Abstract
Soybean is a key global crop for food and oil production, playing a vital role in ensuring food security and supplying plant-based proteins and oils. Accurate information on soybean distribution is essential for yield forecasting, agricultural management, and policymaking. In this study, we developed an Enhanced Chlorophyll Index (NRLI) to improve the separability between soybean and maize—two spectrally similar crops that often confound traditional vegetation indices. The proposed NRLI integrates red-edge, near-infrared, and green spectral information, effectively capturing variations in chlorophyll and canopy water content during key phenological stages, particularly from flowering to pod setting and maturity. Building upon this foundation, we further introduce a pixel-wise compositing strategy based on the peak phase of NRLI to enhance the temporal adaptability and spectral discriminability in crop classification. Unlike conventional approaches that rely on imagery from fixed dates, this strategy dynamically analyzes annual time-series data, enabling phenology-adaptive alignment at the pixel level. Comparative analysis reveals that NRLI consistently outperforms existing vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Greenness and Water Content Composite Index (GWCCI), across representative soybean-producing regions in multiple countries. It improves overall accuracy (OA) by approximately 10–20 percentage points, achieving accuracy rates exceeding 90% in large, contiguous cultivation areas. To further validate the robustness of the proposed index, benchmark comparisons were conducted against the Random Forest (RF) machine learning algorithm. The results demonstrated that the single-index NRLI approach achieved competitive performance, comparable to the multi-feature RF model, with accuracy differences generally within 1–2%. In some regions, NRLI even outperformed RF. This finding highlights NRLI as a computationally efficient alternative to complex machine learning models without compromising mapping precision. This study provides a robust, scalable, and transferable single-index approach for large-scale soybean mapping and monitoring using remote sensing.