Skip Content
You are currently on the new version of our website. Access the old version .
Remote SensingRemote Sensing
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

30 January 2026

Lite-BSSNet: A Lightweight Blueprint-Guided Visual State Space Network for Remote Sensing Imagery Segmentation

,
,
,
and
College of Systems Engineering, National University of Defense Technology, Changsha 410000, China
*
Author to whom correspondence should be addressed.

Abstract

Remote sensing image segmentation requires balancing global context and local detail across multi-scale objects. However, convolutional neural network (CNN)-based methods struggle to model long-range dependencies, while transformer-based approaches suffer from quadratic complexity and become inefficient for high-resolution remote sensing scenarios. In addition, the semantic gap between deep and shallow features can cause misalignment during cross-layer aggregation, and information loss in upsampling tends to break thin continuous structures, such as roads and roof edges, introducing pronounced structural noise. To address these issues, we propose lightweight Lite-BSSNet (Blueprint-Guided State Space Network). First, a Structural Blueprint Generator (SBG) converts high-level semantics into an edge-enhanced structural blueprint that provides a topological prior. Then, a Visual State Space Bridge (VSS-Bridge) aligns multi-level features and projects axially aggregated features into a linear-complexity visual state space, smoothing high-gradient edge signals for sequential scanning. Finally, a Structural Repair Block (SRB) enlarges the effective receptive field via dilated convolutions and uses spatial/channel gating to suppress upsampling artifacts and reconnect thin structures. Experiments on the ISPRS Vaihingen and Potsdam datasets show that Lite-BSSNet achieves the highest segmentation accuracy among the compared lightweight models, with mIoU of 83.9% and 86.7%, respectively, while requiring only 45.4 GFLOPs, thus achieving a favorable trade-off between accuracy and efficiency.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.