Correlates, Facilitators and Barriers of Healthy Eating Among Primary Care Patients with Prediabetes in Singapore—A Mixed Methods Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Quantitative Phase
2.3. Sample Size Calculation
2.4. Survey Questionnaire
2.5. Assessment of Dependent Variable
2.6. Assessment of Independent Variables
2.7. Statistical Analysis
2.8. Qualitative Phase
2.9. Qualitative Data Analysis
2.10. Ethics Approval and Participant Consent
3. Results
3.1. Quantitative Phase Results
3.2. Qualitative Phase Participant Characteristics
3.3. Qualitative Phase Results: Facilitators for Those Meeting the Recommendation
3.4. Qualitative Phase Results: Barriers in Those not Meeting the Recommendation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Ligthart, S.; van Herpt, T.T.; Leening, M.J.; Kavousi, M.; Hofman, A.; Stricker, B.H.; van Hoek, M.; Sijbrands, E.J.; Franco, O.H.; Dehghan, A. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study. Lancet Diabetes Endocrinol. 2016, 4, 44–51. [Google Scholar] [CrossRef]
- Lim, R.; Chen, C.; Naidoo, N.; Gay, G.; Tang, W.; Seah, D.; Chen, R.; Tan, N.C.; Lee, J.; Tai, E.S.; Chia, K.S.; Lim, W.Y. Anthropometrics indices of obesity, and all-cause and cardiovascular disease-related mortality, in an Asian cohort with type 2 diabetes mellitus. Diabetes Metab. 2015, 41, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Allender, S.; Foster, C.; Hutchinson, L.; Arambepola, C. Quantification of urbanization in relation to chronic diseases in developing countries: A systematic review. J. Urban. Health. 2008, 85, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Kyrø, C.; Tjønneland, A.; Overvad, K.; Olsen, A.; Landberg, R. Higher Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes among Middle-Aged Men and Women: The Danish Diet, Cancer, and Health Cohort. J. Nutr. 2018, 148, 1434–1444. [Google Scholar] [CrossRef]
- Maryniuk, M.D. From Pyramids to Plates to Patterns: Perspectives on Meal Planning. Diabetes Spectr. 2017, 30, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Koegel, K. Back to Basics: All About MyPlate Food Groups. J. Acad. Nutr. Diet. 2017, 117, 1351–1353. [Google Scholar] [CrossRef]
- Taylor, L.M.; Johnson, S.T.; Vallance, J.K.; Stadnyk, J.; Basualdo-Hammond, C. Food and physical activity behaviours of adults attending a prediabetes education class. Can. J. Diabetes. 2014, 38, 432–438. [Google Scholar] [CrossRef]
- Block, G.; Azar, K.M.; Romanelli, R.J.; Block, T.J.; Palaniappan, L.P.; Dolginsky, M.; Block, C.H. Improving diet, activity and wellness in adults at risk of diabetes: Randomized controlled trial. Nutr. Diabetes 2016, 6, e231. [Google Scholar] [CrossRef]
- Zhou, Q.P.; Oh, K.M. Comparison of lifestyle behaviors and related factors between Asian American and white adults with prediabetes. Nurs. Health Sci. 2012, 14, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Rahmati-Najarkolaei, F.; Pakpour, M.H.; Saffari, M.; Hosseini, M.S.; Hajizadeh, F.; Chen, H.; Yekaninejad, M.S. Determinants of Lifestyle Behavior in Iranian Adults with Prediabetes: Applying the Theory of Planned Behavior. Arch. Iran. Med. 2017, 20, 198–204. [Google Scholar] [PubMed]
- Blue, C.L. Does the theory of planned behavior identify diabetes-related cognitions for intention to be physically active and eat a healthy diet? Public Health Nurs. 2007, 24, 141–150. [Google Scholar] [CrossRef] [PubMed]
- den Braver, N.R.; de Vet, E.; Duijzer, G.; Ter Beek, J.; Jansen, S.C.; Hiddink, G.J.; Feskens, E.J.M.; Haveman-Nies, A. Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooraikul, B.; Sirichote, A.; Siripongvutikorn, S. Southeast Asian Diets and Health Promotion. In Wild-Type Food in Health Promotion and Disease Prevention; De Meester, F., Watson, R.R., Eds.; Humana Press: New York City, NY, USA, 2008. [Google Scholar]
- Kao, F.J.; Chiu, Y.S.; Tsou, M.J.; Chiang, W.D. Effects of Chinese domestic cooking methods on the carotenoid composition of vegetables in Taiwan. LWT Food Sci. Technol. 2012, 46, 485–492. [Google Scholar] [CrossRef]
- Hill, J.O.; Galloway, J.M.; Goley, A.; Marrero, D.G.; Minners, R.; Montgomery, B.; Peterson, G.E.; Ratner, R.E.; Sanchez, E.; Aroda, V.R. Scientific statement: Socioecological determinants of prediabetes and type 2 diabetes. Diabetes Care 2013, 36, 2430–2439. [Google Scholar] [CrossRef]
- Townsend, N.; Foster, C. Developing and applying a socio-ecological model to the promotion of healthy eating in the school. Public Health Nutr. 2013, 16, 1101–1108. [Google Scholar] [CrossRef]
- Verstraeten, R.; Van Royen, K.; Ochoa-Avilés, A.; Penafiel, D.; Holdsworth, M.; Donoso, S.; Maes, L.; Kolsteren, P. A conceptual framework for healthy eating behavior in ecuadorian adolescents: A qualitative study. PLoS ONE 2014, 9, e87183. [Google Scholar] [CrossRef]
- Hermann, J.; Korlagunta, K.; Parker, S.; Payton, M. Utilizing the Socio-ecological Model to Evaluate Factors Affecting Older Adults Ability to Grocery Shop, Prepare Food, and Eat. J. Nutr. Educ. Behav. 2011, 43, S24. [Google Scholar]
- Seguin, R.; Connor, L.; Nelson, M.; LaCroix, A.; Eldridge, G. Understanding barriers and facilitators to healthy eating and active living in rural communities. J. Nutr. Metab. 2014, 2014, 146502. [Google Scholar] [CrossRef]
- Lim, R.B.; Zheng, H.; Yang, Q.; Cook, A.R.; Chia, K.S.; Lim, W.Y. Ethnic and gender specific life expectancies of the Singapore population, 1965 to 2009—Converging, or diverging? BMC Public Health 2013, 13, 1012. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Board. Information paper on diabetes in Singapore. Available online: https://www.nrdo.gov.sg/docs/librariesprovider3/default-document-library/diabetes-info-paper-v6.pdf?sfvrsn=0 (accessed on 13 December 2018).
- Wong, L.Y.; Toh, M.P.; Tham, L.W. Projection of prediabetes and diabetes population size in Singapore using a dynamic Markov model. J. Diabetes 2017, 9, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Nanditha, A.; Ma, R.C.; Ramachandran, A.; Snehalatha, C.; Chan, J.C.; Chia, K.S.; Shaw, J.E.; Zimmet, P.Z. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care 2016, 39, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Health Promotion Board. My Healthy Plate Singapore. Available online: https://www.healthhub.sg/live-healthy/1332/plan-your-meals-with-my-healthy-plate (accessed on 13 December 2018).
- Milena, Z.; Dainora, G.; Alin, S. Qualitative research methods: A comparison between focus-group and in-depth interview. Ann. Univ. Oradea Econ. Sci. Ser. 2008, 17, 1279–1283. [Google Scholar]
- Khoo, H.S.; Lim, Y.W.; Vrijhoef, H.J. Primary healthcare system and practice characteristics in Singapore. Asia Pac. Fam. Med. 2014, 13, 8. [Google Scholar] [CrossRef]
- WHO; International Diabetes Foundation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Health Promotion Board, Singapore. Report of the National Nutrition Survey 2010. Available online: https://www.hpb.gov.sg/docs/default-source/pdf/nns-2010-report.pdf?sfvrsn=18e3f172_2 (accessed on 13 December 2018).
- Ng, R.Y.-X.; Wong, Y.-S.; Yeo, J.-Y.; Koh, C.L.-Z.; Wilson, C.; Gan, S.K.-E. The associations between dietary practices and dietary quality, biological health indicators, perceived stress, religiosity, culture, and gender in multicultural Singapore. J. Ethnic Foods 2018, 5, 220–227. [Google Scholar] [CrossRef]
- Lim, R.B.T.; Tham, D.K.T.; Müller-Riemenschneider, F.; Wong, M.L. Are University Students in Singapore Meeting the International and National Recommended Daily Servings of Fruits and Vegetables? Asia Pac. J. Public Health 2017, 29, 199–210. [Google Scholar] [CrossRef]
- Lew, K.; Barlow, P.J. Dietary practices of adolescents in Singapore and Malaysia. Singapore Med. J. 2005, 46, 282–288. [Google Scholar]
- Coutinho, L.M.; Scazufca, M.; Menezes, P.R. Methods for estimating prevalence ratios in cross-sectional studies. Rev. Saude. Publica. 2008, 42, 992–998. [Google Scholar] [CrossRef]
- Manios, Y.; Moschonis, G.; Grammatikaki, E.; Mavrogianni, C.; van den Heuvel, E.G.; Bos, R.; Singh-Povel, C. Food group and micronutrient intake adequacy among children, adults and elderly women in Greece. Nutrients 2015, 7, 1841–1858. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, J.; Hu, Z.; Gao, F.; Zhou, Q.; Song, S.; Qin, L.; Xu, H. Diabetes-related behaviours among elderly people with pre-diabetes in rural communities of Hunan, China: A cross-sectional study. BMJ Open. 2018, 8, e015747. [Google Scholar] [PubMed]
- August, K.J.; Sorkin, D.H. Marital status and gender differences in managing a chronic illness: the function of health-related social control. Soc. Sci. Med. 2010, 71, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Trief, P.M.; Sandberg, J.; Greenberg, R.P.; Graff, K.; Castronova, N.; Yoon, M.; Weinstock, R.S. Describing support: A qualitative study of couples living with diabetes. Fam. Syst. Health 2003, 21, 57–67. [Google Scholar] [CrossRef]
- Miller, D.; Brown, J.L. Marital interactions in the process of dietary change for type 2 diabetes. J. Nutr. Educ. Behav. 2005, 37, 226–234. [Google Scholar] [CrossRef]
- Lim, K.; Kayser-Jones, J.; Waters, C.; Yoo, G. Aging, Health, and Physical Activity in Korean Americans. Geriatr. Nurs. 2007, 28, 112–119. [Google Scholar] [CrossRef]
- Abdullah, N.F.; Teo, P.S.; Foo, L.H. Ethnic Differences in the Food Intake Patterns and Its Associated Factors of Adolescents in Kelantan, Malaysia. Nutrients 2016, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Lachat, C.; Nago, E.; Verstraeten, R.; Roberfroid, D.; Van Camp, J.; Kolsteren, P. Eating out of home and its association with dietary intake: A systematic review of the evidence. Obes. Rev. 2012, 13, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Mullis, R.M. Environmental Interventions to Promote Healthy Eating: A Review of Models, Programs, and Evidence. Health Educ. Q. 1988, 15, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
Characteristic # | Did not Meet the Recommendation (n = 175) | Met the Recommendation (n = 248) | p Value + |
---|---|---|---|
Sociodemographic characteristics | |||
Sex | |||
Female | 82 (46.9) | 120 (48.4) | 0.76 |
Male | 93 (53.1) | 128 (51.6) | |
Ethnicity | |||
Chinese | 136 (77.7) | 205 (82.7) | 0.51 |
Malay | 25 (14.3) | 24 (9.7) | |
Indian | 12 (6.9) | 16 (6.4) | |
Others | 2 (1.1) | 3 (1.2) | |
Marital status | |||
Single | 34 (19.4) | 26 (10.5) | 0.009 |
Married | 141 (80.6) | 222 (89.5) | |
Highest education level | |||
No formal education | 7 (4.0) | 10 (4.1) | 1.00 |
Primary | 47 (26.9) | 67 (27.0) | |
Secondary | 73 (41.7) | 102 (41.1) | |
Post-secondary | 48 (27.4) | 69 (27.8) | |
Housing type * | |||
1–3 room public housing | 30 (17.2) | 49 (19.8) | 0.80 |
4–5 room public housing | 107 (61.5) | 147 (59.5) | |
Executive flat/private property | 37 (21.3) | 51 (20.7) | |
Current work status | |||
Currently working | 108 (61.7) | 131 (52.8) | 0.07 |
Not working | 67 (38.3) | 117 (47.2) | |
Age in years, mean (SD) | 60.4 (9.3) | 63.0 (7.9) | 0.003 |
Medical history | |||
Type of prediabetes | |||
Impaired fasting glycaemia | 90 (51.4) | 135 (54.4) | 0.54 |
Impaired glucose tolerance | 85 (48.6) | 113 (45.6) | |
Years with prediabetes, mean (SD) | 2.0 (2.0) | 2.1 (2.3) | 0.54 |
Dietary habits | |||
Frequency of breakfast | |||
Almost everyday | 153 (87.4) | 226 (91.1) | 0.47 |
Sometimes | 14 (8.0) | 14 (5.7) | |
Rarely or never | 8 (4.6) | 8 (3.2) | |
Frequency of main meals daily, median (IQR) * | 3.0 (2.0–4.0) | 3.0 (2.0–3.0) | 0.63 |
Frequency of snacks daily, median (IQR) | 1.0 (0–3.0) | 1.0 (0–3.0) | 0.55 |
Frequency of eating out weekly, mean (SD) | 5.9 (5.7) | 4.2 (3.7) | <0.001 |
Frequency of deep-fried food consumption weekly, mean (SD) | 2.1 (1.7) | 1.4 (1.4) | <0.001 |
Frequency of sweet desserts weekly, mean (SD) | 1.3 (1.7) | 1.1 (1.4) | 0.16 |
Characteristic # | Crude PR (95% CI) | p Value | Adjusted PR + (95% CI) | p Value |
---|---|---|---|---|
Sociodemographic characteristics | ||||
Sex | ||||
Female | Referent | 0.78 | Referent | 0.23 |
Male | 0.97 (0.82–1.16) | 1.11 (0.93–1.32) | ||
Ethnicity | ||||
Chinese | Referent | <0.001 | Referent | 0.03 |
Malay | 0.81 (0.74–0.89) | 0.81 (0.70–0.95) # | ||
Indian | 0.95 (0.56–1.61) | 0.89 (0.51–1.54) | ||
Others | 1.00 (0.51–1.95) | 0.98 (0.41–2.30) | ||
Marital status | ||||
Single | Referent | <0.001 | Referent | 0.001 |
Married | 1.41 (1.18–1.69) | 1.38 (1.13–1.68) # | ||
Highest education level | ||||
No formal education | Referent | 0.99 | Referent | 0.17 |
Primary | 1.00 (0.61–1.63) | 1.14 (0.70–1.87) | ||
Secondary | 0.99 (0.69–1.43) | 1.22 (0.81–1.85) | ||
Post-secondary | 1.00 (0.71–1.42) | 1.24 (0.84–1.81) | ||
Housing type * | ||||
1–3 room public housing | Referent | 0.09 | Referent | 0.06 |
4–5 room public housing | 0.93 (0.85–1.02) | 0.90 (0.78–1.03) | ||
Executive flat/private property | 0.93 (0.76–1.15) | 0.88 (0.75–1.04) | ||
Current work status | ||||
Currently working | Referent | 0.11 | Referent | 0.97 |
Not working | 1.16 (0.97–1.39) | 1.00 (0.83–1.19) | ||
Age in years | 1.01 (1.01–1.02) | 0.001 | 1.01 (1.00–1.01) | 0.16 |
Medical history | ||||
Type of prediabetes | ||||
Impaired fasting glycaemia | Referent | 0.53 | Referent | 0.44 |
Impaired glucose tolerance | 0.95 (0.81–1.11) | 0.94 (0.81–1.10) | ||
Years with prediabetes | 1.01 (0.99–1.03) | 0.34 | 1.00 (0.98–1.03) | 0.83 |
Dietary habits | ||||
Frequency of breakfast | ||||
Almost everyday | Referent | 0.28 | Referent | 0.42 |
Sometimes | 0.84 (0.64–1.09) | 0.86 (0.68–1.09) | ||
Rarely or never | 0.84 (0.45–1.55) | 0.93 (0.51–1.69) | ||
Frequency of main meals daily * | 0.99 (0.80–1.22) | 0.94 | 0.96 (0.78–1.17) | 0.66 |
Frequency of snacks daily | 0.97 (0.87–1.08) | 0.59 | 0.99 (0.89–1.09) | 0.82 |
Frequency of eating out weekly | 0.96 (0.95–0.98) | <0.001 | 0.97 (0.96–0.98) # | <0.001 |
Frequency of deep-fried food consumption weekly | 0.88 (0.81–0.95) | 0.001 | 0.90 (0.82–0.98) # | 0.02 |
Frequency of sweet desserts weekly | 0.96 (0.91–1.02) | 0.18 | 1.00 (0.97–1.04) | 0.95 |
Characteristic | n = 48 |
---|---|
Sociodemographic characteristics | |
Sex | |
Female | 24 (50.0) |
Male | 24 (50.0) |
Ethnicity | |
Chinese | 37 (77.1) |
Malay | 6 (12.5) |
Indian | 5 (10.4) |
Age in years, mean (SD) | 59.8 (9.1) |
Behaviour | |
Healthy plate recommendation | |
Meeting | 24 (50.0) |
Not meeting | 24 (50.0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, R.B.T.; Wee, W.K.; For, W.C.; Ananthanarayanan, J.A.; Soh, Y.H.; Goh, L.M.L.; Tham, D.K.T.; Wong, M.L. Correlates, Facilitators and Barriers of Healthy Eating Among Primary Care Patients with Prediabetes in Singapore—A Mixed Methods Approach. Nutrients 2019, 11, 1014. https://doi.org/10.3390/nu11051014
Lim RBT, Wee WK, For WC, Ananthanarayanan JA, Soh YH, Goh LML, Tham DKT, Wong ML. Correlates, Facilitators and Barriers of Healthy Eating Among Primary Care Patients with Prediabetes in Singapore—A Mixed Methods Approach. Nutrients. 2019; 11(5):1014. https://doi.org/10.3390/nu11051014
Chicago/Turabian StyleLim, Raymond Boon Tar, Wei Keong Wee, Wei Chek For, Jayalakshmy Aarthi Ananthanarayanan, Ying Hua Soh, Lynette Mei Lim Goh, Dede Kam Tyng Tham, and Mee Lian Wong. 2019. "Correlates, Facilitators and Barriers of Healthy Eating Among Primary Care Patients with Prediabetes in Singapore—A Mixed Methods Approach" Nutrients 11, no. 5: 1014. https://doi.org/10.3390/nu11051014
APA StyleLim, R. B. T., Wee, W. K., For, W. C., Ananthanarayanan, J. A., Soh, Y. H., Goh, L. M. L., Tham, D. K. T., & Wong, M. L. (2019). Correlates, Facilitators and Barriers of Healthy Eating Among Primary Care Patients with Prediabetes in Singapore—A Mixed Methods Approach. Nutrients, 11(5), 1014. https://doi.org/10.3390/nu11051014