Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Assessment
2.3. Blood Tests
2.4. Anthropometrics and Blood Pressure
2.5. Analytic Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef] [Green Version]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Sheiham, A.; James, W.P. A reappraisal of the quantitative relationship between sugar intake and dental caries: The need for new criteria for developing goals for sugar intake. BMC Public Health 2014, 14, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guideline: Sugars Intake for Adults and Children. In Guideline: Sugars Intake for Adults and Children; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. (Eds.) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- U.S. Department of Health and Human Services; U.S. Department of Agruiculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2015.
- Vos, M.B.; Kaar, J.L.; Welsh, J.A.; Van Horn, L.V.; Feig, D.I.; Anderson, C.A.M.; Patel, M.J.; Cruz Munos, J.; Krebs, N.F.; Xanthakos, S.A.; et al. Added Sugars and Cardiovascular Disease Risk in Children: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1017–e1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagishi, K.; Iso, H. The criteria for metabolic syndrome and the national health screening and education system in Japan. Epidemiol. Health 2017, 39, e2017003. [Google Scholar] [CrossRef] [Green Version]
- OECD. Obesity Update 2017. Available online: http://www.oecd.org/health/obesity-update.htm (accessed on 9 April 2020).
- Mukai, N.; Hata, J.; Hirakawa, Y.; Ohara, T.; Yoshida, D.; Nakamura, U.; Kitazono, T.; Ninomiya, T. Trends in the prevalence of type 2 diabetes and prediabetes in a Japanese community, 1988–2012: The Hisayama Study. Diabetol. Int. 2019, 10, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education Culture Sports Science and Technology. School Health Survey Report 2018; Ministry of Education Culture Sports Science and Technology: Tokyo, Japan, 2019.
- Cameron, A.J.; Sicree, R.A.; Zimmet, P.Z.; Alberti, K.G.; Tonkin, A.M.; Balkau, B.; Tuomilehto, J.; Chitson, P.; Shaw, J.E. Cut-points for waist circumference in Europids and South Asians. Obesity 2010, 18, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Tillin, T.; Sattar, N.; Godsland, I.F.; Hughes, A.D.; Chaturvedi, N.; Forouhi, N.G. Ethnicity-specific obesity cut-points in the development of Type 2 diabetes—A prospective study including three ethnic groups in the United Kingdom. Diabet. Med. 2015, 32, 226–234. [Google Scholar] [CrossRef]
- Paul, S.K.; Owusu Adjah, E.S.; Samanta, M.; Patel, K.; Bellary, S.; Hanif, W.; Khunti, K. Comparison of body mass index at diagnosis of diabetes in a multi-ethnic population: A case-control study with matched non-diabetic controls. Diabet. Obest. Metab. 2017, 19, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- OECD; FAO. OECD-FA Agricultural Outlook; 2019–2028; OECD Publishing: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Guthrie, J.F.; Morton, J.F. Food sources of added sweeteners in the diets of Americans. J. Am. Diet. Assoc. 2000, 100, 43–51. [Google Scholar] [CrossRef]
- Azais-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Hawkes, C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabet. Endocrinol. 2016, 4, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries. Washoku: Traditional Dietary Cultures of the Japanese; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2013.
- Lee, H.S.; Kwon, S.O.; Lee, Y. Weight status and dietary factors associated with sugar-sweetened beverage intake among Korean children and adolescents—Korea National Health and Nutrition Examination Survey, 2008–2011. Clin. Nutr. Res. 2013, 2, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, X.W.; Liu, A.L.; Zhang, Q.; Hu, X.Q.; Du, S.M.; Ma, J.; Xu, G.F.; Li, Y.; Guo, H.W.; Du, L.; et al. Report on childhood obesity in China (9): Sugar-sweetened beverages consumption and obesity. Biomed. Environ. Sci. 2012, 25, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Shikanai, S.; Koung Ry, L.; Takeichi, H.; Emiko, S.; San, P.; Sarukura, N.; Kamoshita, S.; Yamamoto, S. Sugar intake and body weight in Cambodian and Japanese children. J. Med. Invest. 2014, 61, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Hur, Y.I.; Park, H.; Kang, J.H.; Lee, H.A.; Song, H.J.; Lee, H.J.; Kim, O.H. Associations between sugar intake from different food sources and adiposity or cardio-metabolic risk in childhood and adolescence: The Korean Child-Adolescent Cohort Study. Nutrients 2015, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Ziadlou, M.; Karimi, S.; Hosseini-Esfahani, F.; Azizi, F. The association of dietary patterns and adherence to WHO healthy diet with metabolic syndrome in children and adolescents: Tehran lipid and glucose study. BMC Public Health 2019, 19, 1457. [Google Scholar] [CrossRef]
- Fattore, E.; Botta, F.; Agostoni, C.; Bosetti, C. Effects of free sugars on blood pressure and lipids: A systematic review and meta-analysis of nutritional isoenergetic intervention trials. Am. J. Clin. Nutr. 2017, 105, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Okuda, M.; Sugiyama, S.; Kunitsugu, I.; Hinoda, Y.; Shirabe, K.; Yoshitake, N.; Hobara, T. Use of body mass index and percentage overweight cutoffs to screen Japanese children and adolescents for obesity-related risk factors. J. Epidemiol. 2010, 20, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Shinozaki, K.; Okuda, M.; Sasaki, S.; Kunitsugu, I.; Shigeta, M. Dietary fiber consumption decreases the risks of overweight and hypercholesterolemia in Japanese children. Ann. Nutr. Metab. 2015, 67, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M.; Sasaki, S.; Bando, N.; Hashimoto, M.; Kunitsugu, I.; Sugiyama, S.; Terao, J.; Hobara, T. Carotenoid, tocopherol, and fatty acid biomarkers and dietary intake estimated by using a brief self-administered diet history questionnaire for older Japanese children and adolescents. J. Nutr. Sci. Vitaminol. 2009, 55, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Okuda, M.; Asakura, K.; Sasaki, S. Protein intake estimated from brief-type self-administered diet history questionnaire and urinary urea nitrogen level in adolescents. Nutrients 2019, 11, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Murakami, K.; Asakura, K.; Uechi, K.; Sugimoto, M.; Wang, H.C.; Masayasu, S.; Sasaki, S. Estimation of starch and sugar intake in a Japanese population based on a newly dveloped food composition database. Nutrients 2018, 10, 1474. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Murakami, K.; Sasaki, S. Relative validity of starch and sugar intake in Japanese adults as estimated with comprehensive and brief self-administered diet history questionnaires. J. Epidemiol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inokuchi, M.; Hasegawa, T.; Anzo, M.; Matsuo, N. Standardized centile curves of body mass index for Japanese children and adolescents based on the 1978-1981 national survey data. Ann. Hum. Biol. 2006, 33, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Kinoshita, M.; Yokote, K.; Arai, H.; Iida, M.; Ishigaki, Y.; Ishibashi, S.; Umemoto, S.; Egusa, G.; Ohmura, H.; Okamura, T.; et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J. Atheroscler. Thromb. 2018, 25, 846–984. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Franks, P.W.; Ekelund, U.; Brage, S.; Wong, M.Y.; Wareham, N.J. Does the association of habitual physical activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabetes Care 2004, 27, 1187–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hishida, A.; Sasaki, S. Dietary Reference Intakes for Japanese, 2015; Daiichi-Shuppan Co. Ltd.: Tokyo, Japan, 2014. [Google Scholar]
- Cruz, M.L.; Weigensberg, M.J.; Huang, T.T.; Ball, G.; Shaibi, G.Q.; Goran, M.I. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J. Clin. Endocrinol. Metab. 2004, 89, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Fulgoni, V.L.; Cowan, A.E.; Gaine, P.C. Sources of added sugars in young children, adolescents, and adults with low and high intakes of added sugars. Nutrients 2018, 10, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisberg, M.; Kovalskys, I.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; Koletzko, B.; et al. Total and added sugar intake: Assessment in eight Latin American countries. Nutrients 2018, 10, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seferidi, P.; Millett, C.; Laverty, A.A. Sweetened beverage intake in association to energy and sugar consumption and cardiometabolic markers in children. Pediatr. Obes. 2018, 13, 195–203. [Google Scholar] [CrossRef]
- Bremer, A.A.; Auinger, P.; Byrd, R.S. Relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels in US adolescents: Findings from the 1999–2004 National Health and Nutrition Examination Survey. Arch. Pediatr. Adolesc. Med. 2009, 163, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of the National Health and Nutrition Examination Survey 2005–2012. Public. Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef] [Green Version]
- Fox, I.H.; Kelley, W.N. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism 1972, 21, 713–721. [Google Scholar] [CrossRef]
- Wei, F.; Chang, B.; Yang, X.; Wang, Y.; Chen, L.; Li, W.D. Serum uric acid levels were dynamically coupled with hemoglobin A1c in the development of type 2 diabetes. Sci. Rep. 2016, 6, 28549. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C.Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decoda Study, G.; Nyamdorj, R.; Qiao, Q.; Lam, T.H.; Tuomilehto, J.; Ho, S.Y.; Pitkaniemi, J.; Nakagami, T.; Mohan, V.; Janus, E.D.; et al. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity 2008, 16, 1622–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, G.; Duval, S.; Jacobs, D.R., Jr.; Silventoinen, K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis. Epidemiol. Rev. 2007, 29, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wu, S.; Song, Y.; Tang, X.; Marshall, R.; Liang, M.; Wu, Y.; Qin, X.; Chen, D.; Hu, Y. Waist circumference, body mass index and waist to hip ratio for prediction of the metabolic syndrome in Chinese. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Nyamdorj, R. Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index? Eur. J. Clin. Nutr. 2010, 64, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Marinho, A.R.; Severo, M.; Correia, D.; Lobato, L.; Vilela, S.; Oliveira, A.; Ramos, E.; Torres, D.; Lopes, C. Total, added and free sugar intakes, dietary sources and determinants of consumption in Portugal: The National Food, Nutrition and Physical Activity Survey (IAN-AF 2015–2016). Public Health Nutr. 2020, 23, 869–881. [Google Scholar] [CrossRef]
- Ruiz, E.; Rodriguez, P.; Valero, T.; Avila, J.M.; Aranceta-Bartrina, J.; Gil, A.; Gonzalez-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Dietary intake of individual (free and intrinsic) sugars and food sources in the Spanish population: Findings from the ANIBES Study. Nutrients 2017, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Zupanic, N.; Hristov, H.; Gregoric, M.; Blaznik, U.; Delfar, N.; Korousic Seljak, B.; Ding, E.L.; Fidler Mis, N.; Pravst, I. Total and free sugars consumption in a Slovenian population representative sample. Nutrients 2020, 12, 1729. [Google Scholar] [CrossRef]
- Sluik, D.; Van Lee, L.; Engelen, A.I.; Feskens, E.J. Total, free, and added sugar consumption and adherence to guidelines: The Dutch National Food Consumption Survey 2007–2010. Nutrients 2016, 8, 70. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Steer, T.; Roberts, C.; Collins, D.; Page, P. Free and added sugar consumption and adherence to guidelines: The UK National Diet and Nutrition Survey (2014/15-2015/16). Nutrients 2020, 12, 393. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Mokdad, A.H. Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the International Diabetes Federation. Diabetes Care 2008, 31, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studies to Treat or Prevent Pediatric Type 2 Diabetes Prevention Study Group. Prevalence of the metabolic syndrome among a racially/ethnically diverse group of U.S. eighth-grade adolescents and associations with fasting insulin and homeostasis model assessment of insulin resistance levels. Diabetes Care 2008, 31, 2020–2025. [Google Scholar] [CrossRef] [Green Version]
- Ha, K.; Chung, S.; Lee, H.S.; Kim, C.I.; Joung, H.; Paik, H.Y.; Song, Y. Association of dietary sugars and sugar-sweetened beverage intake with obesity in Korean children and adolescents. Nutrients 2016, 8, 31. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Males, n = 1659 | Females, n = 1583 | |
---|---|---|
Age, years | 13.56 ± 0.29 | 13.56 ± 0.29 |
BMI, kg/m2 | 19.0 ± 2.7 | 19.5 ± 2.7 |
zBMI | 0.01 ± 1.06 | 0.13 ± 1.07 |
Total energy, kcal/day | 2414 ± 655 | 2014 ± 538 |
Carbohydrate, %E | 55.3 ± 6.7 | 53.2 ± 6.4 |
Added sugars, %E | 7.6 ± 4.0 | 7.9 ± 4.1 |
Free sugars, %E | 8.4 ± 4.4 | 8.8 ± 4.6 |
Overweight (IOTF) | 154 (9.3) | 148 (9.4) |
Overweight (≥1 SD) | 265 (16.0) | 307 (19.4) |
High LDL (≥120 mg/dL) | 122 (7.4) | 166 (10.5) |
Low HDL (<40 mg/dL) | 20 (1.2) | 8 (0.5) |
High TG (≥150 mg/dL) | 34 (2.1) | 27 (1.7) |
High Glu (≥100 mg/dL) | 106 (6.4) | 47 (3.0) |
High SBP (≥130 mmHg) | 211 (12.7) | 92 (5.8) |
High DBP (≥185 mmHg) | 48 (2.9) | 60 (3.8) |
High BP (high SBP, or high DBP) | 232 (14.0) | 134 (8.5) |
MS (IOTF) | 14 (0.8) | 6 (0.4) |
MS (≥1 SD) | 17 (1.0) | 9 (0.6) |
Q1 | Q2 | Q3 | Q4 | Q5 | Ptrend | |
---|---|---|---|---|---|---|
Added sugars, n | 647 | 649 | 650 | 648 | 648 | |
%E | 3.36 ± 0.83 | 5.37 ± 0.49 | 6.99 ± 0.53 | 8.89 ± 0.71 | 14.01 ± 3.87 | |
zBMI | 0.11 | 0.10 | 0.03 | 0.01 | 0.08 | 0.289 |
LDL, mg/dL | 88.8 | 90.1 | 89.8 | 89.8 | 90.2 | 0.393 |
HDL, mg/dL | 67.3 | 67.7 | 68.4 | 67.7 | 67.2 | 0.883 |
TG, mg/dL | 58.3 | 59.1 | 57.2 | 59.6 | 59.1 | 0.587 |
Glu, mg/dL | 89.5 | 89.7 | 89.9 | 90.5 | 90.8 | <0.001 |
SBP, mmHg | 112.7 | 114.4 | 114.1 | 114.9 | 115.0 | <0.001 |
DBP, mmHg | 67.8 | 68.2 | 67.8 | 68.3 | 68.5 | 0.152 |
zMS | −0.06 | 0.00 | −0.04 | 0.04 | 0.06 | <0.001 |
Free sugars, n | 647 | 649 | 649 | 649 | 648 | |
%E | 3.73 ± 0.96 | 5.97 ± 0.56 | 7.78 ± 0.59 | 9.9 ± 0.76 | 15.58 ± 4.28 | |
zBMI | 0.13 | 0.07 | 0.05 | −0.01 | 0.09 | 0.277 |
LDL, mg/dL | 89.0 | 88.9 | 90.1 | 90.1 | 90.6 | 0.113 |
HDL, mg/dL | 67.2 | 68.2 | 68.3 | 67.7 | 67.0 | 0.513 |
TG, mg/dL | 58.7 | 57.3 | 58.4 | 60.9 | 58.1 | 0.532 |
Glu, mg/dL | 89.6 | 89.5 | 90.2 | 90.3 | 90.8 | <0.001 |
SBP, mmHg | 113.0 | 114.7 | 114.0 | 114.7 | 114.7 | 0.025 |
DBP, mmHg | 67.7 | 68.6 | 67.9 | 67.8 | 68.6 | 0.404 |
zMS | −0.05 | −0.01 | −0.02 | 0.02 | 0.05 | 0.001 |
Added Sugars Intake | Free Sugars Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low (ref.) | High | OR | (95% CI) | p | Low (ref.) | High | OR | (95% CI) | p | |
Cutoff, 5%E | 822 | 2420 | 632 | 2610 | ||||||
Overweight (IOTF) | 86 (10.5) | 216 (8.9) | 0.95 | (0.72, 1.26) | 0.744 | 67 (10.6) | 235 (9.0) | 0.97 | (0.71, 1.31) | 0.819 |
Overweight (≥1 SD) | 154 (18.7) | 418 (17.3) | 0.98 | (0.79, 1.21) | 0.841 | 119 (18.8) | 453 (17.4) | 0.98 | (0.78, 1.24) | 0.874 |
High LDL | 59 (7.2) | 229 (9.5) | 1.29 | (0.94, 1.76) | 0.112 | 44 (7.0) | 244 (9.3) | 1.32 | (0.94, 1.87) | 0.113 |
Low HDL | 6 (0.7) | 22 (0.9) | 1.38 | (0.53, 3.58) | 0.511 | 5 (0.8) | 23 (0.9) | 1.26 | (0.46, 3.5) | 0.653 |
High TG | 21 (2.6) | 40 (1.7) | 0.79 | (0.45, 1.41) | 0.429 | 17 (2.7) | 44 (1.7) | 0.78 | (0.43, 1.43) | 0.419 |
High Glu | 32 (3.9) | 121 (5.0) | 1.25 | (0.83, 1.90) | 0.291 | 27 (4.3) | 126 (4.8) | 1.11 | (0.71, 1.73) | 0.641 |
High SBP | 77 (9.4) | 226 (9.3) | 1.20 | (0.89, 1.60) | 0.233 | 60 (9.5) | 243 (9.3) | 1.20 | (0.87, 1.65) | 0.262 |
High DBP | 26 (3.2) | 82 (3.4) | 1.10 | (0.69, 1.75) | 0.704 | 17 (2.7) | 91 (3.5) | 1.36 | (0.79, 2.34) | 0.273 |
High BP | 92 (11.2) | 274 (11.3) | 1.15 | (0.88, 1.51) | 0.300 | 71 (11.2) | 295 (11.3) | 1.16 | (0.87, 1.56) | 0.309 |
MS (IOTF) | 6 (0.7) | 14 (0.6) | 1.24 | (0.36, 4.28) | 0.738 | 5 (0.8) | 15 (0.6) | 1.22 | (0.34, 4.41) | 0.765 |
MS (≥1 SD) | 6 (0.7) | 20 (0.8) | 1.53 | (0.51, 4.60) | 0.452 | 5 (0.8) | 21 (0.8) | 1.53 | (0.47, 4.94) | 0.481 |
Cutoff, 10%E | 2551 | 691 | 2319 | 923 | ||||||
Overweight (IOTF) | 237 (9.3) | 65 (9.4) | 1.05 | (0.78, 1.41) | 0.763 | 216 (9.3) | 86 (9.3) | 1.03 | (0.79, 1.35) | 0.830 |
Overweight (≥1 SD) | 452 (17.7) | 120 (17.4) | 0.99 | (0.79, 1.24) | 0.918 | 417 (18) | 155 (16.8) | 0.93 | (0.75, 1.14) | 0.460 |
High LDL | 213 (8.3) | 75 (10.9) | 1.26 | (0.95, 1.68) | 0.113 | 195 (8.4) | 93 (10.1) | 1.17 | (0.89, 1.52) | 0.263 |
Low HDL | 22 (0.9) | 6 (0.9) | 1.04 | (0.41, 2.63) | 0.942 | 21 (0.9) | 7 (0.8) | 0.86 | (0.36, 2.08) | 0.744 |
High TG | 54 (2.1) | 7 (1.0) | 0.50 | (0.22, 1.12) | 0.093 | 51 (2.2) | 10 (1.1) | 0.53 | (0.26, 1.06) | 0.071 |
High Glu | 109 (4.3) | 44 (6.4) | 1.51 | (1.04, 2.19) | 0.031 | 102 (4.4) | 51 (5.5) | 1.28 | (0.90, 1.82) | 0.171 |
High SBP | 243 (9.5) | 60 (8.7) | 0.94 | (0.69, 1.28) | 0.683 | 222 (9.6) | 81 (8.8) | 0.97 | (0.73, 1.28) | 0.826 |
High DBP | 88 (3.4) | 20 (2.9) | 0.85 | (0.51, 1.41) | 0.529 | 77 (3.3) | 31 (3.4) | 1.03 | (0.67, 1.59) | 0.891 |
High BP | 293 (11.5) | 73 (10.6) | 0.94 | (0.70, 1.24) | 0.642 | 265 (11.4) | 101 (10.9) | 1.00 | (0.78, 1.29) | 0.999 |
MS (IOTF) | 18 (0.7) | 2 (0.3) | 0.61 | (0.12, 3.12) | 0.551 | 17 (0.7) | 3 (0.3) | 0.63 | (0.15, 2.63) | 0.528 |
MS (≥1 SD) | 22 (0.9) | 4 (0.6) | 0.95 | (0.29, 3.07) | 0.930 | 20 (0.9) | 6 (0.7) | 1.04 | (0.37, 2.93) | 0.939 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuda, M.; Fujiwara, A.; Sasaki, S. Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents. Nutrients 2020, 12, 2046. https://doi.org/10.3390/nu12072046
Okuda M, Fujiwara A, Sasaki S. Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents. Nutrients. 2020; 12(7):2046. https://doi.org/10.3390/nu12072046
Chicago/Turabian StyleOkuda, Masayuki, Aya Fujiwara, and Satoshi Sasaki. 2020. "Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents" Nutrients 12, no. 7: 2046. https://doi.org/10.3390/nu12072046
APA StyleOkuda, M., Fujiwara, A., & Sasaki, S. (2020). Added and Free Sugars Intake and Metabolic Biomarkers in Japanese Adolescents. Nutrients, 12(7), 2046. https://doi.org/10.3390/nu12072046