Dietary Intake Adequacy and Food Sources of Nutrients Involved in the Methionine-Methylation Cycle in Women of Childbearing Age from the ANIBES Spanish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Nutrients Consumption and Adequacy of Intakes
2.2. Statistical Analysis
3. Results
Contribution of Food and Beverage Groups to Choline, Betaine, Vitamin B6, Folates and Vitamin B12 Intakes
4. Discussion
4.1. Dietary Intake Adequacy
4.2. Main Food Sources
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Ingestas Diarias Recomendadas de Energía y Nutrientes para la Población Española. Tablas de Composición de Alimentos, 19 ed.; Ediciones Pirámide: Madrid, Spain, 2018. [Google Scholar]
- European Food Safety Authority. Dietary reference values for nutrients. Summary report. EFSA Supporting Publ. 2017, 14, 15121. [Google Scholar] [CrossRef][Green Version]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press (US): Washington, DC, USA, 1998. [Google Scholar]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic acid food fortification—Its history, effect, concerns, and future directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cordero, A.; Mulinare, J.; Berry, R.; Boyle, C.; Dietz, W.; Johnston, R., Jr.; Leighton, J.; Popovic, T. CDC Grand rounds: Additional opportunities to prevent neural tube defects with folic acid fortification. Morb. Mortal. Wkly. Rep. 2010, 59, 980–984. [Google Scholar]
- Czeizel, A.E.; Dudás, I.; Vereczkey, A.; Bánhidy, F. Folate deficiency and folic acid supplementation: The prevention of neural-tube defects and congenital heart defects. Nutrients 2013, 5, 4760–4775. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aydin, H.; Arisoy, R.; Karaman, A.; Erdoğdu, E.; Çetinkaya, A.; Geçkinli, B.B.; Şimşek, H.; Demirci, O. Evaluation of maternal serum folate, vitamin B12, and homocysteine levels andfactor V Leiden, factor II g.2020G > A, and MTHFR variations in prenatallydiagnosed neural tube defects. Turk. J. Med. Sci. 2016, 46, 489–494. [Google Scholar] [CrossRef]
- Peker, E.; Demir, N.; Tuncer, O.; Üstyol, L.; Balahoroğlu, R.; Kaba, S.; Karaman, K. The levels of vitamın B12, folate and homocysteine in mothers and their babies with neural tube defects. J. Matern.-Fetal Neonatal Med. 2016, 29, 2944–2948. [Google Scholar] [CrossRef]
- Nasri, K.; Ben Fradj, M.K.; Touati, A.; Aloui, M.; Ben Jemaa, N.; Masmoudi, A.; Elmay, M.V.; Omar, S.; Feki, M.; Kaabechi, N.; et al. Association of maternal homocysteine and vitamins status with the risk of neural tube defects in Tunisia: A case-control study. Birth Defects Res. Part A Clin. Mol. Teratol. 2015, 103, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, N.; Adaikalakoteswari, A.; Venkataraman, H.; Maheswaran, H.; Saravanan, P. Vitamin B12 status in women of childbearing age in the UK and its relationship with national nutrient intake guidelines: Results from two national diet and nutrition surveys. BMJ Open 2016, 6, e011247. [Google Scholar] [CrossRef][Green Version]
- McCully, K.S. Hyperhomocysteinemia and arteriosclerosis: Historical perspectives. Clin. Chem. Lab. Med. CCLM 2005, 43, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.J.; Dowey, L.; Ward, M.; Pentieva, K.; McNulty, H. B-vitamins, homocysteine metabolism and CVD. Proc. Nutr. Soc. 2004, 63, 597–603. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Herbert, V. Biochemical and hematologic lesions in folic acid deficiency. Am. J. Clin. Nutr. 1967, 20, 562–569. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Dudás, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Interventions with Vitamins B6, B12 and C in pregnancy. Paediatr. Perinat. Epidemiol. 2012, 26, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R. Subclinical cobalamin deficiency. Curr. Opin. Gastroenterol. 2012, 28, 151–158. [Google Scholar] [CrossRef]
- Molloy, A.M.; Kirke, P.N.; Troendle, J.F.; Burke, H.; Sutton, M.; Brody, L.C.; Scott, J.M.; Mills, J.L. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics 2009, 123, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Caudill, M.A.; Obeid, R.; Derbyshire, E.; Bernhard, W.; Lapid, K.; Walker, S.J.; Zeisel, S.H. Building better babies: Should choline supplementation be recommended for pregnant and lactating mothers? Literature overview and expert panel consensus. Eur. Gynecol. Obstet. 2020, 2, 149–161. [Google Scholar]
- Cook, S. CHOLINE: A critical prenatal nutrient. In Research Guide: Natural Medicine Journal; IMPACT Health Media, Inc.: Santa Fe, NM, USA, 2017; p. 8. Available online: https://www.naturalmedicinejournal.com/sites/default/files/uploads/choline_prenatal_guide.pdf (accessed on 1 July 2021).
- Meck, W.H.; Williams, C.L. Metabolic imprinting of choline by its availability during gestation: Implications for memory and attentional processing across the lifespan. Neurosci. Biobehav. Rev. 2003, 27, 385–399. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vance, D.E.; Li, Z.; Jacobs, R.L. Hepatic phosphatidylethanolamine N-methyltransferase, unexpected roles in animal biochemistry and physiology. J. Biol. Chem. 2007, 282, 33237–33241. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Udali, S.; De Santis, D.; Choi, S.-W. One-carbon metabolism and epigenetics. Mol. Aspects Med. 2017, 54, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Carmichael, S.L.; Yang, W.; Selvin, S.; Schaffer, D.M. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol. 2004, 160, 102–109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petersen, J.M.; Parker, S.E.; Crider, K.S.; Tinker, S.C.; Mitchell, A.A.; Werler, M.M. One-carbon cofactor intake and risk of neural tube defects among women who meet folic acid recommendations: A multicenter case-control study. Am. J. Epidemiol. 2019, 188, 1136–1143. [Google Scholar] [CrossRef][Green Version]
- Lavery, A.M.; Brender, J.D.; Zhao, H.; Sweeney, A.; Felkner, M.; Suarez, L.; Canfield, M.A. Dietary intake of choline and neural tube defects in Mexican Americans. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Finnell, R.H.; Blom, H.J.; Carmichael, S.L.; Vollset, S.E.; Yang, W.; Ueland, P.M. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology 2009, 20, 714–719. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jiang, X.; Bar, H.Y.; Yan, J.; Jones, S.; Brannon, P.M.; West, A.A.; Perry, C.A.; Ganti, A.; Pressman, E.; Devapatla, S.; et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1). FASEB J. 2013, 27, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bai, G.; Scholl, T.O. Spontaneous preterm delivery, particularly with reduced fetal growth, is associated with DNA hypomethylation of tumor related genes. J. Pregnancy Child Health 2016, 3, 215. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Carmichael, S.L.; Laurent, C.; Rasmussen, S.A. Maternal nutrient intakes and risk of orofacial clefts. Epidemiology 2006, 17, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shaw, G.M.; Carmichael, S.L.; Rasmussen, S.A.; Waller, D.K.; Pober, B.R.; Anderka, M. Nutrient intakes in women and congenital diaphragmatic hernia in their offspring. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 131–138. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Yang, W.; Correa, A.; Olney, R.S.; Shaw, G.M. Hypospadias and intake of nutrients related to one-carbon metabolism. J. Urol. 2009, 181, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Varela-Moreiras, G.; Selhub, J.; Zeisel, S.H. Effect of chronic choline deficiency in rats on liver folate content and distribution. J. Nutr. Biochem. 1992, 3, 519–522. [Google Scholar] [CrossRef]
- Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; Mcardle, H.; Naska, A.; Neuhauser-Berthold, M.; et al. Dietary reference values for choline EFSA panel on dietetic products, nutrition and allergies (NDA). EFSA J. 2016, 14, 4484. [Google Scholar] [CrossRef]
- Berg, S. AMA Backs Global Health Experts in Calling Infertility a Disease; American Medical Association: Chicago, IL, USA, 2017; Available online: https://www.ama-assn.org/print/pdf/node/16246 (accessed on 1 July 2021).
- Schwarzenberg, S.J.; Georgieff, M.K. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 2018, 141. [Google Scholar] [CrossRef][Green Version]
- Enaw, J.O.E.; Zhu, H.; Yang, W.; Lu, W.; Shaw, G.M.; Lammer, E.J.; Finnell, R.H. CHKA and PCYT1A gene polymorphisms, choline intake and spina bifida risk in a California population. BMC Med. 2006, 4, 1–6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vennemann, F.B.C.; Ioannidou, S.; Valsta, L.M.; Dumas, C.; Ocké, M.C.; Mensink, G.B.M.; Lindtner, O.; Virtanen, S.M.; Tlustos, C.; D’Addezio, L.; et al. Dietary intake and food sources of choline in European populations. Br. J. Nutr. 2015, 114, 2046–2055. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ross, A.B.; Zangger, A.; Guiraud, S.P. Cereal foods are the major source of betaine in the Western diet—Analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chem. 2014, 145, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Ávila, J.M.; Castillo, A.; Valero, T.; Del Pozo, S.; Rodriguez, P.; Bartrina, J.A.; Gil, Á.; González-Gross, M.; Ortega, R.M. The ANIBES study on energy balance in Spain: Design, protocol and methodology. Nutrients 2015, 7, 970–998. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moreiras, G.V.; Ávila, J.M.; Ruiz, E. Energy balance, a new paradigm and methodological issues: The ANIBES study in Spain. Nutr. Hosp. 2015, 31, 101–112. [Google Scholar]
- USDA. Composition of Foods: Raw, Processed, Prepared. USDA National Nutrient Database for Standard Reference, Legacy; USDA: Beltsville, MD, USA, 2018.
- USDA. USDA Database for the Choline Content of Common Foods Release Two January 2008; U.S. Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 2008.
- Ruiz, E.; Ávila, J.M.; Valero, T.; Del Pozo, S.; Rodriguez, P.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; et al. Energy intake, profile, and dietary sources in the Spanish population: Findings of the ANIBES study. Nutrients 2015, 7, 4739–4762. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Fulgoni, V.L., 3rd. Assessment of total choline intakes in the United States. J. Am. Coll. Nutr. 2016, 35, 108–112. [Google Scholar] [CrossRef]
- Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Price, R.K.; Keaveney, E.M.; Hamill, L.L.; Wallace, J.M.; Ward, M.; Ueland, P.M.; McNulty, H.; Strain, J.; Parker, M.J.; Welch, R.W. Consumption of wheat aleurone-rich foods increases fasting plasma betaine and modestly decreases fasting homocysteine and LDL-cholesterol in adults. J. Nutr. 2010, 140, 2153–2157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Partearroyo, T.; Samaniego-Vaesken, M.D.L.; Ruiz, E.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Dietary sources and intakes of folates and vitamin B12 in the Spanish population: Findings from the ANIBES study. PLoS ONE 2017, 12, e0189230. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mielgo-Ayuso, J.; Aparicio-Ugarriza, R.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; González-Gross, M. Dietary intake and food sources of Niacin, Riboflavin, Thiamin and Vitamin B6 in a Representative sample of the Spanish Population. The ANIBES Study. Nutrients 2018, 10, 846. [Google Scholar] [CrossRef] [PubMed][Green Version]
- López-Sobaler, A.M.; Aparicio, A.; González-Rodríguez, L.G.; Cuadrado-Soto, E.; Rubio, J.; Marcos, V.; Sanchidrián, R.; Santos, S.; Pérez-Farinós, N.; Dal Re, M.Á.; et al. Adequacy of usual vitamin and mineral intake in Spanish children and adolescents: ENALIA study. Nutrients 2017, 9, 131. [Google Scholar] [CrossRef][Green Version]
- Diethelm, K.; Huybrechts, I.; Moreno, L.; De Henauw, S.; Manios, Y.; Beghin, L.; Gonzalez-Gross, M.; Le Donne, C.; Cuenca-Garcia, M.; Castillo, M.J. Nutrient intake of European adolescents: Results of the HELENA (healthy lifestyle in europe by nutrition in adolescence) study. Public Health Nutr. 2014, 17, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Planells, E.; Sanchez, C.; Montellano, M.; Mataix, J.; Llopis, J. Vitamins B6 and B12 and folate status in an adult Mediterranean population. Eur. J. Clin. Nutr. 2003, 57, 777–785. [Google Scholar] [CrossRef]
- Obeid, R.; Oexle, K.; Rißmann, A.; Pietrzik, K.; Koletzko, B. Folate status and health: Challenges and opportunities. J. Perinat. Med. 2016, 44, 261–268. [Google Scholar] [CrossRef]
- Tabacchi, G.; Wijnhoven, T.M.; Branca, F.; Román-Vinas, B.; Ribas-Barba, L.; Ngo, J.; García-Álvarez, A.; Serra-Majem, L. How is the adequacy of micronutrient intake assessed across Europe? A systematic literature review. Br. J. Nutr. 2009, 101, S29–S36. [Google Scholar] [CrossRef] [PubMed]
- Aranceta-Bartrina, J.; Partearroyo, T.; López-Sobaler, A.M.; Ortega, R.M.; Varela-Moreiras, G.; Serra-Majem, L.; Pérez-Rodrigo, C. Updating the food-based dietary guidelines for the Spanish population: The Spanish society of community nutrition (SENC) proposal. Nutrients 2019, 11, 2675. [Google Scholar] [CrossRef][Green Version]
- Jiang, X.; West, A.A.; Caudill, M.A. Maternal choline supplementation: A nutritional approach for improving offspring health? Trends Endocrinol. Metab. 2014, 25, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R.; Howe, J.; Zeisel, S.H.; Mar, M.-H.; Holden, J.M. Betaine Concentration of Common Foods in the US; USDA: Washington, DC, USA, 2004. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/IFT2004_Betaine.pdf (accessed on 1 July 2021).
- Fundación Española de la Nutriciòn. Informe sobre Legumbres, Nutriciòn y Salud. Available online: https://www.fen.org.es/storage/app/media/imgPublicaciones/informe-legumbres-nutricion-y-saludvw.pdf (accessed on 1 July 2021).
- Sharma, S.; Sheehy, T.; Kolonel, L.N. Contribution of meat to vitamin B12, iron and zinc intakes in five ethnic groups in the USA: Implications for developing food-based dietary guidelines. J. Hum. Nutr. Diet. 2013, 26, 156–168. [Google Scholar] [CrossRef][Green Version]
- Carrera, P.M.; Gao, X.; Tucker, K.L. A study of dietary patterns in the Mexican-American population and their association with obesity. J. Am. Diet. Assoc. 2007, 107, 1735–1742. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Talegawkar, S.A.; Johnson, E.J.; Carithers, T.C.; Taylor, H.A., Jr.; Bogle, M.L.; Tucker, K.L. Serum carotenoid and tocopherol concentrations vary by dietary pattern among African Americans. J. Am. Diet. Assoc. 2008, 108, 2013–2020. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Varela-Moreiras, G.; Ruiz, E.; Valero, T.; Avila, J.M.; del Pozo, S. The Spanish diet: An update. Nutr. Hosp. 2013, 28, 13–20. [Google Scholar] [CrossRef] [PubMed]
Total n = 641 | % | Younger Women n = 251 | % | Older Women n = 390 | % | ||
---|---|---|---|---|---|---|---|
Education Level | Primary or less | 122 | 19.0 | 43 | 17.1 | 79 | 20.3 |
Secondary | 329 | 51.3 | 130 | 51.8 | 199 | 51.0 | |
Tertiary or University | 190 | 29.6 | 78 | 31.1 | 112 | 28.7 | |
Habitat size | Rural | 221 | 34.5 | 86 | 34.3 | 135 | 34.6 |
Semi-urban | 218 | 34.0 | 91 | 36.3 | 127 | 32.6 | |
Urban | 202 | 31.5 | 74 | 29.5 | 128 | 32.8 | |
Geographical distribution | Northeast | 75 | 11.7 | 25 | 10.0 | 50 | 12.8 |
Levante (East) | 102 | 15.9 | 40 | 15.9 | 62 | 15.9 | |
South | 140 | 21.8 | 56 | 22.3 | 84 | 21.5 | |
Central | 50 | 7.8 | 25 | 10.0 | 25 | 6.4 | |
Northwest | 55 | 8.6 | 21 | 8.4 | 34 | 8.7 | |
North central | 67 | 10.5 | 33 | 13.1 | 34 | 8.7 | |
Canary Islands | 35 | 5.5 | 14 | 5.6 | 21 | 5.4 | |
Madrid Metropolitan Area | 77 | 12.0 | 28 | 11.2 | 49 | 12.6 | |
Barcelona Metropolitan Area | 40 | 6.2 | 9 | 3.6 | 31 | 7.9 |
Spain | Europe | USA | |
---|---|---|---|
AI for choline (mg/d) | - | 400 | 425 |
RDI for vitamin B6 (mg/d) | 1.6 | 1.6 | 1.3 |
RDI for folic acid (µg/d) | 400 | 330 | 400 |
RDI for vitamin B12 (µg/d) | 2 | 4 | 2.4 |
Choline (mg/d) | % Above 80% AI EFSA | % Above 80% AI IOM | |
---|---|---|---|
Total n = 641 | 303.9 (243.2–373.6) | 39.5 | 35.1 |
Younger women n = 251 | 292.4 * (236.4–363.1) | 35.1 | 31.1 |
Older women n = 390 | 311.8 (256.0–378.0) | 42.3 | 37.7 |
Betaine (mg/d) | |
---|---|
Total n = 641 | 122.6 (90.7–159.0) |
Younger women n = 251 | 113.5 *** (86.5–145.1) |
Older women n = 390 | 130.2 (96.4–168.7) |
Vitamin B6 (mg/d) | % Above 80% RDI SPAIN | % Above 80% RDI EFSA | % Above 80% RDI IOM | |
---|---|---|---|---|
Total n = 641 | 1.3 (1.0–1.7) | 52.1 a | 59.3 b | 79.4 c |
Younger women n = 251 | 1.3 (1.0–1.6) | 50.6 a | 57.0 a | 74.1 b |
Older women n = 390 | 1.3 (1.0–1.7) | 53.1 a | 60.8 b | 75.4 c |
Folates (µg/d) | % Above 80% RDI Spain | % Above 80% RDI EFSA | % Above 80% RDI IOM | |
---|---|---|---|---|
Total n = 641 | 140.8 (105.5–186.5) | 2.3 a | 21.4 b | 2.3 a |
Younger women n = 251 | 131.4 * (102.8–181.1) | 1.6 a | 18.7 b | 1.6 a |
Older women n = 390 | 148.3 (108.7–191.0) | 2.8 a | 23.1 b | 2.8 a |
Vitamin B12 (µg/d) | % Above 80% RDI Spain | % Above 80% RDI EFSA | % Above 80% RDI IOM | |
---|---|---|---|---|
Total n = 641 | 3.8 (2.5–5.3) | 91.0 a | 62.2 b | 86.1 c |
Younger women n = 251 | 3.7 (2.4–5.4) | 90.4 a | 59.8 b | 84.9 a |
Older women n = 390 | 4.0 (2.6–5.2) | 91.3 a | 63.8 b | 86.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redruello-Requejo, M.; Carretero-Krug, A.; Rodríguez-Alonso, P.; Samaniego-Vaesken, M.L.; Partearroyo, T.; Varela-Moreiras, G. Dietary Intake Adequacy and Food Sources of Nutrients Involved in the Methionine-Methylation Cycle in Women of Childbearing Age from the ANIBES Spanish Population. Nutrients 2021, 13, 2958. https://doi.org/10.3390/nu13092958
Redruello-Requejo M, Carretero-Krug A, Rodríguez-Alonso P, Samaniego-Vaesken ML, Partearroyo T, Varela-Moreiras G. Dietary Intake Adequacy and Food Sources of Nutrients Involved in the Methionine-Methylation Cycle in Women of Childbearing Age from the ANIBES Spanish Population. Nutrients. 2021; 13(9):2958. https://doi.org/10.3390/nu13092958
Chicago/Turabian StyleRedruello-Requejo, Marina, Alejandra Carretero-Krug, Paula Rodríguez-Alonso, María Lourdes Samaniego-Vaesken, Teresa Partearroyo, and Gregorio Varela-Moreiras. 2021. "Dietary Intake Adequacy and Food Sources of Nutrients Involved in the Methionine-Methylation Cycle in Women of Childbearing Age from the ANIBES Spanish Population" Nutrients 13, no. 9: 2958. https://doi.org/10.3390/nu13092958