Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers
Highlights
- This study proposes a multi-source hybrid network integrating CNN and Transformer, which synergistically extracts local and global features for high-accuracy phenology monitoring.
- Ablation studies demonstrate the superiority of the hybrid architecture, achieving 98.4% accuracy and significantly outperforming a pure CNN model (85.7%), validating the Transformer’s role in capturing global dependencies.
- The proposed method establishes an effective multi-modal data fusion framework for precision agriculture, enhancing automated crop monitoring under complex environmental conditions.
- By combining CNN-based local feature extraction with Transformer-based global attention, our approach robustly infers phenology under water and nitrogen stress, offering a new pathway for analyzing crop stress responses.
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Acquisition
2.2.1. Meteorological and Phenological Monitoring
2.2.2. UAV Image Acquisition
2.3. Data Preprocessing
2.3.1. UAV Imagery Preprocessing
2.3.2. Meteorological Data Preprocessing
2.4. Model Construction
2.4.1. Convolutional Neural Network
2.4.2. Transformer
2.4.3. Development of a Fusion Model
2.4.4. Hardware Environment
2.4.5. Model Training and Evaluation
2.5. Performance Evaluation
2.5.1. Evaluation Metrics
2.5.2. Ablation Study
3. Results
3.1. Performance of the Multi-Hybrid Model
3.2. Computational Performance of the Multi-Hybrid Model
3.3. Performance Validation via the Ablation Study
4. Discussion
4.1. Effects of Water and Nitrogen on Crop Phenology and Model Retrieval Performance
4.2. Simulation Performance of the Multi-Hybrid Network Model
4.3. Effect of Source Dataset Type on Model Retrieval Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Zhang, X.; Cui, Y.; Chao, Y.; Song, G.; Nie, C.; Wang, L. Response of Different Varieties of Maize to Nitrogen Stress and Diagnosis of Leaf Nitrogen Using Hyperspectral Data. Sci. Rep. 2023, 13, 5890. [Google Scholar] [CrossRef]
- Ogola, J.; Wheeler, T.; Harris, P. Effects of Nitrogen and Irrigation on Water Use of Maize Crops. Field Crops Res. 2002, 78, 105–117. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water Deficit and Nitrogen Nutrition of Crops. A Review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef]
- Celette, F.; Gary, C. Dynamics of Water and Nitrogen Stress along the Grapevine Cycle As Affected by Cover Cropping. Eur. J. Agron. 2012, 45, 142–152. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Rufty, T.W. Nitrogen and Water Resources Commonly Limit Crop Yield Increases, Not Necessarily Plant Genetics. Glob. Food Secur. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar] [CrossRef]
- Pan, D.; Li, C.; Yang, G.; Ren, P.; Ma, Y.; Chen, W.; Feng, H.; Chen, R.; Chen, X.; Li, H. Identification of the Initial Anthesis of Soybean Varieties Based on UAV Multispectral Time-Series Images. Remote Sens. 2023, 15, 5413. [Google Scholar] [CrossRef]
- Qi, A.; Keatinge, J.; Wheeler, T.; Papastylianou, I.; Subedi, M.; Shah, P.; Musitwa, F.; Cespedes, E.; Bening, C.; Ellis, R.; et al. Validation of a Photothermal Phenology Model for Predicting Dates of Flowering and Maturity in Legume Cover Crops Using Field Observations. Biol. Agric. Hortic. 2000, 17, 349–365. [Google Scholar] [CrossRef]
- Granero-Belinchon, C.; Adeline, K.; Lemonsu, A.; Briottet, X. Phenological Dynamics Characterization of Alignment Trees with Sentinel-2 Imagery: A Vegetation Indices Time Series Reconstruction Methodology Adapted to Urban Areas. Remote Sens. 2020, 12, 639. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019, 11, 2725. [Google Scholar] [CrossRef]
- Stone, P.; Sorensen, I.; Jamieson, P. Effect of Soil Temperature on Phenology, Canopy Development, Biomass and Yield of Maize in a Cool-Temperate Climate. Field Crops Res. 1999, 63, 169–178. [Google Scholar] [CrossRef]
- Zhu, G.; Yong, L.; Zhang, Z.; Sun, Z.; Sang, L.; Liu, Y.; Wang, L.; Guo, H. Infiltration Process of Irrigation Water in Oasis Farmland and Its Enlightenment to Optimization of Irrigation Mode: Based on Stable Isotope Data. Agric. Water Manag. 2021, 258, 107173. [Google Scholar] [CrossRef]
- Chen, W.; Liu, G. A Novel Method for Identifying Crops in Parcels Constrained by Environmental Factors Through the Integration of a Gaofen-2 High-Resolution Remote Sensing Image and Sentinel-2 Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 450–463. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- S, D.P.K.; Devi, N.; K, L.; Narne, C. Evaluation of Grain Quality Traits in Popular Rice Varieties of Andhra Pradesh. J. Pharmacogn. Phytochem. 2021, 10, 217–224. [Google Scholar] [CrossRef]
- Camoglu, G.; Demirel, K.; Genc, L. Use of Infrared Thermography and Hyperspectral Data to Detect Effects of Water Stress on Pepper. Quant. InfraRed Thermogr. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Yu, H.; Lu, H.; Zhao, M.; Li, Z.; Gu, G. Gradient Aggregation Based Fine-Grained Image Retrieval: A Unified Viewpoint for CNN and Transformer. Pattern Recognit. 2024, 149, 110248. [Google Scholar] [CrossRef]
- Werema, C.W.; Yang, D.A.; Laven, L.J.; Mueller, K.R.; Laven, R.A. Evaluating Alternatives to Locomotion Scoring for Lameness Detection in Pasture-Based Dairy Cows in New Zealand: Infra-Red Thermography. Animals 2021, 11, 3473. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, X.; Wu, Z.; Wei, C.; Li, L.; Yu, D.; Fan, X.; Ma, Y. Using Infrared Thermal Imaging Technology to Estimate the Transpiration Rate of Citrus Trees and Evaluate Plant Water Status. J. Hydrol. 2022, 615, 128671. [Google Scholar] [CrossRef]
- Garajeh, M.K.; Salmani, B.; Naghadehi, S.Z.; Goodarzi, H.V.; Khasraei, A. An Integrated Approach of Remote Sensing and Geospatial Analysis for Modeling and Predicting the Impacts of Climate Change on Food Security. Sci. Rep. 2023, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
- Thao, N.T.T.; Khoi, D.N.; Denis, A.; Viet, L.V.; Wellens, J.; Tychon, B. Early Prediction of Coffee Yield in the Central Highlands of Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation Biophysical Variables. Remote Sens. 2022, 14, 2975. [Google Scholar] [CrossRef]
- Mali, S.S.; Scobie, M.; Baillie, J.; Plant, C.; Shammi, S.; Das, A. Integrating UAV-based Multispectral and Thermal Infrared Imageries with Machine Learning for Predicting Water Stress in Winter Wheat. Precis. Agric. 2025, 26, 1–28. [Google Scholar] [CrossRef]
- Hao, S.; Cao, H.; Wang, H.; Pan, X. The Physiological Responses of Tomato to Water Stress and Re-Water in Different Growth Periods. Sci. Hortic. 2019, 249, 143–154. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.; Wang, Z.; Ullah, I.; Chen, S. Effect of Two Types of Irrigation on Growth, Yield and Water Productivity of Maize under Different Irrigation Treatments in an Arid Environment. Irrig. Drain. 2020, 69, 732–742. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y. Responses of Plant Phenology to Nitrogen Addition: A Meta-analysis. Oikos 2019, 128, 1243–1253. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, H.; Xu, X.; Cui, Y.; Wu, J. Transformer-Based Fused Attention Combined with CNNs for Image Classification. Neural Process. Lett. 2023, 55, 11905–11919. [Google Scholar] [CrossRef]
- Tucudean, G.; Bucos, M.; Dragulescu, B.; Caleanu, C.D. Natural Language Processing with Transformers: A Review. PeerJ Comput. Sci. 2024, 10, e2222. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Seo, S.-W. Discrete Wavelet Transform Meets Transformer: Unleashing the Full Potential of the Transformer for Visual Recognition. IEEE Access 2023, 11, 102430–102443. [Google Scholar] [CrossRef]
- Padshetty, S.; Umashetty, A. Agricultural Innovation Through Deep Learning: A Hybrid CNN-Transformer Architecture for Crop Disease Classification. J. Spat. Sci. 2024, 1–32. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Q.; Wang, R.; Du, J.; Chen, T. SWFormer: A Scale-Wise Hybrid CNN-Transformer Network for Multi-Classes Weed Segmentation. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102144. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.-Y.; Qu, W.-Y.; Li, W.-Z. Passive Design Strategies Based on Climatic Characteristics in Hot-Summer and Cold-Winter Zone: Taking Wuhan City for Example. Build. Energy Effic. 2013, 4, 101–103. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Fan, H.; Fan, Z.; Hu, F.; Yu, A.; Zhao, C.; Chai, Q.; Aziiba, E.A.; Zhang, X. Photosynthetic Physiological Characteristics of Water and Nitrogen Coupling for Enhanced High-Density Tolerance and Increased Yield of Maize in Arid Irrigation Regions. Front. Plant Sci. 2021, 12, 726568. [Google Scholar] [CrossRef]
- Lancashire, P.; Bleiholder, H.; Vandenboom, T.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Borra-Serrano, I.; Pena, J.M.; Torres-Sanchez, J.; Mesas-Carrascosa, F.J.; Lopez-Granados, F. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688. [Google Scholar] [CrossRef]
- Xing, J.-L.; Zhang, Y.; Chen, C.-M.; Zhang, B.-K.; Guo, W.; Ma, X.-S. Analysis of Low C/N Wastewater Treatment and Structure by the CEM-UF Combined Membrane-Nitrification/Denitrification System. Huan Jing Ke Xue 2018, 39, 1342–1349. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, H.; Zhang, S.; Fang, Y. Object Detection Algorithm Based On Multiheaded Attention. Appl. Sci. 2019, 9, 1829. [Google Scholar] [CrossRef]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative Damage and Antioxidative System in Algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Basha, S.H.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification. Neurocomputing 2020, 378, 112–119. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. CvT: Introducing Convolutions to Vision Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jegou, H. Training Data-Efficient Image Transformers & Distillation Through Attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139. [Google Scholar] [CrossRef]
- Zhang, C.; Iqbal, I.; Bhatti, U.A.; Liu, J.; Awwad, E.M.; Sarhan, N. ResNet50 in Remote Sensing and Agriculture: Evaluating Image Captioning Performance for High Spectral Data. Environ. Earth Sci. 2024, 83, 655. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, Z.; Lv, Q.; Li, J.; Zhu, B.; Liu, Y. An Efficient Hybrid CNN-Transformer Approach for Remote Sensing Super-Resolution. Remote Sens. 2024, 16, 880. [Google Scholar] [CrossRef]
- Diamantis, D.E.; Iakovidis, D.K. Fuzzy Pooling. IEEE Trans. Fuzzy Syst. 2021, 29, 3481–3488. [Google Scholar] [CrossRef]
- Ben, J.; Sun, Q.; Liu, K.; Yang, X.; Zhang, F. Multi-head Multi-Order Graph Attention Networks. Appl. Intell. 2024, 54, 8092–8107. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.; DeJonge, K.C.; Comas, L.H.; Trout, T.J. Estimating Maize Water Stress by Standard Deviation of Canopy Temperature in Thermal Imagery. Agric. Water Manag. 2016, 177, 400–409. [Google Scholar] [CrossRef]
- Bu, S.; Zhou, G. Joint Data Association, Spatiotemporal Bias Compensation and Fusion for Multisensor Multitarget Tracking. IEEE Trans. Signal Process. 2023, 71, 1509–1523. [Google Scholar] [CrossRef]
- Reddy, D.; Ganesh, P.; Saisravan, A.; Dawson, J. Effect of Nitrogen and Iron Levels on Growth and Yield of Rabi Hybrid Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2297–2304. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, J.; Li, H.; Cao, W.; Zhu, Y.; Jiang, X.; Ni, J. Spectrum- and RGB-D-Based Image Fusion for the Prediction of Nitrogen Accumulation in Wheat. Remote Sens. 2020, 12, 4040. [Google Scholar] [CrossRef]
- Shang, L.; Chen, L.; Zhang, T.; Zheng, X.; Zhao, S.-Y.; Kong, L.-Y.; Chen, G.-J. Seasonal Variations and Driving Factors of Phytoplankton Community Shift in Datun Lake with Long-Term Stress of Arsenic Contamination. J. Appl. Ecol. 2021, 32, 1845–1853. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, H.; Pan, G. Spiking Deep Residual Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5200–5205. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, M.; Yan, D.M.; Wu, T. Deep Unfolding Multi-Scale Regularizer Network for Image Denoising. Comput. Vis. Media 2023, 9, 335–350. [Google Scholar] [CrossRef]
- Yu, X.; Huo, X.; Qian, L.; Du, Y.; Liu, D.; Cao, Q.; Wang, W.E.; Hu, X.; Yang, X.; Fan, S. Combining UAV Multispectral and Thermal Infrared Data for Maize Growth Parameter Estimation. Agriculture 2024, 14, 2004. [Google Scholar] [CrossRef]
- Peltekis, C.; Alexandridis, K.; Dimitrakopoulos, G. Reusing Softmax Hardware Unit for GELU Computation in Transformers. In Proceedings of the 2024 IEEE 6th International Conference on AI Circuits and Systems, AICAS 2024, Abu Dhabi, United Arab Emirates, 22–25 April 2024. [Google Scholar] [CrossRef]
- Sabet, A.H.N.; Qiu, J.; Zhao, Z. Tigr: Transforming Irregular Graphs for GPU-Friendly Graph Processing. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems, Williamsburg, VA, USA, 24–28 March 2018. [Google Scholar]
- Cho, Y.Y.; Oh, M.-M.; Son, J.E. Modeling Approaches for Estimating Cardinal Temperatures by Bilinear, Parabolic, and Beta Distribution Functions. Korean J. Hortic. Sci. Technol. 2009, 27, 239–243. [Google Scholar]
- Rad, S.S.; Kafi, M.; Nezami, A.; Aval, M.B. Evaluation of base, optimum and ceiling temperature for (Kochia scoparia L. schard) with application of five-parameters-beta model. J. Agroecol. 2011, 3, 191–197. [Google Scholar]
- Yang, M.; Fan, Y.; Li, B. Research on dimensionality reduction and classification of hyperspectral images based on LDA and ELM. J. Electron. Meas. Instrum. 2020, 34, 190–196. [Google Scholar] [CrossRef]
- Siesto, G.; Fernandez-Sellers, M.; Lozano-Tello, A. Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks. Remote Sens. 2021, 13, 3378. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.; Han, J.; Yu, J.; Huang, K. A Near Real-Time Deep Learning Approach for Detecting Rice Phenology Based on UAV Images. Agric. For. Meteorol. 2020, 287, 107938. [Google Scholar] [CrossRef]









| Nitrogen Application | Basal Fertilizer (kg hm−2) | Jointing Stage (kg hm−2) | Total N Rate (kg hm−2) |
|---|---|---|---|
| N1 | 22.5 | 22.5 | 45 |
| N2 | 60 | 60 | 120 |
| N3 | 120 | 120 | 240 |
| N4 | 180 | 180 | 360 |
| Date | Growth Stage | Irrigation Depth (mm) | |
|---|---|---|---|
| W1 | W2 | ||
| 12 July 2022 | Germination | 5 | 5 |
| 19 July 2022 | Leaf expansion | 30 | 18 |
| 5 August 2022 | Jointing stage | 73.7 | 44.22 |
| 13 August 2022 | jointing stage | 20 | 20 |
| 16 August 2022 | Jointing stage | 70 | 60 |
| Date | W1N1 | W1N2 | W1N3 | W1N4 | W2N1 | W2N2 | W2N3 | W2N4 |
|---|---|---|---|---|---|---|---|---|
| 10 August 2022 | 34 | 35 | 34 | 33 | 34 | 34 | 33 | 33 |
| 14 August 2022 | 35 | 34 | 34 | 33 | 34 | 34 | 33 | 34 |
| 18 August 2022 | 35 | 51 | 35 | 34 | 34 | 34 | 34 | 34 |
| 21 August 2022 | 55 | 55 | 51 | 35 | 35 | 34 | 51 | 36 |
| 24 August 2022 | 59 | 59 | 51 | 35 | 51 | 35 | 55 | 51 |
| 27 August 2022 | 59 | 59 | 59 | 59 | 59 | 59 | 63 | 55 |
| 2 September 2022 | 67 | 69 | 63 | 65 | 59 | 59 | 67 | 63 |
| 6 September 2022 | 75 | 75 | 71 | 75 | 71 | 73 | 73 | 67 |
| 9 September 2022 | 83 | 85 | 79 | 85 | 83 | 83 | 83 | 75 |
| 13 September 2022 | 83 | 85 | 83 | 85 | 85 | 83 | 83 | 83 |
| 21 September 2022 | 87 | 87 | 85 | 87 | 85 | 85 | 85 | 85 |
| 26 September 2022 | 89 | 89 | 87 | 87 | 85 | 87 | 87 | 85 |
| Parameter Name | Description | Value |
|---|---|---|
| in_channels | Number of input channels | 1024 |
| Transformer_dim | Input dimension for Transformer | 96 |
| ffn_dim | Dimension of the feed-forward network module | 192 |
| n_Transformer_blocks | Number of Transformer blocks | 12 |
| head_dim | Dimension of multi-head attention | 32 |
| attn_dropout | Dropout rate for the attention mechanism | 0.1 |
| dropout | Overall dropout rate | 0.1 |
| ffn_dropout | Dropout rate between FFN layers | 0.0 |
| patch_h | Patch height | 2 |
| patch_w | Patch width | 2 |
| Date | W1N1 | W1N2 | W1N3 | W1N4 | W2N1 | W2N2 | W2N3 | W2N4 |
|---|---|---|---|---|---|---|---|---|
| 10 August 2022 | 34 | 34 | 34 | 33 | 33 | 34 | 33 | 33 |
| 14 August 2022 | 34 | 35 | 35 | 34 | 33 | 34 | 33 | 33 |
| 18 August 2022 | 40 | 41 | 36 | 40 | 34 | 34 | 34 | 34 |
| 21 August 2022 | 53 | 55 | 56 | 41 | 40 | 35 | 36 | 40 |
| 24 August 2022 | 57 | 62 | 60 | 48 | 52 | 46 | 54 | 51 |
| 27 August 2022 | 62 | 62 | 64 | 62 | 57 | 58 | 60 | 56 |
| 2 September 2022 | 66 | 69 | 67 | 67 | 66 | 62 | 65 | 65 |
| 6 September 2022 | 74 | 74 | 74 | 74 | 72 | 71 | 72 | 70 |
| 9 September 2022 | 83 | 85 | 83 | 84 | 84 | 80 | 80 | 81 |
| 13 September 2022 | 83 | 85 | 86 | 84 | 84 | 82 | 82 | 84 |
| 21 September 2022 | 86 | 87 | 88 | 86 | 85 | 84 | 85 | 85 |
| 26 September 2022 | 88 | 89 | 88 | 89 | 86 | 87 | 87 | 85 |
| Treatment | W1N1 | W1N2 | W1N3 | W1N4 | W2N1 | W2N2 | W2N3 | W2N4 |
|---|---|---|---|---|---|---|---|---|
| RMSE | 1.77 | 2 | 3.61 | 4.2 | 2.41 | 3.00 | 4.08 | 2.13 |
| MAE | 1.13 | 1.33 | 2.73 | 2.53 | 1.53 | 1.53 | 1.00 | 1.20 |
| Treatment | W1N1 | W1N2 | W1N3 | W1N4 | W2N1 | W2N2 | W2N3 | W2N4 |
|---|---|---|---|---|---|---|---|---|
| Mid-jointing to pre-grain-filling stage | ||||||||
| RMSE | 2.708 | 4.743 | 5.115 | 6.519 | 3.651 | 4.761 | 6.364 | 2.483 |
| MAE | 2.333 | 3.5 | 4.5 | 5.167 | 2.667 | 3 | 3.833 | 1.833 |
| Early and mid jointing stage | ||||||||
| RMSE | 0.447 | 0.774 | 0.774 | 0.632 | 0.894 | 0 | 0 | 0.447 |
| MAE | 0.2 | 0.6 | 0.6 | 0.4 | 0.8 | 0 | 0 | 0.2 |
| Mid-to-late grain-filling stage to harvesting stage. | ||||||||
| RMSE | 0.707 | 0 | 2.958 | 1.323 | 0.866 | 1.658 | 1.581 | 3.041 |
| MAE | 0.500 | 0 | 2.75 | 1.25 | 0.75 | 1.25 | 1.001 | 1.75 |
| Epochs | Transformer | Batchsize | Timeperepoch | Accuracy |
|---|---|---|---|---|
| 200 | 12 | 32 | 22 s | 98.4% |
| 200 | 12 | 24 | 28 s | 95.2% |
| 200 | 8 | 32 | 30 s | 95.6% |
| 300 | 12 | 32 | 22 s | 98.4% |
| 200 | 16 | 32 | 26 s | 97.2% |
| Experiment | Model | Testsetaccuracy | Precision | F1 |
|---|---|---|---|---|
| Exp A | CNN | 85.7% | 63.0% | 0.604 |
| Exp B | CNN + Transformer (No GDD) | 90.5% | 83.8% | 0.805 |
| Exp C | CNN + Light Transformer | 92.5% | 79.3% | 0.75 |
| Exp D | Transformer | 84.73% | 47.7% | 0.432 |
| Original | CNN + Transformer | 98.4% | 84.4% | 0.818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guo, Y.; Zeng, W.; Zhang, H.; Shao, J.; Liu, Y.; Ao, C. Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers. Remote Sens. 2026, 18, 356. https://doi.org/10.3390/rs18020356
Guo Y, Zeng W, Zhang H, Shao J, Liu Y, Ao C. Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers. Remote Sensing. 2026; 18(2):356. https://doi.org/10.3390/rs18020356
Chicago/Turabian StyleGuo, Yugeng, Wenzhi Zeng, Haoze Zhang, Jinhan Shao, Yi Liu, and Chang Ao. 2026. "Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers" Remote Sensing 18, no. 2: 356. https://doi.org/10.3390/rs18020356
APA StyleGuo, Y., Zeng, W., Zhang, H., Shao, J., Liu, Y., & Ao, C. (2026). Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers. Remote Sensing, 18(2), 356. https://doi.org/10.3390/rs18020356

