Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Creativity
2.2.2. Memory
2.2.3. Concentration and Selective Attention
2.2.4. Cardiorespiratory Fitness
2.2.5. Mediterranean Diet Adherence
2.2.6. Levels of Physical Activity
2.2.7. Screen Time
2.2.8. Sleep Duration
2.2.9. Anthropometric Assessment
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Lilly, F.R. Creativity and Cognitive Development in Adolescence. Encycl. Child Adolesc. Dev. 2020, 2019, 1–10. [Google Scholar] [CrossRef]
- Zhan, Z.; Ai, J.; Ren, F.; Li, L.; Chu, C.-H.; Chang, Y.-K. Cardiorespiratory Fitness, Age, and Multiple Aspects of Executive Function among Preadolescent Children. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Demetriou, A.; Kazi, S.; Makris, N.; Spanoudis, G. Cognitive ability, cognitive self-awareness, and school performance: From childhood to adolescence. Intelligence 2020, 79, 101432. [Google Scholar] [CrossRef]
- Montoya, M.F.; Susperreguy, M.I.; Dinarte, L.; Morrison, F.J.; San Martin, E.; Rojas-Barahona, C.A.; Förster, C.E. Executive function in Chilean preschool children: Do short-term memory, working memory, and response inhibition contribute differentially to early academic skills? Early Child. Res. Q. 2019, 46, 187–200. [Google Scholar] [CrossRef]
- Meijer, A.; Königs, M.; de Bruijn, A.G.; Visscher, C.; Bosker, R.J.; Hartman, E.; Oosterlaan, J. Cardiovascular fitness and executive functioning in primary school-aged children. Dev. Sci. 2021, 24, e13019. [Google Scholar] [CrossRef]
- Gajda, A.; Karwowski, M.; Beghetto, R.A. Creativity and academic achievement: A meta-analysis. J. Educ. Psychol. 2017, 109, 269–299. [Google Scholar] [CrossRef]
- Konstantinidou, E.; Gregoriadis, A.; Grammatikopoulos, V.; Michalopoulou, M. Primary physical education perspective on creativity: The nature of creativity and creativity fostering classroom environment. Early Child Dev. Care 2013, 184, 766–782. [Google Scholar] [CrossRef]
- Etnier, J.L.; Sprick, P.M.; Labban, J.D.; Shih, C.-H.; Glass, S.M.; Vance, J.C. Effects of an aerobic fitness test on short- and long-term memory in elementary-aged children. J. Sports Sci. 2020, 38, 2264–2272. [Google Scholar] [CrossRef]
- Esteban-Cornejo, I.; on behalf of the HELENA Study group; Cadenas-Sanchez, C.; Vanhelst, J.; Michels, N.; Lambrinou, C.-P.; González-Gross, M.; Widhalm, K.; Kersting, M.; De La O Puerta, A.; et al. Attention capacity in European adolescents: Role of different health-related factors. The HELENA study. Eur. J. Nucl. Med. Mol. Imaging 2017, 176, 1433–1437. [Google Scholar] [CrossRef]
- Latorre Roman, P.A.; Pinillos, F.G.; Pantoja Vallejo, A.; Berrios Aguayo, B. Creativity and physical fitness in primary school-aged children. Pediatr. Int. 2017, 59, 1194–1199. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Ruiz-Hermosa, A.; Mota, J.; Díez-Fernández, A.; Martínez-Vizcaíno, V.; Redondo-Tébar, A.; Sánchez-López, M. Relationship between weight status and cognition in children: A mediation analysis of physical fitness components. J. Sports Sci. 2019, 38, 13–20. [Google Scholar] [CrossRef]
- Aadland, K.N.; Moe, V.F.; Aadland, E.; Anderssen, S.A.; Resaland, G.K.; Ommundsen, Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Act. 2017, 12, 10–18. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Migueles, J.H.; Rodriguez-Ayllon, M.; Molina-García, P.; Hillman, C.H.; Catena, A.; Pontifex, M.B.; Ortega, F.B. Fitness, physical activity, working memory, and neuroelectric activity in children with overweight/obesity. Scand. J. Med. Sci. Sports 2019, 29, 1352–1363. [Google Scholar] [CrossRef] [PubMed]
- Reigal, R.E.; Moral-Campillo, L.; De Mier, R.J.-R.; Morillo-Baro, J.P.; Morales-Sánchez, V.; Pastrana, J.L.; Hernández-Mendo, A. Physical Fitness Level Is Related to Attention and Concentration in Adolescents. Front. Psychol. 2020, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ariza, A.; Grao-Cruces, A.; de Loureiro, N.E.M.; Martinez-Lopez, E.J. Influence of physical fitness on cognitive and academic performance in adolescents: A systematic review from 2005–2015. Int. Rev. Sport Exerc. Psychol. 2017, 10, 108–133. [Google Scholar] [CrossRef]
- Dupuy, O.; Gauthier, C.; Fraser, S.A.; Desjardins-Crèpeau, L.; Desjardins, M.; Mekary, S.; Lesage, F.; Hoge, R.D.; Pouliot, P.; Bherer, L. Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front. Hum. Neurosci. 2015, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Bolduc, V.; Thorin-Trescases, N.; Thorin, E. Endothelium-dependent control of cerebrovascular functions through age: Exercise for healthy cerebrovascular aging. Am. J. Physiol. Circ. Physiol. 2013, 305, H620–H633. [Google Scholar] [CrossRef]
- Fortune, J.M.; Kelly, Á.M.; Robertson, I.H.; Hussey, J. An investigation into the relationship between cardiorespiratory fitness, cognition and BDNF in young healthy males. Neurosci. Lett. 2019, 704, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Floody, P.; Guzmán-Guzmán, I.P.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Zulic-Agramunt, C.; Cofré-Lizama, A. Depression is associated with lower levels of physical activity, body image dissatisfaction, and obesity in Chilean preadolescents. Psychol. Health Med. 2021, 26, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Jirout, J.; LoCasale-Crouch, J.; Turnbull, K.; Gu, Y.; Cubides, M.; Garzione, S.; Evans, T.M.; Weltman, A.L.; Kranz, S. How Lifestyle Factors Affect Cognitive and Executive Function and the Ability to Learn in Children. Nutrients 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Sim, S.; Park, B.; Kong, I.G.; Kim, J.-H.; Choi, H.G. Dietary Habits Are Associated With School Performance in Adolescents. Medicine 2016, 95, e3096. [Google Scholar] [CrossRef]
- Rampersaud, G.C.; Pereira, M.A.; Girard, B.L.; Adams, J.; Metzl, J.D. Breakfast Habits, Nutritional Status, Body Weight, and Academic Performance in Children and Adolescents. J. Am. Diet. Assoc. 2005, 105, 743–760. [Google Scholar] [CrossRef]
- Henriksson, P.; Cuenca-García, M.; Labayen, I.; Esteban-Cornejo, I.; Henriksson, H.; Kersting, M.; Vanhelst, J.; Widhalm, K.; Gottrand, F.; Moreno, L.A.; et al. Diet quality and attention capacity in European adolescents: The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Br. J. Nutr. 2017, 117, 1587–1595. [Google Scholar] [CrossRef] [Green Version]
- Agencia de la Calidad de la Educación. Informe de Resultados Estudio Nacional de Educación Física 8 año Básico; Agencia de la Calidad de la Educación: Santiago, Chile, 2018. [Google Scholar]
- Bambs, C.; Bravo-Sagua, R.; Margozzini, P.; Lavandero, S. Science and Health Policies to Tackle Chronic Diseases in Chile. Trends Endocrinol. Metab. 2020, 31, 67–70. [Google Scholar] [CrossRef]
- Delgado-Floody, P.; Carter-Thuillier, B.; Guzmán-Guzmán, I.P.; Latorrre-Román, P.; Caamaño-Navarrete, F. Low indicators of personal and social development in Chilean schools are associated with unimproved academic performance: A national study. Int. J. Educ. Res. 2020, 104, 101651. [Google Scholar] [CrossRef]
- Berná, J.C.; Gras, R.M.L. El genio en una botella. El test CREA, las preguntas y la creatividad. Introducción al monográfico “El test CREA, inteligencia creativa”. Anales de Psicología 2010, 26, 197–205. [Google Scholar]
- Gras, R.M.L.; Bordoy, M.; Ballesta, G.J.; Berna, J.C. Creativity, intelectual abilities and response styles: Implications for academic performance in the secondary school. Ann. Psychol. 2010, 26, 212–219. [Google Scholar]
- Clapham, M.M.; King, W.R. Psychometric Characteristics of the CREA in an English Speaking Population. Ann. Psychol. 2010, 26, 206–211. [Google Scholar]
- Corbalán, F.J.; Martínez, F.; Donolo, D.; Alonso, C.; Tejerina, M.; Limiñana, R. CREA. Inteligencia Creativa; TEA ediciones; Una medida cognitiva de la creatividad: Madrid, Spain, 2003. [Google Scholar]
- Manna, S.; Pal, A.; Dhara, P.C. Effect of Socio-Economic Status on Learning Ability of Bengali (Indian) Primary School Children. Adv. Appl. Physiol. 2016, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Vantieghem, S.; Bautmans, I.; De Guchtenaere, A.; Tanghe, A.; Provyn, S. Improved cognitive functioning in obese adolescents after a 30-week inpatient weight loss program. Pediatr. Res. 2018, 84, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, C.L.; D’Elia, L.F.; Dellinger, A.M.; Becker, J.T.; Selnes, O.A.; Wesch, J.E.; Chen, B.B.; Satz, P.; Van Gorp, W.; Miller, E.N. Alternate forms of the Auditory-Verbal Learning Test: Issues of test comparability, longitudinal reliability, and moderating demographic variables. Arch. Clin. Psychol. 1995, 10, 133–145. [Google Scholar]
- Brickenkamp, R.; Zillmer, E. The D2 Test of Attention, 1st ed.; Hogrefe & Huber: Seattle, WA, USA, 1998. [Google Scholar]
- García-Hermoso, A.; Hormazábal-Aguayo, I.; Fernández-Vergara, O.; González-Calderón, N.; Russell-Guzmán, J.; Vicencio-Rojas, F.; Chacana-Cañas, C.; Ramírez-Vélez, R. A before-school physical activity intervention to improve cognitive parameters in children: The Active-Start study. Scand. J. Med. Sci. Sports 2019, 30, 108–116. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Manchola-González, J.; Bagur-Calafat, C.; Girabent-Farrés, M. Fiabilidad de la versión española del cuestionario de actividad física PAQ-C. Revista Internacional de Medicina y Ciencias de la Actividad Física del Deporte 2017, 17, 139–152. [Google Scholar]
- Serra Majem, L.; Ribas Barba, L.; Aranceta, J.; Pérez Rodrigo, C.; Saavedra Santana, P.; Peña Quintana, L. Obesidad infantil y juvenil en España. Resultados del Estudio enKid (1998−2000). Med. Clínica 2003, 121, 725–732. [Google Scholar] [CrossRef]
- Chervin, R.D.; Hedger, K.; E Dillon, J.; Pituch, K.J. Pediatric sleep questionnaire (PSQ): Validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 2000, 1, 21–32. [Google Scholar] [CrossRef]
- Vila, M.T.; Torres, A.M.; Soto, B.B. Versión española del Pediatric Sleep Questionnaire. Un instrumento útil en la investigación de los trastornos del sueño en la infancia. Análisis de su fiabilidad. Anales de Pediatría 2007, 66, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Overweight and Obesity; Defining Overweight and Obesity; Centers for Disease Control and Prevention: Druid Hills, GA, USA, 2010.
- Schroder, H.; Ribas, L.; Koebnick, C.; Funtikova, A.; Gomez, S.F.; Fíto, M.; Perez-Rodrigo, C.; Serra-Majem, L. Prevalence of Abdominal Obesity in Spanish Children and Adolescents. Do We Need Waist Circumference Measurements in Pediatric Practice? PLoS ONE 2014, 9, e87549. [Google Scholar] [CrossRef] [PubMed]
- Piya-Amornphan, N.; Santiworakul, A.; Cetthakrikul, S.; Srirug, P. Physical activity and creativity of children and youths. BMC Pediatr. 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Florence, M.D.; Asbridge, M.; Veugelers, P.J. Diet Quality and Academic Performance. J. Sch. Health 2008, 78, 209–215. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Ruiz-Ariza, A.; Loureiro, V.; López, E.J.M. Capacidades físicas y su relación con la memoria, cálculo matemático, razonamiento lingüístico y creatividad en adolescentes. Retos Nuevas Tendencias en Educación Física Deporte y Recreación 2020, 473–479. [Google Scholar]
- Gajda, A. The relationship between school achievement and creativity at different educational stages. Think. Ski. Creat. 2016, 19, 246–259. [Google Scholar] [CrossRef]
- Rodríguez-Negro, J.; Pesola, J.A.; Yanci, J. Effects and retention of different physical exercise programs on children’s cognitive and motor development. J. Educ. Res. 2020, 113, 431–437. [Google Scholar] [CrossRef]
- Hassevoort, K.M.; Lin, A.S.; Khan, N.A.; Hillman, C.H.; Cohen, N.J. Added sugar and dietary fiber consumption are associated with creativity in preadolescent children. Nutr. Neurosci. 2018, 23, 791–802. [Google Scholar] [CrossRef]
- Delgado-Floody, P.; Caamaño-Navarrete, F.; Guzmán-Guzmán, I.P.; Jerez-Mayorga, D.; Martínez-Salazar, C.; Álvarez, C. Food Habits and Screen Time Play a Major Role in the Low Health Related to Quality of Life of Ethnic Ascendant Schoolchildren. Nutrients 2020, 12, 3489. [Google Scholar] [CrossRef]
- Chaddock, L.; Hillman, C.H.; Buck, S.M.; Cohen, N.J. Aerobic Fitness and Executive Control of Relational Memory in Preadolescent Children. Med. Sci. Sports Exerc. 2011, 43, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visier-Alfonso, M.E.; Sánchez-López, M.; Martínez-Vizcaíno, V.; Jiménez-López, E.; Redondo-Tébar, A.; Nieto-López, M. Executive functions mediate the relationship between cardiorespiratory fitness and academic achievement in Spanish schoolchildren aged 8 to 11 years. PLoS ONE 2020, 15, e0231246. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.; Voss, M.W.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H.; et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Asperholm, M.; Högman, N.; Rafi, J.; Herlitz, A. What did you do yesterday? A meta-analysis of sex differences in episodic memory. Psychol. Bull. 2019, 145, 785–821. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Migueles, J.H.; Molina-Garcia, P.; Rodriguez-Ayllon, M.; Henriksson, P.; Pontifex, M.B.; Catena, A.; Ortega, F.B. Physical Fitness, Physical Activity, and the Executive Function in Children with Overweight and Obesity. J. Pediatr. 2019, 208, 50–56.e1. [Google Scholar] [CrossRef]
- Yu, Z.B.; Han, S.P.; Cao, X.G.; Guo, X.R. Intelligence in relation to obesity: A systematic review and meta-analysis. Obes. Rev. 2010, 11, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Moreno, B.; González-Santos, L.; Concha, L.; Barquera, S.; Barrios, F. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: A magnetic resonance imaging study in M exican children. Pediatr. Obes. 2015, 10, 196–204. [Google Scholar] [CrossRef]
- Cserjési, R.; Molnár, D.; Luminet, O.; Lénárd, L. Is there any relationship between obesity and mental flexibility in children? Appetite 2007, 49, 675–678. [Google Scholar] [CrossRef]
- Pearce, A.L.; Leonhardt, C.A.; Vaidya, C.J. Executive and Reward-Related Function in Pediatric Obesity: A Meta-Analysis. Child. Obes. 2018, 14, 265–279. [Google Scholar] [CrossRef]
- Bauer, L.O.; Manning, K.J. Challenges in the Detection of Working Memory and Attention Decrements among Overweight Adolescent Girls. Neuropsychobiology 2016, 73, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Wirt, T.; Schreiber, A.; Kesztyüs, D.; Steinacker, J.M. Early Life Cognitive Abilities and Body Weight: Cross-Sectional Study of the Association of Inhibitory Control, Cognitive Flexibility, and Sustained Attention with BMI Percentiles in Primary School Children. J. Obes. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mond, J.M.; Stich, H.; Hay, P.J.; Kraemer, A.; Baune, B.T. Associations between obesity and developmental functioning in pre-school children: A population-based study. Int. J. Obes. 2007, 31, 1068–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Floody, P.; Alvarez, C.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Latorre-Román, P. Influence of Mediterranean diet adherence, physical activity patterns, and weight status on cardiovascular response to cardiorespiratory fitness test in Chilean school children. Nutrients 2020, 71, 110621. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lobato, R.; Reigal, R.; Hernández-Mendo, A. Relationships between physical practice, physical condition, and attention in a sample of adolescents. Sport Psychol. 2016, 25, 179–186. [Google Scholar]
- Reigal, R.E.; Moral-Campillo, L.; Morillo-Baro, J.P.; De Mier, R.J.-R.; Hernández-Mendo, A.; Morales-Sánchez, V. Physical Exercise, Fitness, Cognitive Functioning, and Psychosocial Variables in an Adolescent Sample. Int. J. Environ. Res. Public Health 2020, 17, 1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontifex, M.B.; Raine, L.B.; Johnson, C.R.; Chaddock, L.; Voss, M.W.; Cohen, N.J.; Kramer, A.F.; Hillman, C.H. Cardiorespiratory Fitness and the Flexible Modulation of Cognitive Control in Preadolescent Children. J. Cogn. Neurosci. 2011, 23, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
Total (248) | Girls (111) | Boys (137) | p-Value | Cohen’s d | |
---|---|---|---|---|---|
Age (y) | 11.70 (11.6,11.8) | 11.58 (11.4, 11.8) | 11.80 (11.6,12.0) | p = 0.132 | 0.193 |
Anthropometric variables | |||||
BMI | 22.06 (21.6, 22.5) | 22.14 (21.5, 22.8) | 21.99 (21.3, 22.7) | p = 0.746 | −0.041 |
Obesity prevalence | |||||
Normal weight, (n = /%) | 109 (44) | 46 (41.4) | 63 (46) | 0.383 | |
Overweight, (n = /%) | 76 (30.6) | 39 (35.1) | 37 (27) | ||
Obesity, (n = /%) | 63 (25.4) | 26 (23.4) | 37 (27) | ||
WC (cm) | 77.57 (76.3, 78.8) | 76.70 (75.0, 78.4) | 78.25 (76.4, 80.1) | p = 0.235 | −0.015 |
Lifestyle/fitness | |||||
Physical activity week (h) | 2.39 (2.2, 2.6) | 2.16 (1.9, 2.4) | 2.58 (2.3, 2.8) | p = 0.014 | 0.154 |
Sleep duration (h/day) | 8.48 (8.4, 8.6) | 8.48 (8.3, 8.6) | 8.48 (8.3, 8.6) | p = 0.977 | 0.003 |
ST (h/day) | 2.90 (2.7, 3.1) | 2.99 (2.7, 3.2) | 2.82 (2.6, 3.0) | p = 0.337 | −0.124 |
MD Adherence (score) | 5.96 (5.63, 6.28) | 5.85 (5.43, 6.37) | 6.05 (5.63, 6.47) | p = 0.561 | 0.078 |
O2max (mL/kg/min) | 41.49 (41.0, 42.0) | 40.62 (40.0, 41.3) | 42.18 (41.5, 42.9) | p = 0.001 | 0.426 |
Cognitive Measures | |||||
Creativity (score) | 10.64 (10.2, 11.1) | 10.54 (9.8, 11.2) | 10.72 (10.1, 11.3) | p = 0.699 | 0.049 |
Memory (score) | 8.45 (8.2, 8.7) | 8.96 (8.5, 9.4) | 8.02 (7.6, 8.4) | p = 0.001 | −0.420 |
Concentration (score) | 130.98 (126.7, 135.3) | 127.36 (120.6, 134.1) | 133.88 (128.3, 139.4) | p = 0.137 | 0.191 |
Selective Attention (score) | 321.69 (311.4, 332.0) | 314.91 (299.2, 330.6) | 327.13 (313.4, 340.8) | p = 0.246 | 0.149 |
High-CRF (164) | Low-CRF (69) | p-Value | Cohen’s d | |
---|---|---|---|---|
Creativity (score) | 11.15 (10.6, 11.7) | 9.65 (8.8, 10.5) | NS | 0.425 |
Memory (score) | 8.88 (8.5, 9.2) | 7.39 (6.9, 7.9) | p < 0.05 | 0.673 |
Concentration (score) | 133.22 (127.7, 138.7) | 126.43 (119.3, 133.6) | NS | 0.199 |
Selective Attention (score) | 324.09 (311.2, 337.0) | 316.90 (299.9, 333.9) | NS | 0.106 |
Normal (109) A | Overweight (65) B | Obesity (74) C | p-Value | Post-Hoc | |
---|---|---|---|---|---|
Creativity (score) | 11.24 (10.6, 11.9) | 11.19 (10.4, 12.0) | 8.93 (8.1, 9.8) | p < 0.001 | A > C |
Memory (score) | 9.33 (9.0, 9.7) | 7.51(7.0, 8.0) | 8.05 (7.4, 8.7) | p < 0.001 | A > B,A > C |
Concentration (score) | 134.03 (127.9, 140.2) | 132.72 (124.0, 141.4) | 123.63 (115.5, 131.8) | 0.138 | |
Selective Attention (score) | 335.63 (320.6, 350.7) | 307.69 (288.4, 327.0) | 314.22 (293.5, 335.0) | 0.053 | |
Screen time (h/day) | 2.9 (2.69, 3.22) | 2.5 (2.23, 2.78) | 3.2 (2.92, 3.58) | p < 0.05 | C > B |
MD Adherence (score) | 6.38 (5.93, 6.82) | 6.36 (5.72, 7.0) | 4.77 (4.17, 5.37) | p < 0.001 | C < A,C < B |
O2max (mL/kg/min) | 42.28 (41.48, 43.09) | 41.63 (40.86, 42.40) | 39.90 (39.11, 40.69) | p < 0.001 | C < A,C < B |
Creativity | Memory | |||||
---|---|---|---|---|---|---|
Outcomes | Beta | p-Value | Standardised Beta (SE) | Beta | p-Value | Standardised Beta (SE) |
(95% CI) | (95% CI) | |||||
Age (y) | 0.471 (0.02; 0.92) | p = 0.039 | 0.14 (0.23) | 0.345 (0.05; 0.64) | p = 0.023 | 0.16 (0.15) |
Anthropometric variables | ||||||
BMI (kg/m2) | −0.022 (−0.27; 0.22) | p = 0.859 | −0.02 (0.12) | −0.167 (−0.33; −0.01) | p < 0.05 | −0.27 (0.08) |
WC (cm) | 0.000 (−0.09; 0.09) | p = 0.994 | 0.00 (0.05) | 0.004 (−0.06; 0.06) | p = 0.909 | 0.02 (0.03) |
Lifestyle | ||||||
PA/week (h) | 0.347 (−0.04; 0.74) | p = 0.994 | 0.13 (0.20) | 0.041 (−0.22; 0.30) | p = 0.753 | 0.02 (0.13) |
PAC score | −0.025 (−0.10; 0.05) | p = 0.519 | −0.05 (0.04) | 0.005 (−0.05; 0.05) | p = 0.850 | 0.01 (0.03) |
Sleep duration (h/day) | 0.410 (−0.01; 0.94) | p = 0.132 | 0.10 (0.27) | −0.039 (−0.40; 0.32) | p = 0.832 | −0.01 (0.18) |
Screen time (h/day) | −0.293 (−0.66; 0.07) | p = 0.116 | −0.11 (0.19) | 0.020 (−0.22; 0.26) | p = 0.874 | 0.01 (0.12) |
MD Adherence (score) | 0.206 (0.01; 0.74) | p < 0.05 | 0.015 (0.99) | −0.155 (−0.28; −0.03) | p < 0.05 | −0.17 (0.07) |
Physical fitness | ||||||
O2max (mL/kg/min) | 0.209 (0.02; 0.40) | p < 0.05 | 0.22 (0.10) | −0.001 (−0.13; 0.12) | p = 0.988 | 0.00 (0.06) |
High CRF (Ref. Low) | 0.197 (−1.39; 1.79) | p = 0.807 | 0.03 (0.81) | 1.076 (0.02; 2.13) | p < 0.05 | 0.21 (0.53) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caamaño-Navarrete, F.; Latorre-Román, P.Á.; Párraga-Montilla, J.A.; Álvarez, C.; Delgado-Floody, P. Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren. Nutrients 2021, 13, 1799. https://doi.org/10.3390/nu13061799
Caamaño-Navarrete F, Latorre-Román PÁ, Párraga-Montilla JA, Álvarez C, Delgado-Floody P. Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren. Nutrients. 2021; 13(6):1799. https://doi.org/10.3390/nu13061799
Chicago/Turabian StyleCaamaño-Navarrete, Felipe, Pedro Á. Latorre-Román, Juan A. Párraga-Montilla, Cristian Álvarez, and Pedro Delgado-Floody. 2021. "Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren" Nutrients 13, no. 6: 1799. https://doi.org/10.3390/nu13061799
APA StyleCaamaño-Navarrete, F., Latorre-Román, P. Á., Párraga-Montilla, J. A., Álvarez, C., & Delgado-Floody, P. (2021). Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren. Nutrients, 13(6), 1799. https://doi.org/10.3390/nu13061799