Dietary Patterns during Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus: Evidence from a Chinese Prospective Birth Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure: Prenatal Diet
2.3. Outcome: Gestational Diabetes Mellitus
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Dietary Patterns
3.3. Dietary Patterns in Relation to Gestational Diabetes Mellitus
3.4. Dietary Patterns in Relation to Plasma Glucose Levels
3.5. Food Groups Intake in Relation to Gestational Diabetes Mellitus Risk and Plasma Glucose Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alberti, K.; Zimmet, P.Z. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications Report of a WHO Consultation. Diabet. Med. 2015, 15, 539–553. [Google Scholar] [CrossRef]
- Reece, E.A.; Leguizamón, G.; Wiznitzer, A. Gestational diabetes: The need for a common ground. Lancet 2009, 373, 1789–1797. [Google Scholar] [CrossRef]
- Kessous, R.; Shohamvardi, I.; Pariente, G.; Sherf, M.; Sheiner, E. An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart 2013, 99, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Lehnen, H.; Zechner, U.; Haaf, T. Epigenetics of gestational diabetes mellitus and offspring health: The time for action is in early stages of life. Mol. Hum. Reprod. 2013, 19, 415–422. [Google Scholar] [CrossRef]
- Hedderson, M.; Ehrlich, S.; Sridhar, S.; Darbinian, J.; Moore, S.; Ferrara, A. Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. Diabetes Care 2012, 35, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Makgoba, M.; Savvidou, M.D.; Steer, P.J. An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG 2012, 119, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.M.; Yang, H.X. [Comparison of the diagnostic criteria for gestational diabetes mellitus in China]. Zhonghua Fu Chan Ke Za Zhi 2011, 46, 578. [Google Scholar]
- Wei, Y.; Yang, H.; Zhu, W.; Yang, H.; Li, H.; Yan, J.; Zhang, C. International Association of Diabetes and Pregnancy Study Group criteria is suitable for gestational diabetes mellitus diagnosis: Further evidence from China. Chin. Med. J. (Engl.) 2014, 127, 3553–3556. [Google Scholar]
- Bao, W.; Tobias, D.K.; Hu, F.B.; Chavarro, J.E.; Zhang, C. Pre-pregnancy potato consumption and risk of gestational diabetes mellitus: Prospective cohort study. BMJ 2016, 352, h6898. [Google Scholar] [CrossRef]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.W.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Dayeon, S.; Kyung, W.L.; Song, W.O. Dietary Patterns during Pregnancy Are Associated with Risk of Gestational Diabetes Mellitus. Nutrients 2015, 7, 9369–9382. [Google Scholar] [Green Version]
- Zhang, C.; Schulze, M.B.; Solomon, C.G.; Hu, F.B. A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 2006, 49, 2604–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zareei, S.; Homayounfar, R.; Naghizadeh, M.M.; Ehrampoush, E.; Rahimi, M. Dietary pattern in pregnancy and risk of gestational diabetes mellitus (GDM). Diabetes Metab. Syndr. 2018, 12, S187140211730485X. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Solomon, C.G.; Hu, F.B. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006, 29, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Barbieiri, P.; Nunes, J.C.; Torres, A.G.; Nishimura, R.Y.; Zuccolotto, D.C.; Crivellenti, L.C.; Franco, L.J.; Sartorelli, D.S. Indices of dietary fat quality during midpregnancy is associated with gestational diabetes. Nutrition 2016, 32, 656–661. [Google Scholar] [CrossRef]
- Schoenaker, D.A.; Mishra, G.D.; Callaway, L.K.; Soedamah-Muthu, S.S. The Role of Energy, Nutrients, Foods, and Dietary Patterns in the Development of Gestational Diabetes Mellitus: A Systematic Review of Observational Studies. Diabetes Care 2016, 39, 16–23. [Google Scholar] [CrossRef]
- Pham, N.M.; Do, V.V.; Lee, A.H. Polyphenol-rich foods and risk of gestational diabetes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Qiu, C.; Frederick, I.O.; Zhang, C.; Sorensen, T.K.; Enquobahrie, D.A.; Williams, M.A. Risk of gestational diabetes mellitus in relation to maternal egg and cholesterol intake. Am. J. Epidemiol. 2011, 173, 649–658. [Google Scholar] [CrossRef]
- Bao, W.; Bowers, K.; Tobias, D.K.; Hu, F.B.; Zhang, C. Prepregnancy Dietary Protein Intake, Major Dietary Protein Sources, and the Risk of Gestational Diabetes Mellitus. Diabetes Care 2013, 36, 2001–2008. [Google Scholar] [CrossRef]
- Bo, S.; Menato, G.; Lezo, A.; Signorile, A.; Bardelli, C.; De, M.F.; Massobrio, M.; Pagano, G. Dietary fat and gestational hyperglycaemia. Diabetologia 2001, 44, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Storlien, L.; Jenkins, A.B.; Tapsell, L.; Jin, Y.; Pan, J.; Shao, Y.; Calvert, G.; Moses, R.; Shi, H.; Zhu, X. Dietary variables and glucose tolerance in pregnancy. Diabetes Care 2000, 23, 460–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- He, J.R.; Yuan, M.Y.; Chen, N.N.; Lu, J.H.; Hu, C.Y.; Mai, W.B.; Zhang, R.F.; Pan, Y.H.; Qiu, L.; Wu, Y.F.; et al. Maternal dietary patterns and gestational diabetes mellitus: A large prospective cohort study in China. Br. J. Nutr. 2015, 113, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Du, H.Y.; Jiang, H.; O, K.; Chen, B.; Xu, L.J.; Liu, S.P.; Yi, J.P.; He, G.S.; Qian, X. Association of Dietary Pattern during Pregnancy and Gestational Diabetes Mellitus: A Prospective Cohort Study in Northern China. Biomed. Environ. Sci. 2017, 30, 887. [Google Scholar] [PubMed]
- Zhou, X.; Chen, R.; Zhong, C.; Wu, J.; Li, X.; Li, Q.; Cui, W.; Yi, N.; Xiao, M.; Yin, H.; et al. Maternal dietary pattern characterised by high protein and low carbohydrate intake in pregnancy is associated with a higher risk of gestational diabetes mellitus in Chinese women: A prospective cohort study. Br. J. Nutr. 2018, 120, 1045–1055. [Google Scholar] [CrossRef]
- Seymour, J.D.; Chia, A.; Colega, M.; Jones, B.; Mckenzie, E.; Cai, S.; Godfrey, K.; Kwek, K.; Saw, S.M.; Conlon, C. Maternal Dietary Patterns and Gestational Diabetes Mellitus in a Multi-Ethnic Asian Cohort: The GUSTO Study. Nutrients 2016, 8, 574. [Google Scholar] [CrossRef]
- Mak, J.K.L.; Pham, N.M.; Lee, A.H.; Tang, L.; Pan, X.F.; Binns, C.W.; Sun, X. Dietary patterns during pregnancy and risk of gestational diabetes: A prospective cohort study in Western China. Nutr. J. 2018, 17, 107. [Google Scholar] [CrossRef]
- Tobias, D.K.; Zhang, C.; Chavarro, J.; Bowers, K.; Rich-Edwards, J.; Rosner, B.; Mozaffarian, D.; Hu, F.B. Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus. Am. J. Clin. Nutr. 2012, 96, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Tryggvadottir, E.A.; Medek, H.; Birgisdottir, B.E.; Geirsson, R.T.; Gunnarsdottir, I. Association between healthy maternal dietary pattern and risk for gestational diabetes mellitus. Eur. J. Clin. Nutr. 2016, 70, 237–242. [Google Scholar] [CrossRef]
- Bao, W.; Bowers, K.; Tobias, D.K.; Olsen, S.F.; Chavarro, J.; Vaag, A.; Kiely, M.; Zhang, C. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: A prospective cohort study. Am. J. Clin. Nutr. 2014, 99, 1378. [Google Scholar] [CrossRef] [PubMed]
- Schoenaker, D.A.; Soedamah-Muthu, S.S.; Callaway, L.K.; Mishra, G.D. Pre-pregnancy dietary patterns and risk of gestational diabetes mellitus: Results from an Australian population-based prospective cohort study. Diabetologia 2015, 58, 2726–2735. [Google Scholar] [CrossRef] [PubMed]
- Donazar-Ezcurra, M.; Lopez-Del, B.C.; Martinez-Gonzalez, M.A.; Basterra-Gortari, F.J.; de Irala, J.; Bes-Rastrollo, M. Pre-pregnancy adherences to empirically derived dietary patterns and gestational diabetes risk in a Mediterranean cohort: The Seguimiento Universidad de Navarra (SUN) project. Br. J. Nutr. 2017, 118, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M. The Nutrition Transition in Developing Asia: Dietary Change, Drivers and Health Impacts; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Crozier, S.R.; Inskip, H.M.; Godfrey, K.M.; Robinson, S.M. Dietary patterns in pregnant women: A comparison of food-frequency questionnaires and 4 d prospective diaries. Br. J. Nutr. 2008, 99, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.T. Invited Commentary: Some Limitations of Semiquantitative Food Frequency Questionnaires. Am. J. Epidemiol. 1992, 135, 1133–1136. [Google Scholar] [CrossRef]
- Robinson, S.; Godfrey, K.; Osmond, C.; Cox, V.; Barker, D. Evaluation of a food frequency questionnaire used to assess nutrient intakes in pregnant women. Eur. J. Clin. Nutr. 1996, 50, 302–308. [Google Scholar] [PubMed]
- Chen, L.W.; Aris, I.M.; Bernard, J.Y.; Tint, M.T.; Chia, A.; Colega, M.; Gluckman, P.D.; Shek, L.P.; Saw, S.M.; Chong, Y.S.; et al. Associations of Maternal Dietary Patterns during Pregnancy with Offspring Adiposity from Birth Until 54 Months of Age. Nutrients 2016, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Nutrition and Food Safety; China Centers for Disease Control. China Food Composition, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.; Hod, M.; Kitzmiler, J.L.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Xiang, M.; Konishi, M.; Hu, H.; Takahashi, M.; Fan, W.; Nishimaki, M.; Ando, K.; Kim, H.K.; Tabata, H.; Arao, T.; Sakamoto, S. Reliability and Validity of a Chinese-Translated Version of a Pregnancy Physical Activity Questionnaire. Matern. Child Health J. 2016, 20, 1940–1947. [Google Scholar] [CrossRef]
- Du, H.; Li, L.; Bennett, D.; Guo, Y.; Turnbull, I.; Yang, L.; Bragg, F.; Zheng, B.; Chen, Y.; Chen, J. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults. PLoS Med. 2017, 14, e1002279. [Google Scholar] [CrossRef]
- Tovar, A.; Must, A.; Bermudez, O.I.; Hyatt, R.R.; Chasantaber, L. The Impact of Gestational Weight Gain and Diet on Abnormal Glucose Tolerance During Pregnancy in Hispanic Women. Matern. Child Health J. 2009, 13, 520–530. [Google Scholar] [CrossRef]
- Mcintosh, M.; Miller, C. A diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutr. Rev. 2010, 59, 52–55. [Google Scholar] [CrossRef]
- Feskens, E.J.; Kromhout, D. Habitual dietary intake and glucose tolerance in euglycaemic men: The Zutphen Study. Int. J. Epidemiol. 1990, 19, 953–959. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef]
- Sugiyama, M.; Tang, A.C.; Wakaki, Y.; Koyama, W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur. J. Clin. Nutr. 2003, 57, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Saldana, T.M.; Siega-Riz, A.M.; Adair, L.S. Effect of macronutrient intake on the development of glucose intolerance during pregnancy. Am. J. Clin. Nutr. 2004, 79, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Carolan, M.; Davey, M.A.; Biro, M.A.; Kealy, M. Maternal age, ethnicity and gestational diabetes mellitus. Midwifery 2012, 28, 778–783. [Google Scholar] [CrossRef]
- Lao, T.T.; Ho, LF.; Chan, B.C.; Leung, W.C. Maternal age and prevalence of gestational diabetes mellitus. Diabetes Care 2006, 29, 948–949. [Google Scholar] [CrossRef]
- Ma, X.; Becker, D.; Arena, V.C.; Vicini, P.; Greenbaum, C. The effect of age on insulin sensitivity and insulin secretion in first-degree relatives of type 1 diabetic patients: A population analysis. J. Clin. Endocrinol. Metab. 2009, 94, 2446–2451. [Google Scholar] [CrossRef]
- Fu, J.; Qu, Y.; Ji, F.; Li, H.; Chen, F. A retrospective cohort survey of problems related to second childbirths during the 2-child policy period in Jiangbei District of Ningbo City in China. Medicine (Baltimore) 2018, 97, e0604. [Google Scholar] [CrossRef]
- Meharg, A.A.; Lombi, E.; Williams, P.N.; Scheckel, K.G.; Feldmann, J.; Raab, A.; Zhu, Y.; Islam, R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 2008, 42, 1051–1057. [Google Scholar] [CrossRef]
- Sun, G.X.; Williams, P.N.; Carey, A.M.; Zhu, Y.G.; Deacon, C.; Raab, A.; Feldmann, J.; Islam, R.M.; Meharg, A.A. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 2008, 42, 7542–7546. [Google Scholar] [CrossRef]
- Xia, X.; Liang, C.; Sheng, J.; Yan, S.; Huang, K.; Li, Z.; Pan, W.; Tao, R.; Hao, J.; Zhu, B. Association between serum arsenic levels and gestational diabetes mellitus: A population-based birth cohort study. Environ. Pollut. 2018, 235, 850–856. [Google Scholar] [CrossRef]
- Barrett, J.R. Mother load: Arsenic may contribute to gestational diabetes. Environ. Health Perspect. 2009, 117, A310. [Google Scholar] [CrossRef]
- Ju, L.; Yu, D.; Fang, H.; Guo, Y.; Xu, X.; Zhao, L. Dietary patterns among Chinese residents, 2010–2012. China J. Public Health 2018, 34, 1373–1376. [Google Scholar]
- Cuco, G.; Fernandez-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef]
Characteristics | All Participants, n (%) | Gestational Diabetes Mellitus, n (%) | ||
---|---|---|---|---|
No | Yes | p-value | ||
n = 1014 | n = 776 (76.5) | n = 238 (23.5) | ||
Age at enrollment (Years) | <0.001 | |||
<25 | 61 (6.0) | 53 (6.8) | 8 (3.4) | |
25–29 | 442 (43.6) | 363 (46.8) | 79 (33.2) | |
30–34 | 357 (35.2) | 263 (33.9) | 94 (39.5) | |
≥35 | 154 (15.2) | 97 (12.5) | 57 (24.0) | |
Ethnicity | 0.001 | |||
Han | 790 (77.9) | 624 (80.4) | 166 (69.7) | |
Minority | 224 (22.1) | 152 (19.6) | 72 (30.3) | |
Educational attainment | 0.918 | |||
Middle school or below | 86 (8.5) | 64 (8.2) | 22 (9.2) | |
High school | 147 (14.5) | 111 (14.3) | 36 (15.1) | |
College | 683 (67.4) | 527 (67.9) | 156 (65.6) | |
Graduate or above | 98 (9.6) | 74 (7.3) | 24 (10.1) | |
Household income per year, CNY | 0.678 | |||
<30,000 | 251 (24.8) | 193 (24.9) | 58 (24.4) | |
30,000𠄓<50,000 | 266 (26.2) | 197 (25.4) | 69 (29.0) | |
50,000𠄓<70,000 | 224 (22.1) | 177 (22.8) | 47 (19.7) | |
≥70,000 | 235 (23.2) | 178 (22.9) | 57 (23.9) | |
Missing Value | 38 (3.8) | 31 (4.0) | 7 (2.9) | |
Parity | 0.001 | |||
0 | 790 (77.9) | 624 (80.4) | 166 (69.8) | |
≥1 | 224 (22.1) | 152 (19.6) | 72 (30.2) | |
Smoking before or during pregnancy | 0.664 | |||
No | 996 (98.2) | 763 (98.3) | 233 (97.9) | |
Yes | 18 (1.8) | 13 (1.7) | 5 (2.1) | |
Pre-pregnancy BMI category, kg/m2 | <0.001 | |||
<18.5 | 127 (12.5) | 114 (14.7) | 13 (5.5) | |
18.5𠄓<23.0 | 540 (53.3) | 429 (55.3) | 111 (46.6) | |
23.0𠄓<25.0 | 151 (14.9) | 112 (14.4) | 39 (16.4) | |
≥25.0 | 196 (19.3) | 121 (15.6) | 75 (31.5) | |
Physical activity, MET-hour/week | 0.667 | |||
<100 | 264 (26.0) | 200 (25.8) | 64 (26.9) | |
100 to <200 | 557 (54.9) | 432 (55.7) | 125 (52.5) | |
≥200 | 193 (19.0) | 144 (18.5) | 49 (20.6) | |
Energy intake, kcal/d a | 0.017 | |||
<2100 | 619 (61.1) | 458 (59.0) | 161 (67.7) | |
≥2100 | 395 (38.9) | 318 (41.0) | 77 (32.3) |
Dietary Patterns | Food | Factor Loading Coefficient | Variance Explained (%) |
---|---|---|---|
Three-Day Food Diaries | |||
Traditional (TFD) | Tubers | 0.70 | 8.0 |
Vegetables | 0.57 | ||
Fruits | 0.55 | ||
Rice | 0.47 | ||
Red meat | 0.45 | ||
Eggs | 0.26 | ||
Nuts | 0.20 | ||
Sweet foods (TFD) | Pastries and candies | 0.63 | 6.5 |
Sweet beverages | 0.63 | ||
Shrimps, crabs and mussels | 0.52 | ||
Fruits | 0.31 | ||
Red meat | 0.20 | ||
Fried food–beans (TFD) | Fried foods | 0.75 | 6.0 |
Beans and products | 0.67 | ||
Dairy products | 0.29 | ||
Organ meats | −0.23 | ||
Whole grain–seafood (TFD) | Whole grains | 0.76 | 5.9 |
Shrimps, crabs and mussels | 0.28 | ||
Nuts | 0.24 | ||
Seaweed | 0.20 | ||
Eggs | −0.27 | ||
Dairy products | −0.30 | ||
Rice | −0.37 | ||
Cumulative variance explained (%) | 26.4 | ||
Food frequency questionnaire | |||
Fish-seafood (FFQ) | Marine fish | 0.83 | 13.2 |
Shrimps, crabs and mussels | 0.80 | ||
Freshwater fish | 0.77 | ||
Seaweed | 0.66 | ||
Organ meat | 0.51 | ||
Protein–sweets (FFQ) | Dairy products | 0.75 | 10.5 |
Milk | 0.72 | ||
Eggs | 0.66 | ||
Beans and products | 0.58 | ||
Nuts | 0.40 | ||
Pastries and candies | 0.31 | ||
Traditional (FFQ) | Vegetables | 0.86 | 8.7 |
Fruits | 0.81 | ||
Rice | 0.49 | ||
Nuts | 0.25 | ||
Cumulative variance explained (%) | 32.4 |
Characteristics | Dietary Pattern Score, Mean (SD) | ||||||
---|---|---|---|---|---|---|---|
Three-Day Food Diaries | Food Frequency Questionnaire | ||||||
Traditional (TFD) | Sweet Foods (TFD) | Fried Food–Beans (TFD) | Whole Grain–Seafood (TFD) | Fish–Seafood (FFQ) | Protein–Sweets (FFQ) | Traditional (FFQ) | |
Age at enrollment (years) | |||||||
<25 | 0.51 (1.55) | 0.15 (1.46) | 0.23 (1.73) | −0.25 (1.14) | −0.62 (1.70) | −0.40 (2.22) | −0.49 (1.71) |
25–29 | 0.06 (1.75) | 0.02 (1.41) | −0.01 (1.27) | −0.12 (1.11) | 0.12 (3.25) | 0.30 (2.69) | 0.17 (1.92) |
30–34 | −0.14 (1.65) | −0.04 (1.17) | 0.06 (1.24) | 0.15 (1.37) | −0.04 (2.76) | −0.25 (2.10) | −0.17 (1.88) |
≥35 | −0.04 (1.85) | −0.02 (1.58) | −0.21 (1.14) | 0.11 (1.24) | 0.00 (2.88) | −0.10 (2.66) | 0.11 (1.95) |
p | 0.041 | 0.786 | 0.073 | 0.004 | 0.333 | 0.007 | 0.012 |
Ethnicity | |||||||
Han | −0.02 (1.72) | 0.01 (1.37) | 0 (1.29) | 0.01 (1.22) | 0.06 (2.98) | −0.02 (2.41) | −0.02 (1.89) |
Minority | 0.10 (1.76) | −0.04 (1.31) | 0.02 (1.22) | −0.08 (1.32) | −0.31 (2.82) | 0.11 (2.80) | 0.07 (2.00) |
p | 0.412 | 0.699 | 0.831 | 0.389 | 0.140 | 0.540 | 0.608 |
Educational attainment | |||||||
Middle school | 0.17 (1.60) | −0.28 (0.82) | −0.09 (1.24) | −0.14 (1.01) | −0.76 (2.32) | −0.91 (2.23) | −0.68 (2.00) |
High school | 0.21 (1.78) | −0.07 (1.23) | −0.11 (1.23) | 0.02 (0.99) | −0.26 (2.66) | −0.01 (2.49) | −0.19 (2.02) |
College | 0.00 (1.75) | 0.04 (1.35) | 0.06 (1.30) | −0.04 (1.26) | 0.14 (3.12) | 0.08 (2.56) | 0.10 (1.89) |
Graduate or above | −0.49 (1.46) | 0.04 (1.88) | −0.16 (1.21) | 0.39 (1.49) | 0.06 (2.58) | 0.28 (1.83) | 0.17 (1.59) |
p | 0.012 | 0.189 | 0.210 | 0.009 | 0.039 | 0.003 | 0.002 |
Household income per year, CNY | |||||||
<30,000 | −0.04 (1.77) | −0.15 (1.15) | −0.10 (1.10) | −0.07 (1.07) | 0.00 (2.87) | 0.05 (2.73) | −0.26 (1.93) |
30,000–<50,000 | 0.15 (1.70) | −0.02 (1.10) | 0.10 (1.41) | −0.04 (1.21) | −0.23 (2.52) | −0.21 (2.11) | 0.01 (1.81) |
50,000–<70,000 | −0.01 (1.68) | 0.06 (1.40) | 0.01 (1.28) | 0.05 (1.32) | 0.01 (2.49) | 0.16 (2.75) | 0.03 (1.84) |
≥70,000 | −0.15 (1.78) | 0.06 (1.68) | −0.03 (1.29) | 0.12 (1.37) | 0.36 (3.91) | 0.16 (2.34) | 0.35 (1.98) |
Missing Value | 0.23 (1.44) | 0.40 (1.80) | −0.13 (1.31) | −0.32 (1.02) | −0.71 (1.59) | −0.78 (2.00) | −0.69 (2.01) |
p | 0.337 | 0.119 | 0.553 | 0.192 | 0.121 | 0.099 | 0.002 |
Parity | |||||||
0 | −0.01 (1.69) | 0.03 (1.43) | 0.02 (1.28) | 0.03 (1.25) | 0.02 (2.96) | 0.15 (2.56) | 0.02 (1.88) |
≥1 | 0.04 (1.83) | −0.12 (1.10) | −0.09 (1.26) | −0.09 (1.20) | −0.08 (2.95) | −0.51 (2.08) | −0.08 (2.00) |
p | 0.702 | 0.130 | 0.242 | 0.201 | 0.634 | <0.001 | 0.486 |
Smoking status during pregnancy | |||||||
Yes | −0.60 (1.30) | 0.09 (1.64) | −0.48 (0.78) | −0.36 (0.74) | 0.44 (5.64) | −0.38 (2.51) | −0.36 (1.76) |
No | 0.01 (1.73) | 0.00 (1.36) | 0.01 (1.28) | 0.01 (1.24) | −0.01 (2.89) | 0.01 (2.47) | 0.01 (1.91) |
p | 0.136 | 0.767 | 0.104 | 0.211 | 0.520 | 0.517 | 0.416 |
Pre-pregnancy BMI category, kg/m2 | |||||||
<18.5 | −0.12 (1.75) | −0.01 (1.28) | −0.03 (1.30) | −0.25 (0.96) | 0.12 (4.17) | 0.20 (3.14) | 0.45 (1.96) |
18.5–<23.0 | 0.07 (1.72) | −0.01 (1.25) | 0.01 (1.31) | 0.01 (1.26) | 0.06 (2.67) | 0.13 (3.14) | 0.17 (1.92) |
23.0–<25.0 | 0.04 (1.64) | 0.07 (1.81) | −0.02 (1.17) | 0.12 (1.43) | −0.02 (3.13) | −0.13 (2.29) | −0.29 (1.82) |
≥25.0 | −0.15 (1.77) | −0.02 (1.31) | 0.00 (1.26) | 0.04 (1.17) | −0.22 (2.60) | −0.38 (2.13) | −0.52 (1.76) |
p | 0.363 | 0.927 | 0.988 | 0.076 | 0.680 | 0.060 | <0.001 |
Physical Activity, MET-hour/week | |||||||
<100 | −0.06 (1.71) | 0.08 (1.73) | −0.01 (1.44) | 0.00 (1.30) | −0.11 (2.93) | −0.28 (2.10) | −0.26 (1.78) |
100 to <200 | 0.02 (1.69) | −0.01 (1.21) | 0.01 (1.19) | 0.01 (1.19) | −0.08 (2.97) | 0.04 (2.51) | 0.07 (1.88) |
≥200 | 0.03 (1.83) | −0.09 (1.19) | −0.02 (1.27) | −0.03 (1.27) | 0.37 (2.94) | 0.27 (2.81) | 0.14 (2.11) |
p | 0.783 | 0.420 | 0.921 | 0.926 | 0.156 | 0.060 | 0.035 |
Energy intake, kcal/day a | |||||||
<2100 | −0.72 (1.23) | −0.19 (1.15) | −0.23 (1.09) | −0.14 (1.00) | 0.00 (2.79) | 0.09 (2.59) | 0.03 (1.91) |
≥2100 | 1.12 (1.79) | 0.30 (1.59) | 0.37 (1.45) | 0.23 (1.51) | 0.00 (3.20) | −0.14 (2.28) | −0.07 (1.91) |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.991 | 0.145 | 0.374 |
Dietary Patterns | Q1 (n = 253) | Q2 (n = 253) | Q3 (n = 253) | Q4 (n = 255) | p for Trend |
---|---|---|---|---|---|
Reference | Odds Ratio (95% Confidence Interval) | ||||
Three-Day Food Diaries | |||||
Traditional (TFD) | |||||
Model 1 | 1.00 | 0.69 (0.47, 1.03) | 0.85 (0.58, 1.26) | 0.42 (0.27, 0.64) | <0.001 |
Model 2 | 1.00 | 0.65 (0.43, 0.98) | 0.83 (0.56, 1.23) | 0.38 (0.24, 0.60) | <0.001 |
Model 3 | 1.00 | 0.69 (0.45, 1.05) | 0.90 (0.58, 1.42) | 0.40 (0.23, 0.71) | 0.005 |
Sweet foods (TFD) | |||||
Model 1 | 1.00 | 1.04 (0.70, 1.56) | 1.03 (0.69, 1.55) | 0.76 (0.50, 1.16) | 0.231 |
Model 2 | 1.00 | 0.95 (0.62, 1.43) | 0.90 (0.59, 1.37) | 0.71 (0.46, 1.10) | 0.129 |
Model 3 | 1.00 | 0.94 (0.61, 1.44) | 0.90 (0.58, 1.39) | 0.73 (0.46, 1.16) | 0.199 |
Fried food–beans (TFD) | |||||
Model 1 | 1.00 | 1.41 (0.94, 2.12) | 1.13 (0.74, 1.71) | 1.01 (0.66, 1.54) | 0.606 |
Model 2 | 1.00 | 1.41 (0.92, 2.14) | 1.18 (0.77, 1.82) | 1.07 (0.69, 1.66) | 0.871 |
Model 3 | 1.00 | 1.46 (0.95, 2.26) | 1.28 (0.82, 2.02) | 1.08 (0.67, 1.74) | 0.940 |
Whole grain–seafood (TFD) | |||||
Model 1 | 1.00 | 1.27 (0.82, 1.97) | 1.68 (1.10, 2.57) | 1.75 (1.15, 2.67) | 0.006 |
Model 2 | 1.00 | 1.15 (0.73, 1.80) | 1.60 (1.03, 2.48) | 1.88 (1.22, 2.90) | 0.002 |
Model 3 | 1.00 | 1.06 (0.67, 1.68) | 1.49 (0.95, 2.35) | 1.73 (1.10, 2.74) | 0.007 |
Food Frequency Questionnaire | |||||
Fish–seafood (FFQ) | |||||
Model 1 | 1.00 | 0.80 (0.53, 1.21) | 0.94 (0.62, 1.41) | 0.97 (0.65, 1.45) | 0.822 |
Model 2 | 1.00 | 0.86 (0.55, 1.35) | 1.00 (0.64, 1.59) | 0.95 (0.58, 1.57) | 0.963 |
Model 3 | 1.00 | 0.87 (0.55, 1.40) | 0.99 (0.61, 1.60) | 0.95 (0.56, 1.59) | 0.986 |
Protein–sweets (FFQ) | |||||
Model 1 | 1.00 | 0.74 (0.49, 1.11) | 0.83 (0.55, 1.24) | 0.78 (0.52, 1.17) | 0.341 |
Model 2 | 1.00 | 0.83 (0.54, 1.28) | 1.04 (0.65, 1.66) | 1.06 (0.63, 1.78) | 0.667 |
Model 3 | 1.00 | 0.94 (0.60, 1.49) | 1.23 (0.75, 2.00) | 1.18 (0.69, 2.03) | 0.434 |
Traditional (FFQ) | |||||
Model 1 | 1.00 | 0.69 (0.47, 1.01) | 0.44 (0.29, 0.66) | 0.45 (0.30, 0.68) | <0.001 |
Model 2 | 1.00 | 0.68 (0.46, 1.02) | 0.43 (0.28, 0.66) | 0.43 (0.28, 0.68) | <0.001 |
Model 3 | 1.00 | 0.64 (0.42, 0.98) | 0.40 (0.26, 0.64) | 0.44 (0.27, 0.70) | <0.001 |
Dietary Patterns | Blood Glucose Level, β (95% CI) | ||
---|---|---|---|
Fasting | 1 h after OGTT | 2 h after OGTT | |
Three-Day Food Diaries | |||
Traditional (TFD) | |||
Model 1 | −0.03 (−0.05, −0.01) | −0.11 (−0.18, −0.06) | −0.04 (−0.08, 0.01) |
Model 2 | −0.03 (−0.05, −0.01) | −0.13 (−0.19, −0.07) | −0.04 (−0.09, 0.00) |
Model 3 | −0.03 (−0.05, 0.00) | -0.11 (−0.19, −0.03) | −0.02 (−0.08, 0.04) |
Whole grain-seafood (TFD) | |||
Model 1 | 0.00 (−0.03, 0.03) | 0.12 (0.04, 0.21) | 0.06 (0.00, 0.13) |
Model 2 | 0.00 (−0.02, 0.03) | 0.14 (0.06,0.22) | 0.07 (0.01, 0.14) |
Model 3 | 0.00 (−0.03, 0.03) | 0.11 (0.02, 0.19) | 0.04 (−0.02, 0.11) |
Food Frequency Questionnaire | |||
Traditional (FFQ) | |||
Model 1 | −0.03 (−0.05, −0.01) | −0.06 (−0.12, −0.01) | −0.05 (−0.09, −0.01) |
Model 2 | −0.04 (−0.06, −0.02) | −0.08 (−0.14, −0.01) | −0.06 (−0.11, −0.01) |
Model 3 | −0.04 (−0.06, −0.02) | −0.07 (−0.13, −0.01) | −0.07 (−0.11, −0.02) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Oken, E.; Aris, I.M.; Lin, P.-I.D.; Ma, Y.; Ding, N.; Gao, M.; Wei, X.; Wen, D. Dietary Patterns during Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus: Evidence from a Chinese Prospective Birth Cohort Study. Nutrients 2019, 11, 405. https://doi.org/10.3390/nu11020405
Hu J, Oken E, Aris IM, Lin P-ID, Ma Y, Ding N, Gao M, Wei X, Wen D. Dietary Patterns during Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus: Evidence from a Chinese Prospective Birth Cohort Study. Nutrients. 2019; 11(2):405. https://doi.org/10.3390/nu11020405
Chicago/Turabian StyleHu, Jiajin, Emily Oken, Izzuddin M. Aris, Pi-I D. Lin, Yanan Ma, Ning Ding, Ming Gao, Xiaotong Wei, and Deliang Wen. 2019. "Dietary Patterns during Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus: Evidence from a Chinese Prospective Birth Cohort Study" Nutrients 11, no. 2: 405. https://doi.org/10.3390/nu11020405
APA StyleHu, J., Oken, E., Aris, I. M., Lin, P.-I. D., Ma, Y., Ding, N., Gao, M., Wei, X., & Wen, D. (2019). Dietary Patterns during Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus: Evidence from a Chinese Prospective Birth Cohort Study. Nutrients, 11(2), 405. https://doi.org/10.3390/nu11020405