, C.; Citu, C.; Orlu, I.N.; Bhattarai, S.; et al. The Influence of Maternal Vitamin D Supplementation in Pregnancies Associated with Preeclampsia: A Case-Control Study. Nutrients 2022, 14, 3008. https://doi.org/10.3390/nu14153008
Dahma G, Neamtu R, Nitu R, Gluhovschi A, Bratosin F, Grigoras ML, Silaghi C, Citu C, Orlu IN, Bhattarai S, et al. The Influence of Maternal Vitamin D Supplementation in Pregnancies Associated with Preeclampsia: A Case-Control Study. Nutrients. 2022; 14(15):3008. https://doi.org/10.3390/nu14153008
Chicago/Turabian StyleDahma, George, Radu Neamtu, Razvan Nitu, Adrian Gluhovschi, Felix Bratosin, Mirela Loredana Grigoras, Carmen Silaghi, Cosmin Citu, Igwe Nwobueze Orlu, Sanket Bhattarai, and et al. 2022. "The Influence of Maternal Vitamin D Supplementation in Pregnancies Associated with Preeclampsia: A Case-Control Study" Nutrients 14, no. 15: 3008. https://doi.org/10.3390/nu14153008
APA StyleDahma, G., Neamtu, R., Nitu, R., Gluhovschi, A., Bratosin, F., Grigoras, M. L., Silaghi, C., Citu, C., Orlu, I. N., Bhattarai, S., Mocanu, A. G., Craina, M., & Bernad, E. (2022). The Influence of Maternal Vitamin D Supplementation in Pregnancies Associated with Preeclampsia: A Case-Control Study. Nutrients, 14(15), 3008. https://doi.org/10.3390/nu14153008