Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Search Strategy
3. Results
3.1. Evidence from Trials
3.2. Evidence from Mechanistic Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V. Epidemiological evidence linking tea consumption to human health: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [PubMed]
- Autenrieth, D.M.; Baumgart, D.C. Microbiome and Gut Inflammation. Dtsch. Med. Wochenschr. 2017, 142, 261–266. [Google Scholar] [PubMed]
- Ding, R.X.; Goh, W.R.; Wu, R.N.; Yue, X.Q.; Luo, X.; Khine, W.W.T.; Wu, J.R.; Lee, Y.K. Revisit gut microbiota and its impact on human health and disease. J. Food Drug Anal. 2019, 27, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Etxeberria, U.; Fernández-Quintela, A.; Milagro, F.I.; Aguirre, L.; Martínez, J.A.; Portillo, M.P. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J. Agric. Food Chem 2013, 61, 9517–9533. [Google Scholar] [CrossRef]
- Murtaza N, Ó.; Cuív, P.; Morrison, M. Diet and the Microbiome. Gastroenterol. Clin. N. Am. 2017, 46, 49–60. [Google Scholar] [CrossRef]
- Nie, P.; Li, Z.; Wang, Y.; Zhang, Y.; Zhao, M.; Luo, J.; Du, S.; Deng, Z.; Chen, J.; Wang, Y.; et al. Gut microbiome interventions in human health and diseases. Med. Res. Rev. 2019. [Google Scholar] [CrossRef]
- Sirisinha, S. The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac. J. Allergy Immunol. 2016, 34, 249–264. [Google Scholar] [PubMed]
- Bibbo, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar] [PubMed]
- Sandhu, K.V.; Sherwin, E.; Schellekens, H.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 2017, 179, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tomas-Barberan, F.A. Tea Is a Significant Dietary Source of Ellagitannins and Ellagic Acid. J. Agric. Food Chem. 2019, 67, 5394–5404. [Google Scholar] [CrossRef]
- Tilg, H.; Cani, P.D.; Mayer, E.A. Gut microbiome and liver diseases. Gut 2016, 65, 2035–2044. [Google Scholar] [CrossRef]
- Calani, L.; Dall’Asta, M.; Derlindati, E.; Scazzina, F.; Bruni, R.; del Rio, D. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J. Clin. Gastroenterol. 2012, 46, S95–S99. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Rastmanesh, R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem. Biol. Interact. 2011, 189, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Z.; Guo, H.; He, D.; Zhao, H.; Wang, Z.; Zhang, W.; Liao, L.; Zhang, C.; Ni, L. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016, 7, 4869–4879. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T.P.; Rietveld, A.G.; van Amelsvoort, J.M. Consumption of both black tea and green tea results in an increase in the excretion of hippuric acid into urine. Am. J. Clin. Nutr. 2005, 81 (Suppl. 1), 256S–260S. [Google Scholar] [CrossRef] [PubMed]
- Anon. Understanding observational studies. Drug Ther. Bull. 2016, 54, 105–108. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, N.; Arikawa, A.Y.; Chen, C. Inhibitory Effects of Green Tea Polyphenols on Microbial Metabolism of Aromatic Amino Acids in Humans Revealed by Metabolomic Analysis. Metabolites 2019, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Long, Y.; Ji, Z.; Gao, J.; Fu, T.; Yan, M.; Zhang, L.; Su, H.; Zhang, W.; Wen, X.; et al. Green Tea Liquid Consumption Alters the Human Intestinal and Oral Microbiome. Mol. Nutr. Food Res. 2018, 62, e1800178. [Google Scholar] [CrossRef]
- Janssens, P.L.; Penders, J.; Hursel, R.; Budding, A.E.; Savelkoul, P.H.; Westerterp-Plantenga, M.S. Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PLoS ONE 2016, 11, e0153134. [Google Scholar] [CrossRef]
- van Duynhoven, J.; van der Hooft, J.J.; van Dorsten, F.A.; Peters, S.; Foltz, M.; Gomez-Roldan, V.; Vervoort, J.; de Vos, R.C.; Jacobs, D.M. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J. Proteome Res. 2014, 13, 2668–2678. [Google Scholar] [CrossRef]
- Jin, J.S.; Touyama, M.; Hisada, T.; Benno, Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol. Immunol. 2012, 56, 729–739. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Cordero, C.; Salvatore, S.; Pellegrini, N.; Brighenti, F. Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrition 2010, 26, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, Y.; Ohland, C.; Jobin, C.; Sang, S. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radic. Biol. Med. 2019, 131, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Hsu, M.; Lee, R.P.; Grojean, E.M.; Ly, A.; Tseng, C.H.; Heber, D.; Li, Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur. J. Nutr. 2018, 57, 2759–2769. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zeng, B.; Liu, Z.; Liao, Z.; Zhong, Q.; Gu, L.; Wei, H.; Fang, X. Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High-Fat Diet Treated HFA Mice. J. Food Sci. 2018, 83, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.S.; Park, H.M.; Hyun, S.M.; Shon, J.C.; Singh, D.; Liu, K.H.; Whon, T.W.; Bae, J.W.; Hwang, J.S.; Lee, C.H. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure. PLoS ONE 2017, 12, e0187154. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, B.; Zhang, X.; Liao, Z.; Gu, L.; Liu, Z.; Zhong, Q.; Wei, H.; Fang, X. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Funct. 2016, 7, 4956–4966. [Google Scholar] [CrossRef]
- Seo, D.B.; Jeong, H.W.; Cho, D.; Lee, B.J.; Lee, J.H.; Choi, J.Y.; Bae, I.H.; Lee, S.J. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J. Med. Food 2015, 18, 549–556. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Miao, Y.; Cao, J.; Wu, Z.; Weng, P. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 2017, 92, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Tan, D.; Akbary, R.; Kong, J.; Seviour, R.; Kong, Y. Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats. Appl. Microbiol. Biotechnol. 2019, 103, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xie, Q.; Kong, P.; Liu, L.; Sun, S.; Xiong, B.; Huang, B.; Yan, L.; Sheng, J.; Xiang, H. Polyphenol- and Caffeine-Rich Postfermented Pu-erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect. Immun. 2018, 86, e00601-17. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xie, M.; Wan, P.; Chen, D.; Dai, Z.; Ye, H.; Hu, B.; Zeng, X.; Liu, Z. Fuzhuan Brick Tea Polysaccharides Attenuate Metabolic Syndrome in High-Fat Diet Induced Mice in Association with Modulation in the Gut Microbiota. J. Agric. Food Chem. 2018, 66, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.T.; Gentile, C.L.; Cox-York, K.; Wei, Y.; Wang, D.; Estrada, A.L.; Reese, L.; Miller, T.; Pagliassotti, M.J.; Weir, T.L. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats. Mol. Nutr. Food Res. 2016, 60, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhang, X.; Zhu, J.; Cheng, L.; Cao, J.; Wu, Z.; Weng, P.; Zheng, X. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct. 2018, 9, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Moreno-Rojas, J.M.; Brindani, N.; del Rio, D.; Lean, M.E.J.; Hara, Y.; Crozier, A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. J. Agric. Food Chem. 2017, 65, 5365–5374. [Google Scholar] [CrossRef]
- Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884. [Google Scholar] [CrossRef]
- Okubo, T.; Ishihara, N.; Oura, A.; Serit, M.; Kim, M.; Yamamoto, T.; Mitsuoka, T. In Vivo Effects of Tea Polyphenol Intake on Human Intestinal Microflora and Metabolism. Biosci. Biotechnol. Biochem. 1992, 56, 588–591. [Google Scholar] [CrossRef]
- Li, G.; Lin, W.; Araya, J.J.; Chen, T.; Timmermann, B.N.; Guo, G.L. A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol. Appl. Pharmacol. 2012, 258, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Sheng, L.; Jena, P.K.; Liu, H.X.; Hu, Y.; Nagar, N.; Bronner, D.N.; Settles, M.L.; Bäumler, A.J.; Wan, Y.Y. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J. 2018, 32, 6371–6384. [Google Scholar]
- Cowan, T.E.; Palmnäs, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 2009, 130, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, J.; Zhang, N.; Fu, Y.; Zhang, Z.; Li, Y.; Wang, W.; Li, Y.; Shen, P.; Cao, Y. Ripened Pu-erh Tea Extract Protects Mice from Obesity by Modulating Gut Microbiota Composition. J. Agric. Food Chem. 2019, 67, 6978–6994. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, J.; Lv, Y.J.; Jiang, Y.L.; Pan, J.X.; Zhu, Y.J.; Huang, M.G.; Zhang, S.K. Changes in Intestinal Microbiota of Type 2 Diabetes in Mice in Response to Dietary Supplementation with Instant Tea or Matcha. Can. J. Diabetes 2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhou, J.; Meng, Q.; Zhang, Y.; Zhang, S.; Zhang, L. Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols. Food Funct. 2018, 9, 4858–4864. [Google Scholar] [CrossRef]
- Davies, M.J.; Judd, J.T.; Baer, D.J.; Clevidence, B.A.; Paul, D.R.; Edwards, A.J.; Wiseman, S.A.; Muesing, R.A.; Chen, S.C. Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J. Nutr. 2003, 133, 3298S–3302S. [Google Scholar] [CrossRef] [PubMed]
- Mai, V.; Katki, H.A.; Harmsen, H.; Gallaher, D.; Schatzkin, A.; Baer, D.J.; Clevidence, B. Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study. J. Nutr. 2004, 134, 473–478. [Google Scholar] [CrossRef]
- Jurgens, T.M.; Whelan, A.M.; Killian, L.; Doucette, S.; Kirk, S.; Foy, E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst. Rev. 2012, 12, CD008650. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Westerterp-Plantenga, M.S. The effects of green tea on weight loss and weight maintenance: A meta-analysis. Int. J. Obes. 2009, 33, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Westerterp-Plantenga, M.S. Catechin- and caffeine-rich teas for control of body weight in humans. Am. J. Clin. Nutr. 2013, 98 (Suppl. 6), 1682S–1693S. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, Y.; Cheng, M.; Zhang, X.; Zheng, X.; Zhang, Z. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J. Food Sci. Technol. 2018, 55, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef]
- Martin, D.A.; Bolling, B.W. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct. 2015, 6, 1773–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, G.W.; Lam, A.; Beatty, K.; Qazzaz, H.H.; McClain, C.J. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflamm. Bowel Dis. 2013, 19, 1904–1912. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex Differences in Gut Microbiota. World J. Mens. Health 2019. [Google Scholar] [CrossRef] [PubMed]
Tea Compounds | Reference |
---|---|
Ellagitannins—Tea has been found to be a significant contributor of dietary ellagitannins, which the gut microbiota metabolites use to produce urolithins. | Yang et al. (2019) [17] |
Oligomeric, oxidized black tea phenolic (BTP) and monomeric green tea catechin (GTC)—GTC gives a higher yield of bioactive phenolic metabolites upon colonic fermentation than BTP. | Liu et al. (2016) [22] |
Tea polyphenols—The major classes are catechins, including epicatechin, epigallocatechin, epicatechin-3-gallate, and epigallocatechin-3-gallate. Flavanols, such as quercetin, kaempferol, myricetin and their glycosides, are also found which could interact with gut microbiota. | Etxeberria et al. (2013) [8] |
Hippuric acid—Ingestion of green and black tea majorly increases the excretion of hippuric acid into urine, though less is known about microbial degradation. | Mulder et al. (2005) [23] |
Study (Author, Year, Location, Reference Number) | Subjects (age, gender) | Study design | Tea Intervention (type) | Tea Intervention (dosage) | Main Findings | JADAD Score |
---|---|---|---|---|---|---|
Zhou et al. (2019) United States [26] | Postmenopausal F. | 12-month intervention. | GTP supplement. | GT catechin extract containing 843.0 ± 44.0 mg/day epigallocatechin gallate or placebo capsules for 1 year. | Microbial metabolism of GTP and aromatic amino acids appear to play a role in the health effects of GT consumption in humans. | 5 |
Yuan, et al. (2018) China [27] | n = 12 healthy subjects, M and F, 27–46 years. | 2-week intervention. | GT beverage. | 400 mL green tea daily. One-week washout and 2-week intervention. | An irreversible, increased Firmicutes to Bacteroidetes ratio was observed along with a reduction of bacterial LPS synthesis in faeces after GTL ingestion. | 0 |
Janssens et al. (2016) United States [28] | n = 58 Caucasian, M and F, 18–50 years. | 12-week randomised, single blind, placebo-controlled design. | GT capsules. | Capsules with GT extract (containing >0.06 g Epigallocatechin-3-gallate and 0.03–0.05 g caffeine per capsule). Nine capsules were taken daily. | Significant effects on composition of the gut microbiota were not observed although a reduced bacterial alpha diversity in overweight vs. normal-weight subjects was seen (p = 0.002). | 2 |
Van Duynhoven et al. (2014) Netherlands [29] | n = 12 healthy men. | 30-hour randomised, open, placebo-controlled, crossover study. | Single bolus of BTE. | 2650 mg of Brook Bond red label extract, dissolved in 250 mL of hot water. | Inter-individual variation in response was greater for gut microbial catabolites than for directly absorbed BTPs. Rapid and sustained circulation of conjugated catabolites suggests these may be relevant to BTE health benefits. | 4 |
Jin et al. (2012) Japan [30] | n = 10 non habitual green tea drinkers, M and F, 33–70 years. | 17-day trial (intervention for 10 days). | GT beverage. | 1000 mL of GT daily. Drank GT instead of water for 10 days. | There was an overall tendency for the proportion of Bifidobacteria to increase due to GT ingestion. GT consumption may act as a prebiotic and improve the colon environment by increasing the proportion of the Bifidobacterium species. | 1 |
Del Rio et al. (2010) Italy [31] | n = 20 healthy subjects. | 24-hour feeding trial. | GT beverage. | 400 mL of a RTD GT containing approximately 400 μmol of flavan-3-ols. | Colonic microflora-derived polyhydroxyphenyl-γ-valerolactones were the main urinary catabolites, averaging 10 times greater concentration than flavan-3-ol conjugates. | 0 |
Study (Author, Year, Reference Number) | Study Design | Tea Intervention (type) | Main Findings |
---|---|---|---|
Lu et al. (2019) [52] | Obese murine study. | Ripened Pu-erh tea extract. | Ripened Pu-erh tea extract could potentially prevent obesity through rebalancing the gut microbiota. |
Xia et al. (2019) [40] | Metagenomic/meta-proteomic using obese rats. | Aqueous raw and ripe Pu-erh tea extracts. | Raw and ripe Pu-erh teas, administration at two doses significantly increased microbial diversity and changed the composition of cecal microbiota by increasing Firmicutes and decreasing Bacteroidetes. |
Zhang et al. (2019a) [32] | Animal and human in vitro studies. | (-)-epigallocatechin-3-gallate and green tea. | Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap reactive endogenous metabolites. |
Zhang et al. (2019b) [53] | Diabetic murine study. | Corn-starch tea. | Corn-starch‒tea diet resulted in reduced blood glucose, increased levels of Coriobacteriaceae, Lactobacillaceae, Prevotellaceae and Bifidobacteriaceae, and decreased Bacteroidaceae, Ruminococcaceae, Helicobacteraceae and Enterobacteriaceae. |
Zhou et al. (2019) [26] | Human study. | Green tea polyphenols. | GTP may have anti-obesity actions namely via changes in gut-microbiota metabolism. |
Annunziata et al. (2018) [33] | Simulated GI digestion. | Tea polyphenols from green, white and black tea. | Gut microbiota appear to metabolise polyphenols generating metabolites with a greater antioxidant activity. |
Chen et al. (2018a) [54] | Normal and obese rats. | Tea polyphenols. | A high-fat high sugar diet appeared to influence the excretion of tea catechins, leading to insufficient metabolism of catechins by the gut microflora. |
Chen et al. (2018b) [42] | Murine study. | Fuzhuan brick tea polysaccharides. | Increased the phylogenetic diversity of high-fat diet-induced microbiota. Could help prevent modulation of gut microbiota. |
Cheng et al. (2018) [44] | Murine study. | Oolong tea polyphenols. | A large increase in Bacteroidetes with a decrease in Firmicutes was observed having a positive modulatory and prebiotic effect. |
Cheng et al. (2017) [39] | Mice model. | (-)-Epigallocatechin 3-O-(3-O-methyl) gallate. | A large increase in Bacteroidetes with concomitant decrease of Firmicutes was observed after the administration of EGCG3 for 8 weeks. Could help to prevent gut dysbiosis. |
Henning et al. (2018) [34] | Murine study. | Green and black tea polyphenols. | GTP and BTPs decreased cecum Firmicutes and increased Bacteroidetes. |
Wang et al. (2018) [35] | Human flora-associated C57BL/6J mice model. | Green tea polyphenols. | A high-fat diet significantly impacted gut microbiota composition and lipid metabolism which was ameliorated by tea polyphenols. |
Gao et al. (2017) [41] | Murine study. | Pu-erh tea. | Post fermented pu-erh tea providing polyphenols and caffeine improved diet-induced metabolic syndrome which was attributed to remodelling of the gut microbiota. |
Jung et al. (2017) [36] | Murine microbiome-metabolome analysis. | Green tea supplementation. | Green tea supplementation improved the microbial community diversity by altering states of various endogenous metabolites in mice groups subjected to UVB-exposure. |
Foster et al. (2016) [43] | Pyrosequencing using rats. | Fuzhuan tea. | Fuzhuan tea altered intestinal function and was associated with a threefold increase in two Lactobacillus spp. |
Liu et al. (2016) [22] | Obese C57BL/6J mice. | Green, oolong and black tea. | Tea infusion consumption substantially increased diversity and altered the structure of gut microbiota. |
Wang et al. (2016) [37] | C57BL/6J Human Flora-Associated mice. | Green tea polyphenols. | High-fat diet was associated with a significant reduction in microbial diversity which was alleviated by tea polyphenol ingestion. |
Seo et al. (2015) [38] | Murine study. | Fermented green tea extract. | Fermented green tea restored the changes in gut microbiota composition (e.g., the Firmicutes/Bacteroidetes and Bacteroides/Prevotella ratios) closely linked to development of obesity and insulin resistance, induced by high-fat diets. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bond, T.; Derbyshire, E. Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients 2019, 11, 2364. https://doi.org/10.3390/nu11102364
Bond T, Derbyshire E. Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients. 2019; 11(10):2364. https://doi.org/10.3390/nu11102364
Chicago/Turabian StyleBond, Timothy, and Emma Derbyshire. 2019. "Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies" Nutrients 11, no. 10: 2364. https://doi.org/10.3390/nu11102364
APA StyleBond, T., & Derbyshire, E. (2019). Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients, 11(10), 2364. https://doi.org/10.3390/nu11102364