Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet
2.2. Physical Activity
2.3. Alcohol and Tobacco Consumption
2.4. Comorbidity Factors
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomized trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Vilarnau, C.; Stracker, D.M.; Funtikova, A.; da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2019, 72, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Malcomson, F.C.; Mathers, J.C. Nutrition and ageing. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Harris, J., Korolchuk, V., Eds.; Springer: Singapore, 2018; Volume 90. [Google Scholar]
- Cashman, K.D. Diet, nutrition, and bone health. J. Nutr. 2007, 137, 2507–2512. [Google Scholar] [CrossRef] [PubMed]
- de Expertos, P. Documento de la sociedad española de reumatología sobre la osteoporosis postmenopáusica. Esp. Reumatol. 2001, 28, 148–153. [Google Scholar]
- Arana-Arri, E.; Gutiérrez-Ibarluzea, I.; Ecenarro, A.; Batarrita, J.A. Prevalencia de ciertos hábitos determinantes de osteoporosis en mujeres postmenopáusicas del país vasco en 2003. Esp. Salud Pública 2007, 81, 647–656. [Google Scholar] [CrossRef]
- Vázquez, M. Osteoporosis: La crisis de un paradigma. Med. Clin. 2010, 134, 206–207. [Google Scholar] [CrossRef]
- Haring, B.; Crandall, C.J.; Wu, C.; LeBlanc, E.S.; Shikany, J.M.; Carbone, L.; Orchard, T.; Thomas, F.; Wactawaski-Wende, J.; Cauley, J.A.; et al. Dietary patterns and fractures in postmenopausal women: Results from the women’s health initiative. JAMA Intern. Med. 2016, 176, 645–652. [Google Scholar] [CrossRef]
- Willett, W.C. Mediterranean diet and fracture risk. JAMA Intern. Med. 2016, 176, 652–653. [Google Scholar] [CrossRef]
- Mocciaro, G.; Ziauddeen, N.; Godos, J.; Marranzano, M.; Chan, M.-Y.; Ray, S. Does a Mediterranean-type dietary pattern exert a cardio-protective effect outside the Mediterranean region? A review of current evidence. Int. J. Food Sci. Nutr. 2018, 69, 524–535. [Google Scholar] [CrossRef]
- Malmir, H.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2018, 57, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Aguado, P.; del Campo, M.T.; Garcés, M.V.; Gonzalez-casaús, M.L.; Bernad, M.; Gijón-Baños, J.; Martín Mola, E.; Torrijos, A.; Martínez, E. Low vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: Their relationship with bone mineral density. Osteoporos. Int. 2000, 11, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.G.; Zeng, X.T.; Wang, J.; Liu, L. Association between calcium or vitamin D supplementation and fracture incidence in community-dwelling older adults. A systematic review and meta-analysis. JAMA 2017, 318, 2466–2482. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Hannan, M.T.; Chen, H.; Cupples, L.A.; Wilson, P.W.F.; Kiel, D.P. Potassium, magnesium and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr. 1999, 69, 727–736. [Google Scholar] [CrossRef]
- Tucker, K.L.; Chen, H.; Hannan, M.T.; Cupples, L.A.; Wilson, P.W.; Felson, D.; Kiel, D.P. Bone mineral density and dietary patterns in older adults: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2002, 76, 245–252. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Rueda-Medina, B.; González-Jiménez, E.; Correa-Bautista, J.E.; Ramírez-Vélez, R.; Schmidt-RioValle, J. Dietary inflammatory index, bone health and body composition in a population of young adults: A cross-sectional study. Int. J. Food Sci. Nutr. 2018, 69, 1013–1019. [Google Scholar] [CrossRef]
- Godosa, J.; Rapisardab, G.; Marventanoc, S.; Galvanod, F.; Mistrettac, A.; Grossoa, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; de Meester, F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases 2016, 4, 28. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J. Am. Coll. Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef]
- Esposito, K.; Ciotola, M.; Giugliano, D. Mediterranean diet, endothelial function and vascular inflammatory markers. Public Health Nutr. 2006, 9, 1073–1076. [Google Scholar] [CrossRef] [Green Version]
- Barbaresko, J.; Koch, M.; Schulze, M.; Nöthlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Guralp, O. Effects of vitamin E on bone remodeling in perimenopausal women: Mini review. Maturitas 2014, 79, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Retraction and republication: Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A.; Dawson, M.F.; Holland, J.; Arnold, S.; Cryer, C.; Doyle, Y.; Rice, J.; Hodgson, C.R.; Sowden, A.; Fullerton, D.; et al. Preventing falls and subsequent injury in older people. Qual. Health Care 1996, 5, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Serra-Majem, L.; Carrasco, J.L.; Roman, B.; Ngo, J.; Bertomeu, I.; Obrador, B. The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: A review. Public Health Nutr. 2006, 9, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gonzalez, M.A.; Sanchez-Villegas, A. The emerging role of Mediterranean diets in cardiovascular epidemiology: Monounsaturated fats, olive oil, red wine or the whole pattern? Eur. J. Epidemiol. 2004, 19, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.A.; Farahmand, B.Y.; Weiderpass, E.; Michaëlsson, K.; Alberts, A.; Persson, I.; Ljunghall, S. Cigarette smoking, alcohol consumption, and risk of hip fracture in women. Arch. Intern. Med. 2001, 161, 983–988. [Google Scholar] [CrossRef]
- Hoidrup, S.; Gronbaek, M.; Lauritzen, J.B.; Schroll, M.; Copenhagen Centre for Prospective Population Studies. Alcohol intake, beverage preference, and risk of hip fracture in men and women. Am. J. Epidemiol. 1999, 149, 993–1001. [Google Scholar] [CrossRef]
- FRAX. Evaluation Risk Tool Developed by World Health Organization (WHO). Available online: http://www.sheffield.ac.uk/FRAX/index.htm (accessed on 8 January 2011).
- Kontogianni, M.D.; Meslistas, L.; Yannakoulia, M.; Malagaris, I.; Panagiotakos, D.B.; Yiannakouris, N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 2009, 25, 165–171. [Google Scholar] [CrossRef]
- Feart, C.; Lorrain, S.; Coupez, V.G.; Samieri, C.; Letenneur, L.; Paineau, D.; Barberger-Gateau, P. Adherence to a Mediterranean diet and risk of fractures in French older persons. Osteoporos. Int. 2013, 24, 3031–3041. [Google Scholar] [CrossRef] [Green Version]
- Norris, J. Fewer Fractures with Mediterranean Diet. Available online: https://www.univadis.co.uk/viewarticle/fewer-fractures-with-mediterranean-diet-421977?s1=news (accessed on 4 June 2019).
- Norris, J. Osteoporosis: Mediterranean Diet Associated with Greater BMD. Available online: https://www.univadis.co.uk/viewarticle/osteoporosis-mediterranean-diet-associated-with-greater-bmd-406248?s1=news (accessed on 4 June 2019).
- Norris, J. Mediterranean Diet Associated with Fewer Hip Fractures. Available online: https://www.univadis.co.uk/viewarticle/mediterranean-diet-associated-with-fewer-hip-fractures-388024?s1=news (accessed on 4 June 2019).
- de Jonge, E.A.L.; de Jong, J.C.K.; Hofman, A.; Uitterlinden, A.G.G.; Kieboom, B.C.T.; Voortman, T.; Franco, O.H.; Rivadeneira, F. Dietary patterns explaining differences in bone mineral density and hip structure in the elderly: The Rotterdam Study. Am. J. Clin. Nutr. 2017, 105, 203–211. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, O.; Rivas, A.; Ramos-Torrecillas, J.; de Luna-Bertos, E.; Ruiz, C. The effect of olive oil on osteoporosis prevention. Int. J. Food Sci. Nutr. 2014, 65, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Ima-Nirwana, S. Olives and bone: A green osteoporosis prevention option. Int. J. Environ. Res. Public Health 2016, 13, 755. [Google Scholar] [CrossRef] [PubMed]
- García-Gavilán, J.; Bulló, M.; Canudas, S.; Martínez-González, M.; Estruch, R.; Giardina, S.; Fitó, M.; Corella, D.; Ros, E.; Salas-Salvadó, J. Extra virgin olive oil consumption reducción the risk of osteoporótica fractures in the predimed trial. Clin. Nutr. 2018, 37, 329–335. [Google Scholar] [CrossRef]
- García-Gavilán, J.F.; Bulló, M.; Camacho-Barcia, L.; Rosique-Esteban, N.; Hernández-Alonso, P.; Basora, J.; Martínez-González, M.A.; Estruch, R.; Fitó, M.; Salas-Salvadó, J. Higher dietary glycemic index and glycemic load values increase the risk of osteoporotic fracture in the PREvención con DIeta MEDiterránea (PREDIMED)-Reus trial. Am. J. Clin. Nutr. 2018, 107, 1035–1042. [Google Scholar] [CrossRef]
- Balk, E.M.; Adam, G.P.; Langberg, V.N.; Earley, A.; Clark, P.; Ebeling, P.R.; Mithal, A.; Rizzoli, R.; Zerbini, C.A.F.; Pierroz, D.D.; et al. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017, 28, 3315–3324. [Google Scholar] [CrossRef]
- Rapuri, P.B.; Gallagher, J.C.; Kinyamy, H.K.; Ryschon, K.L. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am. J. Clin. Nutr. 2001, 74, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Moyer, V.A. Prevention of falls in community-dwelling older adults: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012, 157, 197–204. [Google Scholar] [CrossRef]
- Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2012, 30, 3–44. [Google Scholar] [CrossRef]
- Medical Advisory Secretariat. Prevention of falls and fall-related injuries in community-dwelling seniors: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2008, 8, 1–78. [Google Scholar]
- Wolf, S.L.; Barnhart, H.X.; Kutner, N.G.; McNeely, E.; Coogler, C.; Xu, T.; Atlanta FICSIT Group. Reducing frailty and falls in older persons: An investigation of Tai Chi and computerized training. J. Am. Geriatr. Soc. 1996, 44, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Qin, L.; Lau, M.; Woo, J.; Au, S.; Choy, W.; Lee, K.; Lee, S. A randomized prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch. Phys. Med. Rehabil. 2004, 85, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Body, J.J.; Bergmann, P.; Boonen, S.; Boutsen, Y.; Bruyere, O.; Devogelaer, J.P.; Goemaere, S.; Hollevoet, N.; Kaufman, J.-M.; Milisen, K.; et al. Non-pharmacological management of osteoporosis: A consensus of the Belgian Bone Club. Osteoporos. Int. 2011, 22, 2769–2788. [Google Scholar] [CrossRef] [PubMed]
- The Centers for Disease Control and Prevention. Facts about Physical Activity. Available online: https://www.cdc.gov/physicalactivity/data/facts.htm Accessed 11/12/2018 (accessed on 20 July 2018).
- The U.S. Department of Health and Human Services. Executive Summary: Physical Activity Guidelines for Americans. Available online: https://health.gov/paguidelines/second-edition/pdf/PAG_ExecutiveSummary.pdf (accessed on 11 December 2018).
- Kim, H.; Wrann, C.D.; Jedrychowski, M.; Rosen, C.J.; Bonewald, L.F.; Spiegelman, B.W. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 2018, 175, 1756–1768. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Papaioannou, A.; Macintyre, N.J.; Ashe, M.C.; Heinonen, A.; Shipp, K.; Wark, J.; McGill, S.; Keller, H.; Jain, R.; et al. Too fit to fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos. Int. 2014, 25, 821–835. [Google Scholar] [CrossRef]
- McMillan, L.B.; Zengin, A.; Ebeling, P.R.; Scott, D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare 2017, 5, 85. [Google Scholar] [CrossRef]
- Mendoza, N. Características epidemiológicas de una población de mujeres posmenopáusicas con osteopenia y osteoporosis: Importancia de la dieta mediterránea. Prog. Obstet. Ginecol. 2008, 51, 265–270. [Google Scholar] [CrossRef]
- Crandall, C.J.; Yildiz, V.O.; Wactawski-Wende, J.; Johnson, K.C.; Chen, Z.; Going, S.B.; Wright, N.C.; Cauley, J.A. Postmenopausal weight change and incidence of fracture: Post hoc findings from Women’s Health Initiative Observational Study and Clinical Trials. BMJ 2015, 350, h25. [Google Scholar] [CrossRef]
- Ravn, P.; Cizza, G.; Bjarnason, N.H.; Thompson, D.; Daley, M.; Wasnich, R.D.; Mcclung, M.; Hosking, D.; Yates, A.J.; Christiansen, C. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J. Bone Miner. Res. 1999, 14, 1622–1627. [Google Scholar] [CrossRef]
- Coin, A.; Sergi, G.; Beninca, P.; Lupoli, L.; Cinti, G.; Ferrara, L.; Benedetti, G.; Tomasi, G.; Pisent, C.; Enzi, G. Bone mineral density and body composition in underweight and normal elderly subjects. Osteoporos. Int. 2000, 11, 1043–1050. [Google Scholar] [CrossRef]
- Moayyeri, A.; Luben, R.N.; Wareham, N.J.; Khaw, K.T. Body fat mass is a predictor of risk of osteoporotic fractures in women but not in men: A prospective population study. J. Intern. Med. 2012, 271, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Roig, D.; Gómez, C.; Hoces, C.; Nolla, J.M. Riesgo de fractura calculado con el índice FRAX en pacientes con osteoporosis tratados y no tratados. Med. Clin. 2010, 134, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Cordomí, C.T.; del Río, L.M.; Di Gregorio, S.; Casas, L.; Estrada, M.D.; Kotzeva, A.; Espallargues, M. Validation of the FRAX predictive model for major osteoporotic fracture in a historical cohort of Spanish women. J. Clin. Densitom. 2012, 16, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Azizieh, F.; al Ali, N.; Alessa, T.; Harvey, N.C.; McCloskey, E.; Kanis, J.A. FRAX-vs. T-score-based intervention thresholds for osteoporosis. Osteoporos. Int. 2017, 28, 3099–3105. [Google Scholar] [CrossRef]
- Kahwati, L.C.; Weber, R.P.; Pan, H.; Gourlay, M.; LeBlanc, E.; Coker-Schwimmer, M.; Viswanathan, M. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: An evidence review for the US Preventive Services Task Force. JAMA 2018, 319, 1600–1612. [Google Scholar] [CrossRef]
- Watts, N.B.; Bilezikian, J.P.; Camacho, P.M.; Greenspan, S.L.; Harris, S.T.; Hodgson, S.F.; Kleerekoper, M.; Luckey, M.; McClung, M.; Pollack, R.; et al. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr. Pract. 2010, 3, 1–37. [Google Scholar] [CrossRef]
- Murad, M.H.; Elamin, K.B.; Abu Elnour, N.O.; Elamin, M.B.; Alkatib, A.A.; Fatourechi, M.M.; Almandoz, J.P.; Mullan, R.J.; Lane, M.A.; Erwin, P.J.; et al. Clinical review: The effect of vitamin D on falls: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2011, 96, 2997–3006. [Google Scholar] [CrossRef]
- U.S. National Institutes of Health (NIH). Vitamin D: Fact Sheet for Health Professionals; NIH: Bethesda, MD, USA, 2018. Available online: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h5 (accessed on 5 March 2018).
- National Institute for Health and Care Excellence (NICE). Vitamin D: Supplement Use in Specific Population Groups. Public Health Guideline [PH56]; NICE: London, UK, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525398/ (accessed on 4 September 2018).
- Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Kubik, M.; et al. Interventions to prevent falls in community-dwelling older adults: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 1696–1704. [Google Scholar]
- USPSTF 2018. Final Recommendation Statement: Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: Preventive Medication. Available online: https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/vitamin-d-calcium-or-combined-supplementation-for-the-primary-prevention-of-fractures-in-adultspreventive-medication. (accessed on 10 April 2018).
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of vitamin D supplementation on musculoskeletal health: A systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef]
- DynaMed. Record No. T115372, Calcium and Vitamin D for Treatment and Prevention of Osteoporosis; EBSCO Information Services: Ipswich, MA, USA, 1995; Available online: https://www.dynamed.com/topics/dmp~AN~T115372 (accessed on 10 July 2019).
Osteoporosis | T | p | 95% CI 1 | |||
---|---|---|---|---|---|---|
Yes (n = 64) | No (n = 75) | Lower | Upper | |||
Age (years) | 59.7 ± 4.4 | 54.07 ± 5.6 | 6.50 | <0.001 * | 3.92 | 7.35 |
BMI (kg/m2) | 24.29 ± 3.7 | 25.46 ± 4.4 | −1.68 | 0.096 | −2.55 | 0.21 |
Tobacco 2 | 0.13 ± 0.3 | 0.24 ± 0.4 | −1.74 | 0.084 | −0.25 | 0.02 |
Alcohol 3 | 0.53 ± 0.5 | 0.67 ± 0.5 | −1.63 | 0.105 | −0.30 | 0.03 |
Menstrual status 4 | ||||||
Regular cycles | 0.02 ± 0.1 | 0.25 ± 0.4 | −4.20 | <0.001 * | −0.35 | −0.13 |
Perimenopause | 0.02 ± 0.1 | 0.13 ± 0.3 | −2.61 | 0.010 * | −0.21 | −0.03 |
Menopause | 0.97 ± 0.2 | 0.61 ± 0.5 | 5.50 | <0.001 * | 0.23 | 0.48 |
Early menopause | 0.13 ± 0.3 | 0.05 ± 0.2 | 1.50 | 0.136 | −0.02 | 0.17 |
Osteoporosis | T | p | 95% CI 1 | |||
---|---|---|---|---|---|---|
Yes (n = 64) | No (n = 75) | Lower | Upper | |||
Physical activity 2 | 0.81 ± 0.4 | 0.89 ± 0.3 | −1.35 | 0.178 | −0.20 | 0.04 |
MDI | 11.81 ± 1.8 | 11.96 ± 1.8 | −0.49 | 0.626 | −0.74 | 0.45 |
Olive oil | 2.88 ± 1.6 | 3.05 ± 1.7 | −0.64 | 0.524 | −0.73 | 0.37 |
Vegetables | 2.13 ± 1 | 2.07 ± 1.1 | 0.28 | 0.782 | −0.32 | 0.42 |
Fruit | 2.67 ± 1.4 | 2.41 ± 1.3 | 1.15 | 0.253 | −0.19 | 0.72 |
Meat | 2.81 ± 2.1 | 2.65 ± 2.4 | 0.42 | 0.676 | −0.59 | 0.91 |
Butter | 0.6 ± 1.5 | 0.38 ± 1 | 1.01 | 0.315 | −0.21 | 0.66 |
Soda | 0.87 ± 2.2 | 1.04 ± 2.2 | −0.47 | 0.640 | −0.90 | 0.56 |
Wine | 1.66 ± 2.9 | 2.32 ± 3.7 | −1.16 | 0.250 | −1.80 | 0.47 |
Legumes | 2.1 ± 1.2 | 2.15 ± 1 | −0.25 | 0.803 | −0.40 | 0.31 |
Fish | 2.68 ± 1.6 | 2.72 ± 1.5 | −0.15 | 0.878 | −0.56 | 0.48 |
Bakery products | 1.66 ± 2.6 | 1.71 ± 2.2 | −0.12 | 0.903 | −0.85 | 0.75 |
Nuts/seeds | 2.96 ± 3.1 | 2.81 ± 2.7 | 0.31 | 0.755 | −0.82 | 1.13 |
Ca (mg/day) | 796.00 ± 351.1 | 863.63 ± 347.6 | −1.14 | 0.257 | −185.14 | 49.90 |
Dairy products | 13.73 ± 8.9 | 13.64 ± 7.7 | 0.06 | 0.951 | −2.69 | 2.87 |
Milk | 3.95 ± 4.3 | 4.24 ± 4.3 | −0.40 | 0.687 | −1.74 | 1.15 |
Ca-enriched milk | 0.89 ± 3.2 | 0.68 ± 2 | 0.47 | 0.636 | −0.67 | 1.09 |
Coffee 3 | 0.02 ± 0.1 | 0.15 ± 0.4 | −2.80 | 0.006 * | −0.22 | −0.04 |
MDI | Ca | IPAQ | Alcohol | CS | Hormones | Sun | OP | ||
---|---|---|---|---|---|---|---|---|---|
MDI | Corr 1 | 1.00 | 0.05 | 0.08 | 0.09 | −0.06 | −0.09 | 0.10 | −0.11 |
p2 | 0.55 | 0.35 | 0.32 | 0.46 | 0.30 | 0.22 | 0.19 | ||
Ca | Corr 1 | 0.05 | 1.00 | 0.03 | −0.08 | 0.04 | 0.03 | 0.03 | −0.08 |
p2 | 0.55 | 0.69 | 0.33 | 0.63 | 0.72 | 0.73 | 0.33 | ||
IPAQ | Corr 1 | 0.08 | 0.03 | 1.00 | −0.10 | −0.14 | 0.09 | −0.04 | −0.08 |
p2 | 0.35 | 0.69 | 0.22 | 0.11 | 0.27 | 0.64 | 0.33 | ||
Alcohol | Corr 1 | 0.09 | −0.08 | −0.10 | 1.00 | 0.04 | −0.02 | 0.02 | −0.16 |
p2 | 0.32 | 0.33 | 0.22 | 0.65 | 0.83 | 0.81 | 0.06 | ||
CS | Corr 1 | −0.06 | 0.04 | −0.14 | 0.04 | 1.00 | 0.00 | 0.00 | 0.13 |
p2 | 0.46 | 0.63 | 0.11 | 0.65 | 0.98 | 0.99 | 0.14 | ||
Hormones | Corr 1 | −0.09 | 0.03 | 0.09 | −0.02 | 0.00 | 1.00 | 0.00 | 0.05 |
p2 | 0.30 | 0.72 | 0.27 | 0.83 | 0.98 | 0.98 | 0.56 | ||
Sun | Corr 1 | 0.10 | 0.03 | −0.04 | 0.02 | 0.00 | 0.00 | 1.00 | 0.07 |
p2 | 0.22 | 0.73 | 0.64 | 0.81 | 0.99 | 0.98 | 0.40 | ||
OP | Corr 1 | −0.11 | −0.08 | −0.08 | −0.16 | 0.13 | 0.05 | 0.07 | 1.00 |
p2 | 0.19 | 0.33 | 0.33 | 0.06 | 0.14 | 0.56 | 0.40 |
B | Wald | p | 95% CI for EXP (B) | ||
---|---|---|---|---|---|
Lower | Upper | ||||
MDI | −2.137 | 5.979 | 0.014 * | 0.021 | 0.654 |
Ca | −0.001 | 2.196 | 0.138 | 0.998 | 1.000 |
IPAQ | −0.878 | 1.795 | 0.180 | 0.115 | 1.502 |
Alcohol | −1.127 | 5.417 | 0.020 * | 0.125 | 0.837 |
CS | 1.830 | 4.972 | 0.026 * | 1.248 | 31.153 |
Age | 0.255 | 28.614 | <0.001 * | 1.175 | 1.417 |
BMI | −1.189 | 7.455 | 0.006 * | 0.130 | 0.715 |
MDIxBMI | 0.084 | 5.623 | 0.018 * | 1.015 | 1.167 |
Constant | 17.499 | 2.757 | 0.097 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomeras-Vilches, A.; Viñals-Mayolas, E.; Bou-Mias, C.; Jordà-Castro, M.; Agüero-Martínez, M.; Busquets-Barceló, M.; Pujol-Busquets, G.; Carrion, C.; Bosque-Prous, M.; Serra-Majem, L.; et al. Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study. Nutrients 2019, 11, 2508. https://doi.org/10.3390/nu11102508
Palomeras-Vilches A, Viñals-Mayolas E, Bou-Mias C, Jordà-Castro M, Agüero-Martínez M, Busquets-Barceló M, Pujol-Busquets G, Carrion C, Bosque-Prous M, Serra-Majem L, et al. Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study. Nutrients. 2019; 11(10):2508. https://doi.org/10.3390/nu11102508
Chicago/Turabian StylePalomeras-Vilches, Anna, Eva Viñals-Mayolas, Concepció Bou-Mias, MªÀngels Jordà-Castro, MªÀngels Agüero-Martínez, Montserrat Busquets-Barceló, Georgina Pujol-Busquets, Carme Carrion, Marina Bosque-Prous, Lluís Serra-Majem, and et al. 2019. "Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study" Nutrients 11, no. 10: 2508. https://doi.org/10.3390/nu11102508
APA StylePalomeras-Vilches, A., Viñals-Mayolas, E., Bou-Mias, C., Jordà-Castro, M., Agüero-Martínez, M., Busquets-Barceló, M., Pujol-Busquets, G., Carrion, C., Bosque-Prous, M., Serra-Majem, L., & Bach-Faig, A. (2019). Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study. Nutrients, 11(10), 2508. https://doi.org/10.3390/nu11102508