Omega-3 Fatty Acids and Their Role in Pediatric Cancer
Abstract
1. Introduction
2. Definition and Prevalence of Malnutrition in Childhood Cancer
3. Etiology, Pathophysiology, and Considerable Aspects of Nutrition in Children with Cancer
4. General Structural Features and Health Advantages of n-3 PUFAs
5. Role of PUFAs in Pediatric Oncology
6. Role of PUFAs during Chemotherapy
7. N-3 PUFAs in Primary and Secondary Prevention
8. Dosing of N-3 PUFA Supplementation
9. Potential Adverse Effects of n-3 PUFAs
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
ALA | α-linolenic acid |
ALL | Acute Lymphoblastic Leukemia |
AMPK | AMP-activated-protein-kinase |
ASPEN | American Society of Parenteral and Enteral Nutrition |
BMI | Body Mass Index |
CNS | Central Nervous System |
COX | cyclooxygenase |
CRP | C-reactive protein |
CVD | cardiovascular disease |
DEXA | dexamethasone |
DHA | docosahexaenoic acid |
DPA | docosapentaenoic acid |
EGFR | epidermal growth factor receptor |
EPA | eicosapentaenoic acid |
FFA-1/FFA-4 | free fatty-acid receptor 1/free fatty-acid receptor 4 |
HETE | hydroxyeicosatetraenoic acids |
IFN-γ | interferon gamma |
IL-1β | Interleukin-1-Beta |
IL-6 | Interleukin-6 |
LOX | lipoxygenase |
LTX | leukotrienes |
MAPK | mitogen-activated protein kinases |
MTX | methotrexate |
n-3, n-6 | omega-3, omega-6 |
NFkB | nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells |
PG | prostaglandines |
PPAR | peroxisome proliferator-activated receptor |
PUFA | polyunsaturated fatty acids |
RDA | recommended daily allowance |
ROS | reactive oxidative species |
RvD | D-series resolvins |
RvE | E-series resolvins |
REE | resting energy expenditure |
SDA | stearidonic acid |
TLR-4 | Toll-like-receptor 4 |
TNF-α | tumor-necrosis-factor-α |
TRP | transient receptor channel |
TX | thromboxanes |
WHO | World Health Organization |
References
- Revuelta-Iniesta, R.; Wyness, L.; Wilson, D.C. A Systematic Review of N-3 and N-6 Polyunsaturated Saturated Fatty Acid Concentration in Childhood Cancer Patients and Associated Clinical Outcomes. EC Nutr. 2019, 14, 709–722. [Google Scholar]
- Sterescu, A.E.; Rousseau-Harsany, E.; Farrell, C.; Powell, J.; David, M.; Dubois, J. The Potential Efficacy of n-3 Fatty Acids as Anti-angiogenic Agents in Benign Vascular Tumors of Infancy. Med. Hypotheses 2006, 66, 1121–1124. [Google Scholar] [CrossRef]
- Calder, P.C. The Relationship between the Fatty Acid Composition of Immune Cells and Their Function. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, V.C.; Hassing, M.-R.; Lewandowski, A.P. Marine Polyunsaturated Fatty Acids and Cancer Therapy. Br. J. Cancer 2013, 108, 486–492. [Google Scholar] [CrossRef]
- Gu, Z.; Shan, K.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated Fatty Acids and Their Role in Cancer Chemoprevention. Curr. Pharmacol. Rep. 2015, 1, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Ling, T. Oxidation of Polyunsaturated Fatty Acids and its Impact on Food Quality and Human Health. Adv. Food Technol. Nutr. Sci. Open J. 2015, 1, 135–142. [Google Scholar]
- Lange, K.; Nakamura, Y. Are There Serious Adverse Effects of Omega-3 Polyunsaturated Fatty Acid-supplements? J. Food Bioact. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A Review of Recent Evidence in Human Studies of n-3 and n-6 PUFA Intake on Cardiovascular Disease, Cancer, and Depressive Disorders: Does the Ratio Really Matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef]
- Gleissman, H.; Segerström, L.; Hamberg, M.; Ponthan, F.; Lindskog, M.; Johnsen, J.I.; Kogner, P. Omega-3 Fatty Acid Supplementation Delays the Progression of Neuroblastoma in vivo. Int. J. Cancer 2010, 128, 1703–1711. [Google Scholar] [CrossRef]
- Freitas, R.D.; Campos, M.M. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.S.; Ismail, E.A.R.; Farahat, R.K.; El-Hamamsy, M. ω-3 Fatty Acids as an Adjuvant Therapy Ameliorates Methotrexate-induced Hepatotoxicity in Children and Adolescents with Acute Lymphoblastic Leukemia: A Randomized Placebo-controlled Study. Nutrition 2016, 32, 41–47. [Google Scholar] [CrossRef]
- Wang, J.; Luo, T.; Li, S.; Zhao, J. The Powerful Applications of Polyunsaturated Fatty Acids in Improving the Therapeutic Efficacy of Anticancer Drugs. Expert Opin. Drug Deliv. 2011, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Berquin, I.M.; Edwards, I.J.; Chen, Y.Q. Multi-targeted Therapy of Cancer by Omega-3 Fatty Acids. Cancer Lett. 2008, 269, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- Schoeman, J. Nutritional Assessment and Intervention in a Pediatric Oncology Unit. Indian J. Cancer 2015, 52, 186. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.C.; Barr, R.D. The Relevance of Nutrition to Pediatric Oncology: A Cancer Control Perspective. Pediatr. Blood Cancer 2020, 67, e28213. [Google Scholar] [CrossRef]
- Triarico, S.; Rinninella, E.; Cintoni, M.; Capozza, M.A.; Mastrangelo, S.; Mele, M.C.; Ruggiero, A. Impact of Malnutrition on Survival and Infections among Pediatric Patients with Cancer: A Retrospective Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1165–1175. [Google Scholar]
- Lenat, J.; Ladas, E.J. Nutrition during Childhood Cancer Treatment: Current Understanding and a Path for Future Research. Lancet Child Adolesc. Health 2020, 4, 465–475. [Google Scholar]
- Gaynor, E.P.T.; Sullivan, P.B. Nutritional Status and Nutritional Management in Children with Cancer. Arch. Dis. Child. 2015, 100, 1169–1172. [Google Scholar] [CrossRef]
- Selwood, K.; Ward, E.; Gibson, F. Assessment and Management of Nutritional Challenges in Children’s Cancer Care: A Survey of Current Practice in the United Kingdom. Eur. J. Oncol. Nurs. 2010, 14, 439–446. [Google Scholar] [CrossRef]
- Barnés, C.M.; Prox, D.; Christison-Lagay, E.A.; Le, H.D.; Short, S.; Cassiola, F.; Butterfield, C.; Nehra, D.; Kieran, M.; Puder, M.; et al. Inhibition of Neuroblastoma Cell Proliferation with Omega-3 Fatty Acids and Treatment of a Murine Model of Human Neuroblastoma Using a Diet Enriched with Omega-3 Fatty Acids in Combination with Sunitinib. Pediat. Res. 2012, 71, 168–178. [Google Scholar] [CrossRef]
- Robison, L.L.; Bhatia, S. Late-effects among Survivors of Leukaemia and Lymphoma during Childhood and Adolescence. Br. J. Haematol. 2003, 122, 345–359. [Google Scholar] [CrossRef]
- Brinksma, A.; Roodbol, P.F.; Sulkers, E.; Kamps, W.A.; de Bont, E.S.; Boot, A.M.; Burgerhof, J.G.; Tamminga, R.Y.; Tissing, W.J. Changes in Nutritional Status in Childhood Cancer Patients: A Prospective Cohort Study. Clin. Nutr. 2015, 34, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, R.R.; Gerasimidis, K.; Paciarotti, I.; McKenzie, J.M.; Brougham, M.F.; Wilson, D.C. Micronutrient Status Influences Clinical Outcomes of Pediatric Cancer Patients during Treatment: A Prospective Cohort Study. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Iniesta, R.R.; Paciarotti, I.; Brougham, M.F.; McKenzie, J.M.; Wilson, D.C. Effects of Pediatric Cancer and Its Treatment on Nutritional Status: A Systematic Review. Nutr. Rev. 2015, 73, 76–295. [Google Scholar] [CrossRef]
- Ward, E.J.; Henry, L.M.; Friend, A.J.; Wilkins, S.; Phillips, R.S. Nutritional Support in Children and Young People with Cancer Undergoing Chemotherapy. Cochrane Database Syst. Rev. 2015, 8, CD003298. [Google Scholar] [CrossRef] [PubMed]
- Brinksma, A.; Sulkers, E.; Ijpma, I.; Burgerhof, J.G.; Tissing, W.J. Eating and Feeding Problems in Children with Cancer: Prevalence, Related Factors, and Consequences. Clin. Nutr. 2020, 39, 3072–3079. [Google Scholar] [CrossRef]
- Barr, R.D.; Stevens, M.C. The Influence of Nutrition on Clinical Outcomes in Children with Cancer. Pediatr. Blood Cancer 2020, 67, e28117. [Google Scholar] [CrossRef] [PubMed]
- Brinksma, A.; Sanderman, R.; Roodbol, P.F.; Sulkers, E.; Burgerhof, J.G.M.; De Bont, E.S.J.M.; Tissing, W.J.E. Malnutrition is Associated with Worse Health-related Quality of Life in Children with Cancer. Support. Care Cancer 2015, 23, 3043–3052. [Google Scholar] [CrossRef]
- Lange, B.J.; Gerbing, R.B.; Feusner, J.; Skolnik, J.; Sacks, N.; Smith, F.O.; Alonzo, T.A. Mortality in Overweight and Underweight Children with Acute Myeloid Leukemia. JAMA 2005, 293, 203–211. [Google Scholar] [CrossRef]
- Barr, R.D.; Gomez-Almaguer, D.; Jaime-Perez, J.C.; Ruiz-Argüelles, G.J. Importance of Nutrition in the Treatment of Leukemia in Children and Adolescents. Arch. Med. Res. 2016, 47, 585–592. [Google Scholar] [CrossRef]
- Barnea, D.; Raghunathan, N.; Friedman, D.N.; Tonorezos, E.S. Obesity and Metabolic Disease After Childhood Cancer. Oncology 2015, 29, 849–855. [Google Scholar] [PubMed]
- Galati, P.C.; Resende, C.M.M.; Salomao, R.G.; Scridelli, C.A.; Tone, L.G.; Monteiro, J.P. Accurate Determination of Energy Needs in Children and Adolescents with Cancer. Nutr. Cancer 2011, 63, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Gorjao, R.; dos Santos, C.M.M.; Serdan, T.D.A.; Diniz, V.L.S.; Alba-Loureiro, T.C.; Cury-Boaventura, M.F.; Hatanaka, E.; Levada-Pires, A.C.; Sato, F.T.; Pithon-Curi, T.C.; et al. New Insights on the Regulation of Cancer Cachexia by N-3 Polyunsaturated Fatty Acids. Pharmacol. Ther. 2019, 196, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Segatto, M.; Fittipaldi, R.; Pin, F.; Sartori, R.; Ko, K.D.; Zare, H.; Sandri, M.; Sartorelli, V.; Costelli, P.; Caretti, G.; et al. Epigenetic Targeting of Bromodomain Protein BRD4 Counteracts Cancer Cachexia and Prolongs Survival. Nat. Commun. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Bauer, J.; Jürgens, H.; Frühwald, M.C. Important Aspects of Nutrition in Children with Cancer. Adv. Nutr. 2011, 2, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Morland, S.L.; Martins, K.J.; Mazurak, V.C. n-3 Polyunsaturated Fatty Acid Supplementation during Cancer Chemotherapy. J. Nutr. Intermed. Metab. 2016, 5, 107–116. [Google Scholar] [CrossRef]
- Aristizabal, P.; Sherer, M.; Perdomo, B.P.; Castelao, E.; Thornburg, C.D.; Proudfoot, J.; Jacobs, E.; Newfield, R.S.; Zage, P.; Roberts, W.; et al. Sociodemographic and Clinical Characteristics Associated with Vitamin D Status in Newly Diagnosed Pediatric Cancer Patients. Pediatr. Hematol. Oncol. 2020, 37, 314–325. [Google Scholar] [CrossRef]
- Whitehouse, A.; Tisdale, M.J. Downregulation of Ubiquitin-Dependent Proteolysis by Eicosapentaenoic Acid in Acute Starvation. Biochem. Biophys. Res. Commun. 2001, 285, 598–602. [Google Scholar] [CrossRef]
- Eley, H.L.; Russell, S.T.; Tisdale, M.J. Attenuation of Muscle Atrophy in a Murine Model of Cachexia by Inhibition of the dsRNA-dependent Protein Kinase. Br. J. Cancer 2007, 96, 1216–1222. [Google Scholar] [CrossRef]
- Tisdale, M.J. Catabolic Mediators of Cancer Cachexia. Curr. Opin. Support Palliat Care 2008, 2, 256–261. [Google Scholar] [CrossRef] [PubMed]
- White, J.P.; Puppa, M.J.; Gao, S.; Sato, S.; Welle, S.L.; Carson, J.A. Muscle mTORC1 Suppression by IL-6 during Cancer Cachexia: A Role for AMPK. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1042–E1052. [Google Scholar] [CrossRef]
- Fappi, A.; Neves, J.D.C.; Kawasaki, K.A.; Bacelar, L.; Sanches, L.N.; da Silva, F.P.; Larina-Neto, R.; Chadi, R.; Zanoteli, E. Omega-3 Multiple Effects Increasing Glucocorticoid-induced Muscle Atrophy: Autophagic, AMPK and UPS Mechanisms. Physiol. Rep. 2019, 7, e13966. [Google Scholar] [CrossRef] [PubMed]
- Bigornia, S.J.; Harris, W.S.; Falcón, L.M.; Ordovás, J.M.; Lai, C.Q.; Tucker, K.L. The Omega-3 Index is Inversly Associated with Depressive Symptoms among Individuals with Elevated Oxidative Stress Biomarkers. J. Nutr. 2016, 146, 758–766. [Google Scholar] [CrossRef]
- Grossberg, A.J.; Scarlett, J.M.; Marks, D.L. Hypothalamic Mechanisms in Cachexia. Physiol. Behav. 2010, 100, 478–489. [Google Scholar] [CrossRef]
- Lavriv, D.S.; Neves, P.M.; Ravasco, P. Should Omega-3 Fatty Acids Be Used for Adjuvant Treatment of Cancer Cachexia? Clin. Nutr. ESPEN 2018, 25, 18–25. [Google Scholar] [CrossRef]
- Horvath, A.; Erzsébet, P.Z. Chemotherapy Induced Liver Toxicity in Children with Malignant Diseases. Bull. Med. Sci. 2018, 91, 37–41. [Google Scholar]
- Skender, B.; Vaculova, A.H.; Hofmanova, J. Docosahexaenoic Fatty Acid (DHA) in the Regulation of Colon Cell Growth and Cell Death: A Review. Biomed. Pap. 2012, 156, 186–199. [Google Scholar] [CrossRef]
- Wu, Y.P.; Franciosi, J.P.; Rothenberg, M.E.; Hommel, K.A. Behavioral Feeding Problems and Parenting Stress in Eosinophilic Gastrointestinal Disorders in Children. Pediat. Allergy Immunol. 2012, 23, 730–735. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Bilotto, S.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Devi, K.P.; Loizzo, M.R.; Tundis, R. Omega-3 Polyunsaturated Fatty Acids and Cancer: Lessons Learned from Clinical Trials. Cancer Metastasis Rev. 2015, 34, 359–380. [Google Scholar] [CrossRef]
- Deckelbaum, R.J.; Worgall, T.S.; Seo, T. n−3 Fatty Acids and Gene Expression. Am. J. Clin. Nutr. 2006, 83, 1520–1525. [Google Scholar] [CrossRef]
- van Dijk, S.J.; Zhou, J.; Peters, T.J.; Buckley, M.; Sutcliffe, B.; Oytam, Y.; Gibson, R.A.; McPhee, A.; Yelland, L.N.; Muhlhausler, B.S.; et al. Effect of Prenatal DHA Supplementation on the Infant Epigenome: Results from a Randomized Controlled Trial. Clin. Epigene. 2016, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.L.; Mumford, S.L.; Guan, W.; Zeng, X.; Kim, K.; Radoc, J.G.; Trinh, M.-H.; Flannagan, K.; Schisterman, E.F.; Yeung, E. Maternal Fatty Acid Concentrations and Newborn DNA Methylation. Am. J. Clin. Nutr. 2020, 111, 613–621. [Google Scholar] [CrossRef]
- Oliviera, V.; Marinho, R.; Vitorino, D.; Santos, G.A.; Moraes, J.C.; Dragano, N.; Velloso, L.A.; Pauli, J.R.; Ropelle, E.R.; Cintra, D.E.; et al. Diets Containing Alpha-linolenic (n-3) or Oleic (n-9) Fatty Acids Reduces Obese Mice from Insuline Resistance. Endocrinology 2015, 156, 4033–4046. [Google Scholar] [CrossRef] [PubMed]
- Bayram, I.; Erbey, F.; Celik, N.; Nelson, J.L.; Tanyeli, A. The Use of a Protein and Energy Dense Eicosapentaenoic Acid Containing Supplement for Malignancy-related Weight Loss in Children. Pediatr. Blood Cancer 2009, 52, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Gleissman, H.; Yang, R.; Martinod, K.; Lindskog, M.; Serhan, C.N.; Johnsen, J.I.; Kogner, P. Docosahexaenoic Acid Metabolome in Neural Tumors: Identification of Cytotoxic Intermediates. FASEB J. 2009, 24, 906–915. [Google Scholar] [CrossRef]
- D’Angelo, S.; Mottia, M.L.; Meccariello, R. n-3 and n-6 Polyunsaturated Fatty Acids. Obesity Cancer Nutr. 2020, 12, 2751. [Google Scholar]
- Kobayakawa, M.; Yamawaki, S.; Hamazaki, K.; Akechi, T.; Inagaki, M.; Uchitomi, Y. Levels of Omega-3 Fatty Acid in Serum Phospholipids and Depression in Patients with Lung Cancer. Br. J. Cancer 2005, 93, 1329–1333. [Google Scholar] [CrossRef]
- Müller, C.P.; Reichel, M.; Mühle, C.; Rhein, C.; Gulbins, E.; Kornhuber, J. Brain Membrane Lipids in Major Depression and Anxiety Disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 224–228. [Google Scholar] [CrossRef]
- Stankovic, J.S.K.; Selakovic, D.; Mihailovic, V.; Rosic, G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics–A Review. Int. J. Mol. Sci. 2020, 21, 7753. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Nakamoto, K.; Nishinaka, T.; Ambo, A.; Mankura, M.; Kasuya, F.; Tokuyama, S. Possible Involvement of Beta-endorphin in Docosahexaenoic Acid-induced Antinociception. Eur. J. Pharmacol. 2011, 666, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Mut-Salud, N.; Alvarez, P.; Garrido, J.M.; Carrasco, E.; Aránega, A.; Rodríguez-Serrano, F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Oxid. Med. Cell. Longev. 2016, 2016, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.; Dong, L.; Chang, P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv. Nutr. 2019, 10, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Yaqoob, P. Omega-3 Polyunsaturated Fatty Acids and Human Health Outcomes. BioFactors 2009, 35, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Yasueda, A.; Urushima, H.; Ito, T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment. Oxid. Med. Cell Longev. 2016, 15, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Salvador, C.; Entenmann, A.; Niederwanger, A.; Crazzolara, R.; Kropshofer, G. Combination Therapy of Omega-3 Fatty Acids and Acipimox for Children with Hypertriglyceridemia and Acute Lymphoblastic Leukemia. J. Clin. Lipidol. 2018, 12, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, S.; Chen, C.; Xie, B.; Fang, Z.; Hu, W. Omega-3 Polyunsaturated Fatty Acid Supplementation Attenuates Microgli-al-induced Inflammation by Inhibiting HMGB1/TLR4/NFkB Pathway Following Experimental Traumatic Brain Injury. J. Neuroinflamm. 2017, 14, 1–12. [Google Scholar] [CrossRef]
- Horvath, A.; Łukasik, J.; Szajewska, H. ω-3 Fatty Acid Supplementation Does Not Affect Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 167–176. [Google Scholar] [CrossRef]
- Chmielewska, A.; Dziechciarz, P.; Gieruszczak-Białek, D.; Horvath, A.; Pieścik-Lech, M.; Ruszczyński, M.; Skórka, A.; Szajewska, H. Effects of Prenatal and/or Postnatal Supplementation with Iron, PUFA of Folic Acid on Neurodevelopment: Update. Br. J. Nutr. 2019, 122, 10–15. [Google Scholar] [CrossRef]
- Bloch, M.H.; Qawasmi, A. Omega-3 Fatty Acid Supplementation for the Treatment of Children with Attention-Deficit/Hyperactivity Disorder Symptomatology: Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Mulqueen, J. Nutritional Supplements for the Treatment of Attention-Deficit Hyperactivity Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2014, 23, 83–897. [Google Scholar] [CrossRef]
- Rogers, L.K.; Valentine, C.J.; Keim, S.A. DHA Supplementation: Current Implications in Pregnancy and Childhood. Pharmacol. Res. 2013, 70, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wachira, J.K.; Larson, M.K.; Harris, W.S. N-3 Fatty Acids Affect Haemostasis but do not Increase the Risk of Bleeding: Clinical Observations and Mechanistic Insights. Br. J. Nutr. 2014, 111, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podpeskar, A.; Crazzolara, R.; Kropshofer, G.; Hetzer, B.; Meister, B.; Müller, T.; Salvador, C. Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients 2021, 13, 1800. https://doi.org/10.3390/nu13061800
Podpeskar A, Crazzolara R, Kropshofer G, Hetzer B, Meister B, Müller T, Salvador C. Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients. 2021; 13(6):1800. https://doi.org/10.3390/nu13061800
Chicago/Turabian StylePodpeskar, Alexandra, Roman Crazzolara, Gabriele Kropshofer, Benjamin Hetzer, Bernhard Meister, Thomas Müller, and Christina Salvador. 2021. "Omega-3 Fatty Acids and Their Role in Pediatric Cancer" Nutrients 13, no. 6: 1800. https://doi.org/10.3390/nu13061800
APA StylePodpeskar, A., Crazzolara, R., Kropshofer, G., Hetzer, B., Meister, B., Müller, T., & Salvador, C. (2021). Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients, 13(6), 1800. https://doi.org/10.3390/nu13061800