A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Dietary Intervention
2.3. Outcome Measures
2.4. Measurement of Urinary InsPs
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Baseline Characteristics of Patients
3.2. Effect of Walnut Consumption on Classic Cardiovascular Risk Factors
3.3. Urinary Excretion of InsPs
3.4. Safety of Walnuts and Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- London, G.M. Cardiovascular disease in chronic renal failure: Pathophysiologic aspects. Semin. Dial. 2003, 16, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Sabate, J.; Beeson, W.L.; Strahan, T.M. A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study. Arch. Intern. Med. 1992, 152, 1416–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Colditz, G.A.; Rosner, B.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Frequent nut consumption and risk of coronary heart disease in women: Prospective cohort study. BMJ 1998, 317, 1341–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.M.; Gaziano, J.M.; Willett, W.C.; Manson, J.E. Nut consumption and decreased risk of sudden cardiac death in the Physicians’ Health Study. Arch. Intern. Med. 2002, 162, 1382–1387. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.H.; Sabaté, J. Nuts and coronary heart disease: An epidemiological perspective. Br. J. Nutr. 2006, 96, 61–67. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. for the PREDIMED Study Investigators. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, 34–45. [Google Scholar] [CrossRef]
- Wexler, L.; Brundage, B.; Crouse, J.; Detrano, R.; Fuster, V.; Maddahi, J.; Rumberger, J.; Stanford, W.; White, R.; Taubert, K. Coronary Artery calcification: Pathophysiology, epidemiology, imaging methods and clinical implications. Circulation 1996, 94, 1175–1192. [Google Scholar] [CrossRef]
- Toussaint, N.D.; Kerr, P.G. Vascular calcification and arterial stiffness in chronic kidney disease: Implications and management. Nephrology 2007, 12, 500–509. [Google Scholar] [CrossRef]
- Cupisti, A.; Kalantar-Zadeh, K. Management of natural and added dietary phosphorus burden in kidney disease. Semin. Nephrol. 2013, 33, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Buades, J.M.; Sanchis, P.; Perelló, J.; Grases, F. Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia 2017, 37, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grases, F.; Simonet, B.M.; March, J.G.; Prieto, R.M. Inositol hexakisphosphate in urine: The relationship between oral intake and urinary excretion. BJU Int. 2000, 85, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Costa-Bauza, A.; Prieto, R.M. Renal lithiasis and nutrition. Nutr. J. 2006, 5, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grases, F.; Isern, B.; Sanchis, P.; Perello, J.; Torres, J.J.; Costa-Bauza, A. Phytate acts as an inhibitor in formation of renal calculi. Front. Biosci. 2007, 12, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Sanchis, P.; Perello, J.; Isern, B.; Prieto, R.M.; Fernandez-Palomeque, C.; Fiol, M.; Bonnin, O.; Torres, J.J. Phytate [Myoinositol hexakisphosphate] inhibits cardiovascular calcifications in rats. Front. Biosci. 2006, 11, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Sanchis, P.; Perelló, J.; Isern, B.; Prieto, R.M.; Fernandez Palomeque, C.; Fiol, M.; Bonnin, O.; Torres, J.J. Effect of crystallization inhibitors on vascular calcifications induced by vitamin D: A pilot study in Sprague-Dawley rats. Circ. J. 2007, 1, 1152–1156. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Sanchis, P.; Perello, J.; Isern, B.; Prieto, R.M.; Fernandez-Palomeque, C.; Saus, C. Phytate reduces age-related cardiovascular calcification. Front. Biosci. 2008, 13, 7115–7122. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Palomeque, C.; Grau, A.; Perelló, J.; Sanchis, P.; Isern, B.; Prieto, R.M.; Costa-Bauzá, A.; Caldés, O.J.; Bonnin, O.; Garcia-Raja, A.; et al. Relationship between Urinary Level of Phytate and Valvular Calcification in an Elderly Population: A Cross-Sectional Study. PLoS ONE 2015, 10, e0136560. [Google Scholar] [CrossRef] [Green Version]
- López-González, A.A.; Grases, F.; Monroy, N.; Marí, B.; Vicente-Herrero, M.T.; Tur, F.; Perelló, J. Protective effect of myo-inositol hexaphosphate [phytate] on bone mass loss in postmenopausal women. Eur. J. Nutr. 2013, 52, 717–726. [Google Scholar] [CrossRef]
- Grases, F.; Sanchis, P.; Prieto, R.M.; Perelló, J.; López-González, A.A. Effect of tetracalcium dimagnesium phytate on bone characteristics in ovariectomized rats. J. Med. Food 2010, 13, 1301–1306. [Google Scholar] [CrossRef]
- Prieto, R.M.; Fiol, M.; Perello, J.; Estruch, R.; Ros, E.; Sanchis, P.; Grases, F. Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion. Eur. J. Nutr. 2010, 1, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, P.; Buades, J.M.; Berga, F.; Gelabert, M.M.; Molina, M.; Íñigo, M.V.; García, S.; Gonzalez, J.; Bernabeu, M.R.; Costa-Bauzá, A.; et al. Protective Effect of Myo-Inositol Hexaphosphate (Phytate) on Abdominal Aortic Calcification in Patients with Chronic Kidney Disease. J. Ren. Nutr. 2016, 26, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Donate-Correa, J.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. FGF23/Klotho axis: Phosphorus, mineral metabolism and beyond. Cytokine Growth Factor Rev. 2012, 23, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. The FGF23–Klotho axis: Endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 2009, 5, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj-Krishnamurthy, V.M.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, 1–266. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [Green Version]
- Berga, F.; Rodriguez, A.; Costa-Bauzá, A.; Grases, F. Novel Colorimetric Determination of Phytate in Urine. Anal. Lett. 2006, 49, 307–318. [Google Scholar] [CrossRef]
- Domènech, M.; Serra-Mir, M.; Roth, I.; Freitas-Simoes, T.; Valls-Pedret, C.; Cofán, M.; López, A.; Sala-Vila, A.; Calvo, C.; Rajaram, S.; et al. Effect of a Walnut Diet on Office and 24-Hour Ambulatory Blood Pressure in Elderly Individuals. Hypertension 2019, 73, 1049–1057. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [Green Version]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kris-Etherton, P.M.; Zhao, G.; Binkoski, A.E.; Coval, S.M.; Etherton, T.D. The effects of nuts on coronary heart disease risk. Nutr. Rev. 2001, 59, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.B. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr. 2002, 132, 1062–1101. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Steffen, L.M.; Palmas, W.; Burke, G.L.; Jacobs, D.R. Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2008, 87, 1825–1836. [Google Scholar] [CrossRef]
- He, J.; Shlipak, M.; Anderson, A.; Roy, J.A.; Feldman, H.I.; Kallem, R.R.; Kanthety, R.; Kusek, J.W.; Ojo, A.; Rahman, M.; et al. Risk Factors for Heart Failure in Patients with Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Noori, N.; Sims, J.J.; Kopple, J.D.; Shah, A.; Colman, S.; Shinaberger, C.S.; Bross, R.; Mehrotra, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran. J. Kidney Dis. 2010, 4, 89–100. [Google Scholar]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Sullivan, C.; Sayre, S.S.; Leon, J.B.; Machekano, R.; Love, T.E.; Porter, D.; Marbury, M.; Sehgal, A.R. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: A randomized controlled trial. JAMA 2009, 301, 629–635. [Google Scholar] [CrossRef]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, P.; Rivera, R.; Berga, F.; Fortuny, R.; Adrover, M.; Costa-Bauza, A.; Grases, F.; Masmiquel, L. Phytate Decreases Formation of Advanced Glycation End-Products in Patients with Type II Diabetes: Randomized Crossover Trial. Sci. Rep. 2018, 8, 9619–9633. [Google Scholar] [CrossRef] [Green Version]
2000 Kcal Diet with Nuts | 2000 kcal Diet No Nuts | 1650 kcal Diet with Nuts | 1650 kcal Diet No Nuts | |
---|---|---|---|---|
Protein (g/day) | 65.7 (0.8 g/kg/day) | 66.1 (0.8 g/kg/day) | 55.5 (0.8 g/kg/day) | 55.9 (0.8 g/kg/day) |
Lipids (g/day) | 99.1 | 85.7 | 81.4 | 68 |
Carbohydrates (g/day) | 209.0 | 240.2 | 176.7 | 208 |
Fiber (g/day) | 22.8 | 23.1 | 20.6 | 20.9 |
Sodium (mg/day) * | 206.9 | 206.9 | 235.3 | 234.4 |
Potassium (mg/day) | 2190 (0.6 mmol/kg/day) | 2106 (0.6 mmol/kg/day) | 2123 (0.7 mmol/kg/day) | 2039 (0.7 mmol/kg/day) |
Phosphorus (mg/day) | 855.7 | 802.0 | 824.6 | 771 |
Baseline Characteristics (n = 13) | ||
---|---|---|
Age (Years) | 71 | (66–77) |
Sex (female) | 6 | (46.2%) |
Weight (kg) | 88 | (70–98) |
Body mass index (BMI) categories | ||
<25 kg/m2 | 4 | (30.8%) |
25–30 kg/m2 | 3 | (23.1%) |
30–35 kg/m2 | 6 | (46.2%) |
Comorbidities | ||
Smoking (ex or yes) | 5 | (38.5%) |
Alcohol (ex or yes) | 1 | (7.7%) |
Diabetes | 5 | (38.5%) |
Hypertension | 12 | (92.3%) |
CKD Parameters | ||
Estimated glomerular filter (mL/min/1.73 m2) | 42 | (34–47) |
Chronic Kidney Disease Stage | ||
3 a (eGFR 59–45 mL/min/1.73 m2) | 5 | (38.5%) |
3 b (eGFR 44–30 mL/min/1.73 m2) | 6 | (46.2%) |
4 (eGFR 29–15 mL/min/1.73 m2) | 2 | (15.4%) |
CKD cause | ||
Vascular disease | 5 | (38.5%) |
Diabetic Nephropathy | 4 | (30.8%) |
Glomerulonephritis | 5 | (38.5%) |
Pyelonephritis | 2 | (15.4%) |
Polycistic disease | 1 | (7.7%) |
Hereditary/congenital | 0 | (0.0%) |
Systemic diseases | 9 | (69.2%) |
Medication Use | ||
Angiotensin-converting enzyme inhibitors/angiotensin II receptor-blocking agents | 9 | (69.2%) |
Beta-blockers | 5 | (38.5%) |
Calcium antagonists | 6 | (46.2%) |
Statins | 8 | (61.5%) |
Fibrates | 1 | (7.7%) |
Antiplatelets | 3 | (23.1%) |
Oral anticoagulants | 4 | (30.8%) |
Furosemide or triamterene | 4 | (30.8%) |
Thiazides | 1 | (7.7%) |
Potassium sparing diuretics | 1 | (7.7%) |
Ion-exchange resins | 0 | (0.0%) |
Before Nuts Diet (To) | Before Control Diet (To) | Inter-Group p-Value | |||
---|---|---|---|---|---|
Median | (Q1–Q3) | Median | (Q1–Q3) | ||
BMI (kg/m2) | 27 | (24–32) | 32 | (25–34) | 0.457 |
Systolic Blood Pressure (mm Hg) | 150 | (126–162) | 129 | (122–146) | 0.281 |
Diastolic blood pressure (mm Hg) | 76 | (71–82) | 69 | (66–80) | 0.072 |
Heart rate (bpm) | 62 | (54–72) | 66 | (59–76) | 0.329 |
Serum Parameters | |||||
pH | 7.4 | (7.3–7.4) | 7.4 | (7.4–7.4) | 0.697 |
pCO2 (mmHg) | 52 | (46–56) | 46 | (44–49) | 0.027 |
Bicarbonate (mEq/L) | 27 | (26–30) | 26 | (25–27) | 0.117 |
Base excess (mmol/L) | 3.3 | (1.6–5.6) | 1.3 | (0.4–3.3) | 0.054 |
Phosphorous (mg/dL) | 3.4 | (2.9–3.7) | 3.5 | (3.1–4.0) | 0.681 |
Potassium (mg/dL) | 4.6 | (4.2–5.1) | 4.3 | (4.2–4.5) | 0.105 |
HDL cholesterol (mg/dL) | 52 | (41–59) | 44 | (38–62) | 0.681 |
LDL cholesterol (mg/dL) | 87 | (73–121) | 83 | (70–111) | 0.939 |
Cholesterol (mg/dL) | 148 | (133–197) | 161 | (129–201) | 0.817 |
Triglycerides (mg/dL) | 85 | (73–111) | 94 | (78–132) | 0.412 |
Creatinine (mg/dL) | 1.5 | (1.3–1.6) | 1.6 | (1.4–1.8) | 0.555 |
Glucose (mg/dL) | 104 | (97–127) | 113 | (98–153) | 0.608 |
Glycated hemoglobin (%) | 5.7 | (5.5–7.0) | 5.8 | (5.6–7.4) | 0.439 |
Hemoglobin (g/dL) | 14 | (12–15) | 14 | (12–15) | 0.980 |
FGF 23 (ng/mL) | 115 | (68–174) | 112 | (66–135) | 0.758 |
Sodium (mEq/L) | 140 | (140–143) | 140 | (140–141) | 0.638 |
Chlorine (mEq/L) | 107 | (105–108) | 106 | (105–108) | 0.815 |
Albumin (mg/dL) | 4.2 | (4.1–4.5) | 4.3 | (4.1–4.4) | 0.755 |
Calcium (mg/dL) | 9.4 | (9.2–9.8) | 9.2 | (8.9–9.6) | 0.226 |
Magnesium (mg/dL) | 2.1 | (1.8–2.1) | 1.9 | (1.8–2.1) | 0.340 |
PTHi (pg/mL) | 89 | (53–98) | 69 | (40–139) | 0.758 |
Alkaline phosphatase (u/L) | 79 | (65–109) | 79 | (70–100) | 0.959 |
25-OH Vitamin D3 (ng/mL) | 28 | (12–38) | 27 | (18–36) | 0.918 |
C-reactive protein (mg/L) | 2.3 | (1.7–3.0) | 2.1 | (1.0–4.9) | 0.837 |
Urinary Parameters | |||||
pH | 5.6 | (5.2–5.8) | 6.2 | (6.0–6.6) | 0.029 |
Phosphate (mg/24 h) | 707 | (332–838) | 442 | (325–893) | 0.980 |
Potassium (mEq24 h) | 57 | (49–93) | 59 | (40–76) | 0.538 |
Tubular reabsorption (%) | 70 | (70–85) | 80 | (76–87) | 0.183 |
Urea (mg/dL) | 58 | (52–76) | 55 | (39–70) | 0.681 |
Glomerular filter (mL/min/1.73 m2) | 45 | (33–49) | 42 | (30–48) | 0.663 |
Microalbumin (mg/24 h) | 223 | (27–865) | 60 | (24–369) | 0.479 |
Uric Acid (mg/24 h) | 6.5 | (5.3–7.1) | 6.4 | (4.6–7.2) | 1.000 |
Protein (mg/24 h) | 591 | (125–1369) | 287 | (127–718) | 0.579 |
Oxalate (mg/24 h) | 24 | (19–27) | 27 | (19–34) | 0.248 |
Sodium (mEq/24 h) | 128 | (96–193) | 132 | (116–191) | 0.837 |
Chlorine (mEq/24 h) | 127 | (98–201) | 134 | (103–189) | 0.918 |
After Nuts Diet (T1) | After Control Diet (T1) | InterG p-Value | |||||
---|---|---|---|---|---|---|---|
Median | (Q1–Q3) | intraG p-Value | Median | (Q1–Q3) | intraG p-Value | ||
BMI (kg/m2) | 0.0 | (−0.6–0.3) | 0.919 | −0.2 | (−0.7–0.8) | 0.656 | 0.719 |
Systolic BP (mm Hg) | −4.0 | (−28.0–0.0) | 0.021 | 5.0 | (−10.0–13.0) | 0.624 | 0.040 |
Diastolic BP (mm Hg) | −4.0 | (−14.5–1.0) | 0.054 | −3.0 | (−9.0–5.0) | 0.581 | 0.342 |
Heart rate (bpm) | 2.0 | (−3.5–6.5) | 0.307 | −2.0 | (−9.0–0.5) | 0.099 | 0.068 |
Serum Parameters | |||||||
pH | −0.02 | (−0.03–0.02) | 0.356 | −0.01 | (−0.03–0.00) | 0.237 | 0.815 |
pCO2 (mmHg) | 0.0 | (−4.4–3.0) | 0.814 | 1.0 | (−1.0–5.0) | 0.099 | 0.269 |
Bicarbonate (mEq/L) | 0.5 | (−1.5–1.1) | 0.944 | 0.70 | (−2.2–2.2) | 0.600 | 0.590 |
Base excess (mmol/L) | 0.3 | (−1.2–1.2) | 0.753 | 0.50 | (−0.8–3.6) | 0.196 | 0.355 |
Phosphorous (mg/dL) | 0.1 | (−0.2–0.5) | 0.212 | 0.10 | (−0.2–0.5) | 0.478 | 0.777 |
Potassium (mg/dL) | −0.3 | (−0.7–0.1) | 0.050 | 0.00 | (−0.3–0.1) | 0.403 | 0.255 |
HDL cholesterol (mg/dL) | −4.0 | (−9.0–2.5) | 0.248 | 2.0 | (−4.0–4.5) | 0.889 | 0.217 |
LDL cholesterol (mg/dL) | −5.4 | (−12.5–−3.3) | 0.016 | 2.0 | (−9.0–3.2) | 0.861 | 0.077 |
Cholesterol (mg/dL) | −9.0 | (−23.5–5.5) | 0.147 | −7.0 | (−18.0–5.5) | 0.136 | 0.663 |
Triglycerides (mg/dL) | 0.0 | (−20.5–12.5) | 0.563 | −7.0 | (−45.5–18.00) | 0.345 | 0.644 |
Creatinine (mg/dL) | 0.0 | (−0.1–0.3) | 0.442 | −0.1 | (−0.2–0.1) | 0.327 | 0.293 |
Glucose (mg/dL) | 2.0 | (−17.5–23.5) | 0.701 | −2.0 | (−13.0–27.0) | 0.861 | 0.898 |
Glycated hemoglobin (%) | 0.0 | (−0.2–0.2) | 0.632 | 0.0 | (−0.4–0.1) | 0.442 | 0.483 |
Hemoglobin (g/dL) | −0.1 | (−0.6–0.6) | 0.582 | −0.2 | (−0.7–0.2) | 0.327 | 0.757 |
FGF 23 (ng/mL) | −0.2 | (−12.6–23.0) | 0.657 | 3.1 | (−23.0–18.4) | 0.861 | 0.762 |
Sodium (mEq/L) | 0.0 | (−1.0–1.5) | 0.715 | 1.0 | (−0.5–2.5) | 0.118 | 0.253 |
Chlorine (mEq/L) | 1.0 | (−1.0–2.5) | 0.287 | −1.0 | (−3.5–0.5) | 0.199 | 0.067 |
Albumin (mg/dL) | −0.1 | (−0.2–0.2) | 0.391 | −0.1 | (−0.2–0.1) | 0.258 | 0.958 |
Calcium (mg/dL) | 0.0 | (−0.4–0.2) | 0.593 | 0.1 | (−0.2–0.5) | 0.478 | 0.354 |
Magnesium (mg/dL) | 0.0 | (−0.1–0.1)) | 0.538 | 0.1 | (−0.1–0.2) | 0.505 | 0.959 |
PTHi (pg/mL) | −2.0 | (−14.1–10.0) | 0.583 | −3.5 | (−15.0–3.25) | 0.249 | 0.555 |
Alkaline phosphatase (u/L) | −6.0 | (−8.0–2.5) | 0.054 | −2.0 | (−9.5–13.0) | 0.834 | 0.471 |
25-OH Vitamin D3 (ng/mL) | −0.6 | (−3.9–2.0) | 0.388 | −3.2 | (−5.0–1.7) | 0.221 | 0.573 |
C-reactive protein (mg/L) | 0.0 | (−0.8–0.8) | 0.929 | 0.1 | (−0.7–2.0) | 0.456 | 0.456 |
pH | −0.14 | (−0.42–0.05) | 0.133 | −0.38 | (−0.59–0.11) | 0.045 | 0.425 |
Phosphate (mg/24 h) | −37.0 | (−365–196) | 0.650 | 9.0 | (−76–169) | 0.382 | 0.427 |
Potassium (mEq24 h) | −1.3 | (−20.7–9.3) | 0.173 | 0.7 | (−4.5–17.5) | 0.347 | 0.106 |
Tubular reabsorption (%) | −4.4 | (−10.0–10.0) | 0.937 | −6.6 | (−11.5–2.2) | 0.041 | 0.268 |
Urea (mg/dL) | 1.0 | (−10.0–15.5) | 0.551 | 4.0 | (−8.5–13.0) | 0.462 | 0.939 |
Glomerular F. (mL/min/1.73 m2) | −1.0 | (−7.5–4.5) | 0.479 | 2.0 | (−4.15–5.50) | 0.386 | 0.207 |
Microalbumin (mg/24 h) | −19.0 | (−174.0–3.3) | 0.011 | 26.0 | (−59.7–30.5) | 0.650 | 0.029 |
Uric Acid (mg/24 h) | 0.0 | (−0.6–0.3) | 0.410 | −0.1 | (−0.6–0.1) | 0.134 | 0.662 |
Protein (mg/24 h) | −10.0 | (−183–7.5) | 0.972 | 11.3 | (−93.5–88.5) | 0.600 | 0.101 |
Oxalate (mg/24 h) | −4.9 | (−7.3–5.5) | 0.279 | 0.3 | (−14.2–4.5) | 0.552 | 0.980 |
Sodium (mEq/24 h) | −21.0 | (−58.3–4.5) | 0.071 | 1.0 | (−23.0–22.0) | 0.917 | 0.096 |
Chlorine (mEq/24 h) | −26.4 | (−68.0–5.5) | 0.028 | −11.0 | (−54.9–27.5) | 0.442 | 0.293 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis, P.; Molina, M.; Berga, F.; Muñoz, E.; Fortuny, R.; Costa-Bauzá, A.; Grases, F.; Buades, J.M. A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease. Nutrients 2020, 12, 63. https://doi.org/10.3390/nu12010063
Sanchis P, Molina M, Berga F, Muñoz E, Fortuny R, Costa-Bauzá A, Grases F, Buades JM. A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease. Nutrients. 2020; 12(1):63. https://doi.org/10.3390/nu12010063
Chicago/Turabian StyleSanchis, Pilar, Marilisa Molina, Francisco Berga, Elena Muñoz, Regina Fortuny, Antonia Costa-Bauzá, Felix Grases, and Juan Manuel Buades. 2020. "A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease" Nutrients 12, no. 1: 63. https://doi.org/10.3390/nu12010063
APA StyleSanchis, P., Molina, M., Berga, F., Muñoz, E., Fortuny, R., Costa-Bauzá, A., Grases, F., & Buades, J. M. (2020). A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease. Nutrients, 12(1), 63. https://doi.org/10.3390/nu12010063