Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Data Collection
2.3. Intake Rating
2.4. Anthropometric Assessment
2.5. Measurement of Biochemical Parameters
Analytical Determination of Vitamin D by UHPLC
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Didriksen, A.; Grimnes, G.; Hutchinson, M.S.; Kjærgaard, M.; Svartberg, J.; Joakimsen, R.M.; Jorde, R. The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. Eur. J. Endocrinol. 2013, 169, 559–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacko, S.A.; Song, Y.; Manson, J.E.; Van Horn, L.; Eaton, C.; Martin, L.W.; McTiernan, A.; Curb, J.D.; Wylie-Rosett, J.; Phillips, L.S.; et al. Serum 25-hydroxyvitamin D concentrations in relation to cardiometabolic risk factors and metabolic syndrome in postmenopausal women. Am. J. Clin. Nutr. 2011, 94, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Ardawi, M.-S.M.; Qari, M.H.; Rouzi, A.A.; Maimani, A.A.; Raddadi, R.M. Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- and postmenopausal women. Osteoporos. Int. 2011, 22, 463–475. [Google Scholar] [CrossRef]
- Wallingford, S.C.; Jones, G.; Kobayashi, L.C.; Grundy, A.; Miao, Q.; Tranmer, J.; Aronson, K.J. UV and dietary predictors of serum 25-hydroxyvitamin D concentrations among young shift-working nurses and implications for bone density and skin cancer. Public Health Nutr. 2014, 17, 772–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B.; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; et al. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr. 2009, 63, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, C.B.; Young, A.; Allison, M.A.; Robinson, J.; Martin, L.W.; Kuller, L.H.; Johnson, K.C.; Curb, J.D.; Van Horn, L.; McTiernan, A.; et al. Prospective association of vitamin D concentrations with mortality in postmenopausal women: Results from the Women’s Health Initiative (WHI). Am. J. Clin. Nutr. 2011, 94, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Ferreira Ferreira, T.; Rocha, T.M.; Klein, M.R.S.T.; Sanjuliani, A.F. Vitamin d deficiency is associated with insulin resistance independent of intracellular calcium, dietary calcium and serum levels of parathormone, calcitriol and calcium in premenopausal women. Nutr. Hosp. 2015, 31, 1491–1498. [Google Scholar]
- Adami, S.; Bertoldo, F.; Braga, V.; Fracassi, E.; Gatti, D.; Gandolini, G.; Minisola, S.; Bsttista Rini, G. 25-hydroxy vitamin D levels in healthy premenopausal women: Association with bone turnover markers and bone mineral density. Bone 2009, 45, 423–426. [Google Scholar] [CrossRef]
- Mason, C.; Xiao, L.; Imayama, I.; Duggan, C.R.; Bain, C.; Foster-Schubert, K.E.; Kong, A.; Campbell, K.L.; Wang, C.Y.; Neuhouser, M.L.; et al. Effects of weight loss on serum vitamin D in postmenopausal women. Am. J. Clin. Nutr. 2011, 94, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Feghaly, J.; Johnson, P.; Kalhan, A. Vitamin D and obesity in adults: A pathophysiological and clinical update. Br. J. Hosp. Med. (Lond) 2020, 81, 1–5. [Google Scholar] [CrossRef]
- Güneş, A.O.; Alikaşifoğlu, M.; Erginoz, E.; Köse, S.; Çelik, E.; Vehid, S.; Ercan, O. The relationship between cardiometabolic risks and vitamin D levels with the degree of obesity. Turk. Pediatri. Ars. 2019, 54, 256–263. [Google Scholar] [PubMed]
- Macdonald, H.M.; Mavroeidi, A.; Aucott, L.A.; Diffey, B.L.; Fraser, W.D.; Ormerod, A.D.; Reid, D.M. Skin color change in Caucasian postmenopausal women predicts summer-winter change in 25-hydroxyvitamin D: findings from the ANSAViD cohort study. J. Clin. Endocrinol. Metab. 2011, 96, 1677–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mpalaris, V.; Anagnostis, P.; Goulis, D.G.; Iakovou, I. Complex association between body weight and fracture risk in postmenopausal women. Obes. Rev. 2015, 16, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Tyka, A.; Cebula, A.; Śliwicka, E.; Pilaczyńska-Szcześniak, Ł.; Tyka, A. Effects of a 6-week Nordic walking training on changes in 25(OH)D blood concentration in women aged over 55. J. Sports. Med. Phys. Fitness. 2017, 57, 124–129. [Google Scholar]
- Muscogiuri, G.; Barrea, L.; Somma, C.D.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex Differences of Vitamin D Status across BMI Classes: An Observational Prospective Cohort Study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [Green Version]
- Martinazzo, J.; Zemolin, G.P.; Spinelli, R.B.; Zanardo, V.P.S.; Ceni, G.C. Nutritional evaluation of postmenopausal women treated at a nutrition clinic in the north of the State of Rio Grande do Sul, Brazil. Cien. Saude. Colet. 2013, 18, 3349–3356. [Google Scholar] [CrossRef] [Green Version]
- Alissa, E.M.; Alnahdi, W.A.; Alama, N.; Ferns, G.A. Serum osteocalcin is associated with dietary vitamin D, body weight and serum magnesium in postmenopausal women with and without significant coronary artery disease. Asia. Pac. J. Clin. Nutr. 2014, 23, 246–255. [Google Scholar]
- Janssen, H.C.J.P.; Emmelot-Vonk, M.H.; Verhaar, H.J.J.; van der Schouw, Y.T. Determinants of vitamin D status in healthy men and women aged 40–80 years. Maturitas 2013, 74, 79–83. [Google Scholar] [CrossRef]
- Pinkas, J.; Bojar, I.; Gujski, M.; Bartosińska, J.; Owoc, A.; Raczkiewicz, D. Serum Lipid, Vitamin D Levels, and Obesity in Perimenopausal and Postmenopausal Women in Non-Manual Employment. Med. Sci. Monit. 2017, 23, 5018–5026. [Google Scholar] [CrossRef] [Green Version]
- Andreozzi, P.; Verrusio, W.; Viscogliosi, G.; Summa, M.L.; Gueli, N.; Cacciafesta, M.; Albanese, C.V. Relationship between vitamin D and body fat distribution evaluated by DXA in postmenopausal women. Nutrition 2016, 32, 687–692. [Google Scholar] [CrossRef]
- Nuzzo, V.; Zuccoli, A.; de Terlizzi, F.; Colao, A.; Tauchmanova, L. Low 25-hydroxyvitamin D levels and low bone density assessed by quantitative ultrasonometry in a cohort of postmenopausal Italian nuns. J. Clin. Densitom. 2013, 16, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez P, J.A.; Valdivia C, G.; Trincado M, P. Vertebral fractures, osteoporosis and vitamin D levels in Chilean postmenopausal women. Rev. Med. Chil. 2007, 135, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simas, L.A.W.; Zanatta, L.C.B.; Moreira, C.A.; Borba, V.Z.C.; Boguszewski, C.L. Body composition and nutritional and metabolic parameters in postmenopausal women sufficient, insufficient and deficient in vitamin D. Arch. Endocrinol. Metab. 2019, 63, 265–271. [Google Scholar] [CrossRef] [PubMed]
- van den Ouweland, J.M.W. Analysis of vitamin D metabolites by liquid chromatography-tandem mass spectrometry. Trac-trend. Anal. Chem. 2016, 84, 117–130. [Google Scholar] [CrossRef]
- Jensen, M.D. Obesity, 25th ed.; Goldman, L., Schafer, A.I., Eds.; Goldman-Cecil Medicine; Elsevier Saunders: Philadelphia, PA, USA, 2016; Chapter 220. [Google Scholar]
- Banack, H.R.; Wactawski-Wende, J.; Hovey, K.M.; Stokes, A. Is BMI a valid measure of obesity in post-menopausal women? Menopause 2018, 25, 307–313. [Google Scholar] [CrossRef]
- Fryar, C.D.; Kruszon-Moran, D.; Gu, Q.; Ogden, C.L. Mean body weight, height, waist circumference, and body mass index among Adults: United States, 1999–2000 through 2015–2016. Natl. Health. Stat. Report. 2018, 122, 1–16. [Google Scholar]
- Dimala, C.A.; Ngu, R.C.; Kadia, B.M.; Tianyi, F.-L.; Choukem, S.P. Markers of adiposity in HIV/AIDS patients: Agreement between waist circumference, waist-to-hip ratio, waist-to-height ratio and body mass index. PLoS ONE 2018, 13, e0194653. [Google Scholar] [CrossRef] [Green Version]
- Weng, C.-H.; Tien, C.-P.; Li, C.-I.; L’Heureux, A.; Liu, C.-S.; Lin, C.-H.; Lin, C.-C.; Lai, S.-W.; Lai, M.-M.; Lin, W.-Y. Mid-upper arm circumference, calf circumference and mortality in Chinese long-term care facility residents: A prospective cohort study. BMJ Open 2018, 8, e020485. [Google Scholar] [CrossRef] [Green Version]
- Purdue-Smithe, A.C.; Whitcomb, B.W.; Manson, J.E.; Hankinson, S.E.; Troy, L.M.; Rosner, B.A.; Bertone-Johnson, E.R. Vitamin D status is not associated with risk of early menopause. J. Nutr. 2018, 148, 1445–1452. [Google Scholar] [CrossRef]
- Stefanowski, B.; Antosik-Wójcińska, A.Z.; Święcicki, Ł. The effect of vitamin D3 deficiency on the severity of depressive symptoms. Overview of current research. Psychiatr. Pol. 2017, 51, 437–454. [Google Scholar] [CrossRef]
- Machado, C.; Venancio, V.P.; Aissa, A.F.; Hernandes, L.C.; Mello, M.B.; Lama, J.E.C.D.; Marzocchi-Machado, C.M.; Bianchi, M.L.P.; Antunes, L.M.G. Vitamin D3 deficiency increases DNA damage and the oxidative burst of neutrophils in a hypertensive rat model. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 788–799, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; González, L.G.; Navia, B.; Perea, J.M.; Aparicio, A.; López, A.M.; Grupo de Investigación nº 920030. Calcium and vitamin D intakes in a representative sample of Spanish women; particular problem in menopause. Nutr. Hosp. 2013, 28, 306–313. [Google Scholar]
- Macdonald, H.M.; Mavroeidi, A.; Barr, R.J.; Black, A.J.; Fraser, W.D.; Reid, D.M. Vitamin D status in postmenopausal women living at higher latitudes in the UK in relation to bone health, overweight, sunlight exposure and dietary vitamin D. Bone 2008, 42, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Fakhoury, H.M.A.; Karras, S.N.; Al Anouti, F.; Bhattoa, H.P. Variations in 25-hydroxyvitamin D in countries from the middle east and Europe: The roles of UVB exposure and diet. Nutrients 2019, 11, 2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.-Y.D.; Millen, A.E.; Wactawski-Wende, J.; Beresford, S.A.A.; LaCroix, A.Z.; Zheng, Y.; Goodman, G.E.; Thornquist, M.D.; Neuhouser, M.L. Vitamin D intake determines vitamin d status of postmenopausal women, particularly those with limited sun exposure. J. Nutr. 2014, 144, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.-J.; Zhou, Y.; Bu, F.; Travers-Gustafson, D.; Ye, A.; Xu, X.; Hamm, L.; Gorsage, D.M.; Fang, X.; Deng, H.-W.; et al. Factors predicting vitamin D response variation in non-Hispanic white postmenopausal women. J. Clin. Endocrinol. Metab. 2012, 97, 2699–2705. [Google Scholar] [CrossRef]
- Arévalo, C.E.; Núñez, M.; Barcia, R.E.; Sarandria, P.; Miyazato, M. Vitamin D deficit in adult women living in Buenos Aires City. Medicine 2009, 69, 635–639. [Google Scholar]
- Stewart, J.W.; Alekel, D.L.; Ritland, L.M.; Van Loan, M.; Gertz, E.; Genschel, U. Serum 25-hydroxyvitamin D is related to indicators of overall physical fitness in healthy postmenopausal women. Menopause 2009, 16, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ou, Y.; Zhang, H.; Zhang, Z.; Zhou, H.; Liu, L.; Sheng, Z.; Liao, E. Vitamin D status and its relationship with body composition, bone mineral density and fracture risk in urban central south Chinese postmenopausal women. Ann. Nutr. Metab. 2014, 64, 13–19. [Google Scholar] [CrossRef]
- Shirazi, L.; Almquist, M.; Malm, J.; Wirfält, E.; Manjer, J. Determinants of serum levels of vitamin D: A study of life-style, menopausal status, dietary intake, serum calcium, and PTH. BMC Womens Health 2013, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Maalouf, N.M.; Adams-Huet, B.; Moe, O.W.; Sakhaee, K. Effects of sex and postmenopausal estrogen use on serum phosphorus levels: A cross-sectional study of the National Health and Nutrition Examination Survey (NHANES) 2003–2006. Am. J. Kidney Dis. 2014, 63, 198–205. [Google Scholar] [CrossRef]
- Billington, E.O.; Gamble, G.D.; Bristow, S.; Reid, I.R. Serum phosphate is related to adiposity in healthy adults. Eur. J. Clin. Invest. 2017, 47, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.B.; Ames, R.W.; Horne, A.M.; Gamble, G.D.; Reid, I.R. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 2006, 38, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Khadka, B.; Tiwari, M.L.; Gautam, R.; Timalsina, B.; Pathak, N.P.; Kharel, K.; Sharma, S.; Acharya, D. Correlates of Biochemical Markers of Bone turnover among Post-Menopausal Women. J. Nepal. Med. Assoc. 2018, 56, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Lee, H.S.; Lee, S.H.; Shim, K.W.; Cho, C.; Yoo, B.-W. The level of vitamin D using the LC-MS/MS method and related factors in healthy Korean postmenopausal women. J. Obstet. Gynaecol. Res. 2018, 44, 1977–1984. [Google Scholar] [CrossRef]
- Arunabh, S.; Pollack, S.; Yeh, J.; Aloia, J.F. Body fat content and 25-hydroxyvitamin D levels in healthy women. J. Clin. Endocrinol. Metab. 2003, 88, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, B.D.; Hall, L.M.; Stephensen, C.B.; Gertz, E.R.; Van Loan, M.D. Circulating 25-hydroxyvitamin D concentrations in overweight and obese adults are explained by sun exposure, skin reflectance, and body composition. Curr. Dev. Nutr. 2019, 3, nzz065. [Google Scholar] [CrossRef]
- Lucas, J.A.; Bolland, M.J.; Grey, A.B.; Ames, R.W.; Mason, B.H.; Horne, A.M.; Gamble, G.D.; Reid, I.R. Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos. Int. 2005, 16, 1641–1648. [Google Scholar] [CrossRef]
- Vuksanovic, M.; Mihajlovic, G.; Beljic-Zivkovic, T.; Gavrilovic, A.; Arsenovic, B.; Zvekic-Svorcan, J.; Petkovic, M.M.; Vujovic, S. Cross-talk between muscle and bone in postmenopausal women with hypovitaminosis D. Climacteric 2017, 20, 31–36. [Google Scholar] [CrossRef]
- Abboud, M.; Liu, X.; Fayet-Moore, F.; Brock, K.E.; Papandreou, D.; Brennan-Speranza, T.C.; Mason, R.S. Effects of vitamin D status and supplements on anthropometric and biochemical indices in a clinical setting: A retrospective study. Nutrients 2019, 11, 3032. [Google Scholar] [CrossRef] [Green Version]
- Holecki, M.; Zahorska-Markiewicz, B.; Nieszporek, T.; Olszanecka-Glinianowicz, M.; Mizia-Stec, K.; Zak-Gołab, A.; Kocełak, P.; Fryźlewicz-Moska, A.; Wiecek, A. Impact of the mass-reductive therapy with orlistat on 25-(OH)-D3 and PTH concentration in sera of obese, menopausal women. Endokrynol. Pol. 2005, 56, 240–245. [Google Scholar] [PubMed]
- Sousa-Santos, A.R.; Afonso, C.; Santos, A.; Borges, N.; Moreira, P.; Padrão, P.; Fonseca, I.; Amaral, T.F. The association between 25(OH)D levels, frailty status and obesity indices in older adults. PLoS ONE 2018, 13, e0198650. [Google Scholar] [CrossRef]
- Liu, J.; Ma, W.; Wei, L.; Yang, Y.; Yang, R.; Shao, F.; Wang, Y.; Tian, L. Adult serum 25(OH)D3 in Gansu province, northwest China: A cross-sectional study. Asia. Pac. J. Clin. Nutr. 2018, 27, 832–839. [Google Scholar]
- Kocot, J.; Dziemidok, P.; Kiełczykowska, M.; Kurzepa, J.; Szcześniak, G.; Musik, I. Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients? Int. J. Environ. Res. Public. Health. 2018, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallon, C.W.; Wender, M.C.O. Nutritional status and quality of life of climacteric women. Rev. Bras. Ginecol. Obstet. 2012, 34, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, W.B.; Al Anouti, F.; Moukayed, M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Misra, A.; Pandey, R.M.; Upadhyay, A.D.; Gulati, S.; Singh, N. Vitamin D supplementation in overweight/obese asian indian women with prediabetes reduces glycemic measures and truncal subcutaneous fat: A 78 weeks randomized placebo-controlled trial (PREVENT-WIN Trial). Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.R.; O’Brien, M.M.; Lamberg-Allardt, C.; Jakobsen, J.; Kiely, M.; Flynn, A.; Cashman, K.D. Vitamin D status of 51–75-year-old Irish women: Its determinants and impact on biochemical indices of bone turnover. Public. Health. Nutr. 2006, 9, 225–233. [Google Scholar] [CrossRef] [Green Version]
(Characteristics) | BMI < 27 (kg/m2) (n = 39) | BMI > 27 (kg/m2) (n = 39) | p Value | (Reference Values) |
---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | |||
Age (years) | 57.7 ± 8.2 | 58.5 ± 8.5 | 0.7 | - |
BMI (kg/m2) | 23.3 ± 2.6 | 30.5 ± 3.1 | <0.001 | 22–27 |
Blood pressure 1 | 1.5 ± 1.4 | 1.9 ± 1.4 | 0.2 | - |
Physical exercise 2 | 1.2 ± 0.9 | 1.2 ± 0.8 | 0.9 | - |
Arm perimeter (cm) | 27.9 ± 1.9 | 31.7 ± 2.7 | <0.001 | <30 |
Waist perimeter (cm) | 80.0 ± 8.9 | 97.5 ± 9.5 | <0.001 | <90 |
Hip perimeter (cm) | 98.3 ± 6.2 | 113 ± 8.7 | <0.001 | <110 |
Waist/hip ratio | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.005 | <0.80 |
Body fat (%) | 33 ± 5.6 | 41 ± 3.7 | <0.001 | 23–31 |
Fat mass (kg) | 20.1 ± 5.1 | 32.1 ± 6.7 | <0.001 | - |
Muscle mass (kg) | 37.9 ± 7.7 | 45.8 ± 4.7 | <0.001 | - |
Energy intake (kcal) | 1500 ± 300 | 1300 ± 400 | 0.06 | 2000 |
CHO intake (g/day | 160 ± 37.5 | 140 ± 45.0 | 0.04 | 275 |
Protein intake (g/day) | 63.6 ± 14.1 | 59.5 ± 16.3 | 0.2 | 50 |
Fat intake (g/day) | 61.6± 17.1 | 56.6 ± 23.3 | 0.3 | 70 |
Cholesterol intake (mg/day) | 170 ± 73.8 | 163 ± 63.5 | 0.7 | <300 |
Fiber intake (g/day) | 16.8 ± 6.7 | 15.1 ± 9.3 | 0.3 | >25 |
Ca intake (mg/day) | 841 ± 262 | 800 ± 255 | 0.7 | 800–1000 |
P intake (mg/day) | 1045 ± 321 | 1031 ± 292 | 0.8 | 800 |
Vitamin D intake (µg/day) | 3.7 ± 3.7 | 3.3 ± 2.7 | 0.6 | <10 |
(Characteristics) | BMI < 27 (kg/m2) (n = 39) | BMI > 27 (kg/m2) (n = 39) | p Value | (Reference Values) |
---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | |||
Glucose (mg/dL) | 88.2 ± 17.5 | 100 ± 13.5 | 0.04 | 70–110 |
Transferrin (mg/dL) | 300 ± 53.3 | 300 ± 37.4 | 0.7 | 200–360 |
Prealbumin (mg/dL) | 24.1 ± 5.8 | 26.2 ± 4.1 | 0.1 | 20–40 |
Albumin (mg/dL) | 4.5 ± 0.3 | 4.4 ± 0.2 | 0.4 | 3.5–5.2 |
Homocysteine (µmol/L) | 11.9 ± 4.7 | 11.4 ± 4.9 | 0.6 | <13 |
Creatinine (mg/dl) | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.4 | 0.5–0.9 |
1 LDH (U/L) | 200 ± 26.4 | 192 ± 58.6 | 0.2 | 110–295 |
Urea (mg/dL) | 34.0 ± 9.3 | 35.0 ± 8.9 | 0.6 | 10–50 |
Uric acid (mg/dL) | 4.2 ± 1.2 | 4.6 ± 0.9 | 0.2 | 2.4–5.7 |
Triglycerides (mg/dL) | 106 ± 63.4 | 100 ± 72.6 | 0.8 | 50–200 |
HDL cholesterol (mg/dL) | 70.2 ± 18.3 | 63.3 ± 11.5 | 0.06 | 40–60 |
LDL cholesterol (mg/dL) | 129 ± 32.7 | 127 ± 30.3 | 0.7 | 70–190 |
Total cholesterol (mg/dL) | 223 ± 34.8 | 218 ± 34.2 | 0.5 | 110–200 |
2 GOT (U/L) | 22.0 ± 5.0 | 22.5 ± 7.7 | 0.7 | <37 |
3 GPT (U/L) | 18.0 ± 7.5 | 21.2 ± 12.6 | 0.2 | <41 |
4 GGT (U/L) | 18.0 ± 9.9 | 21.8 ± 18.2 | 0.2 | 11–50 |
5 CRP (mg/L) | 1.9 ± 9.9 | 0.3 ± 0.2 | 0.3 | 0.02–5 |
Total bilirubin (mg/dL) | 0.5 ± 0.2 | 0.5 ± 0.12 | 0.2 | 0.10–1.2 |
Total proteins (g/dL) | 7.1 ± 0.5 | 7.1 ± 0.5 | 0.7 | 6.6–8.7 |
Parameter | BMI < 27 (kg/m2) (n = 39) | BMI > 27 (kg/m2) (n = 39) | p Value | (Reference Values) |
---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | |||
25(OH)D (ng/mL) | 26.1 ± 7.3 | 21.9 ± 6.6 | 0.01 | 30–100 |
25(OH)D3 (ng/mL) | 19.5 ± 7.4 | 16.1 ± 6.5 | 0.04 | >20 |
25(OH)D2 (ng/mL) | 5.8 ± 3.9 | 5.7 ± 2.3 | 0.9 | >10 |
Ca (mg/dL) | 9.3 ± 0.5 | 9.1 ± 0.4 | 0.2 | 8.6–10.2 |
P (mg/dL) | 3.5 ± 0.5 | 3.4 ± 0.5 | 0.4 | 2.7–4.5 |
Osteocalcin (ng/mL) | 14.2 ± 10.6 | 16.2 ± 9.1 | 0.4 | 15–46 |
PTH (pg/mL) | 53.2 ± 17.5 | 58.9 ± 28.2 | 0.3 | 20–70 |
Categorized BMI (kg/m2) | 25(OH)D (ng/mL) | 25(OH)D3 (ng/mL) | |
---|---|---|---|
Uncategorized BMI (kg/m2) | r = 0.8 | r = −0.25 | r = −0.2 |
p < 0.001 * | p = 0.04 * | p = 0.09 | |
Categorized BMI (kg/m2) | - | r = −0.29 | r = −0.24 |
p = 0.01 * | p = 0.04 * | ||
Arm circumference (cm) | r = 0.7 | r = −0.24 | r = −0.2 |
p < 0.001 * | p = 0.04 * | p = 0.1 | |
Waist circumference (cm) | r = 0.6 | r = −0.14 | r = −0.11 |
p < 0.001 * | p = 0.2 | p = 0.3 | |
Hip perimeter (cm) | r = 0.7 | r = −0.26 | r = −0.24 |
p < 0.001 * | p = 0.03 * | p = 0.04 * | |
Waist/hip ratio | r = 0.3 | r = 0.06 | r = 0.06 |
p = 0.005 * | p = 0.6 | p = 0.5 | |
Body fat (%) | r = 0.6 | r = −0.2 | r = −0.2 |
p < 0.001 * | p = 0.1 | p = 0.1 | |
Fat mass (kg) | r = 0.7 | r = −0.28 | r = −0.26 |
p < 0.001 * | p = 0.02 * | p = 0.03 * | |
Muscle mass (kg) | r = 0.5 | r = −0.2 | r = −0.15 |
p < 0.001 * | p = 0.1 | p = 0.2 | |
25(OH)D (ng/mL) | r = −0.29 | - | r = 0.90 |
p = 0.01 * | p < 0.001 * | ||
25(OH)D3 (ng/mL) | r = −0.24 | r = 0.90 | - |
p = 0.04 * | p < 0.001 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Lorente, H.; Molina-López, J.; Herrera-Quintana, L.; Gamarra-Morales, Y.; López-González, B.; Planells, E. Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population. Nutrients 2020, 12, 667. https://doi.org/10.3390/nu12030667
Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, López-González B, Planells E. Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population. Nutrients. 2020; 12(3):667. https://doi.org/10.3390/nu12030667
Chicago/Turabian StyleVázquez-Lorente, Héctor, Jorge Molina-López, Lourdes Herrera-Quintana, Yenifer Gamarra-Morales, Beatriz López-González, and Elena Planells. 2020. "Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population" Nutrients 12, no. 3: 667. https://doi.org/10.3390/nu12030667
APA StyleVázquez-Lorente, H., Molina-López, J., Herrera-Quintana, L., Gamarra-Morales, Y., López-González, B., & Planells, E. (2020). Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population. Nutrients, 12(3), 667. https://doi.org/10.3390/nu12030667